Approximation Algorithms For Traveling Salesman Problem

K Vamsi Krishna
Supervisor: Dr. T. Kavitha
Department of Computer Science and Automation
Indian Institute of Science

Abstract

The Traveling Salesman Problem (TSP) is one of the
well studied combinatorial optimization problems. Be-
cause of its simple specification (yet notoriously hard)
and wide applicability it has attracted interest of re-
searchers both from academics and industry. Another
ascept of TSP is the number of variations it has, and
suprisingly even the most simplest looking variants
were found to be NP-hard.

In this report, we give a brief survey of the TSP
and its variants, specifically various approximation al-
gorithms that have been given for it.

1 Introduction

In layman terms, TSP can be stated as “Consider a
salesman who has to visit a specified list of cities. As-
suming (s)he has the information of all the intercity
traveling costs, what is the cheapest way to visit all
the cities and return to the home city?”.

The earliest reference to this problem goes back to
1830s, but Karl Menger seems to have popularized it
in 1920s. See Ch. 1 of [1] and [2] for an interesting
history of TSP.

1.1 Problem

Let us formalize the problem in terms of graphs,
“Given a complete weighted graph, G = (V, E) and
weight function, w : E — R, find the minimum
weight Hamiltonian cycle”. G is a directed graph in
general.

Let the vertex set be V = {1,2,---,n} and weight
of an edge (4,j) be w;;. Let OPT denote the cost of
an optimal TSP tour, Topr. Consider the instance
of TSP in Figure 1, it has OPT = 22 and Topr =
(1,4,3,2,1).

For an integer programming formulation see [1].

Figure 1: An instance of TSP

1.2 Motivation

As stated, TSP has wide applications in the sense that
many problems can be cast as TSP problems. Apart
from the obvious application in transportation and lo-
gistics, it has appeared in disguise in many fields like
compilers [3], genetics [4], etc. For a feel of it, consider
the following scheduling problem.

Consider a manufacturing environment where the
same set of machines are used to produce n dif-
ferent commodities. Also, when the machines are
changed from producing commodity i to commodity 7,
a change-over cost of c;; is incurred. Since production
continues cyclically, we need to consider the change
over cost of last commodity to the first commodity
also. It is clear that minimizing total change-over cost
is same as solving TSP on the graph with commodities
as verticies and weight of edges as change-over costs.

1.3 Outline of the Report

We start with describing some of the important vari-
ants of TSP in Section 2, and then in Section 3 indicate
various methods of solving TSP, followed by approx-
imation algorithms and synopsis of some algorithms
that we have looked at in Section 4 and we conclude
in Section 5.

2 Variants of TSP

TSP may be classified in various dimensions, some of
which are described below.

Symmetric/ Asymmetric: In the symmetric case
the given graph is undirected (or equivalently, w;; =
wj;) and in the asymmetric case it is a directed graph.

Minimization/Maximization: In general the
optimization is to minimize the total weight of the
tour, however, we can consider to maximize the total
weight (see it as profit instead of cost). Note that with
respect to hardness both minimization and maximiza-
tion versions are equivalent, replace w;; by —w;; (add
a suitable constant to make weights positive). How-
ever, with respect to approximability both the versions
differ as will be seen in later sections.

Metric/Non-metric: In the metric case the
weights satisfy triangle inequality i.e.,

wi; < Wik —}—wkj,‘v’i,j,k eV

Again note that any non-metric instance can be con-
verted into a metric instance, replace w;; by w;; + M,
where M is suitably large constant.

Parameterized triangle inequality: In this case
the triangle inequality is weakened and it is enough for
the weights to satisfy

Wij S ﬂ(wzk + ’U}kj),Vi,j,k eV

where 3 is the parameter. For a given instance, we
}vi gk eV

Bounded metric (a,b): In this case the weights
(only integral) are taken from the interval [a,b]. The
specific cases (1,2) for minimization and (0,1) for
maximization have been well studied. The (1,2) case
for minimization is of special importance as it is met-
ric and is the one that is generally used to provide
hardness results [5].

can easily compute 3 as max { —=i
Wik +Whj

Euclidean: In the euclidean case the nodes are
considered as points in R? and weights are given
by their euclidean distance. Euclidean TSP is NP-
complete [6].

Reoptimization: In this case we are given a graph
along with the optimum tour and we are asked to find
the optimum tour when small modifications (adding a
new node, deleting a node) are made to the graph.

In addition to those mentioned above, there are
many other variants like Generalized TSP, Vehicle
routing problem [7], Planar TSP [8], Online TSP [9],
etc.

| Problem | Notation
min, metric, sym A-TSP
min, metric, asym A-ATSP
min, non-metric, sym TSP
min, non-metric, asym ATSP
min, weights 1 & 2, sym (1,2)-TSP
min, weights 1 & 2, asym (1,2)-ATSP
min, parameterized tri. ineq., sym | Ag-TSP
min, parameterized tri. ineq., asym | A,-ATSP
min, reoptimization, sym RTSP
max, metric, sym A-MaxTSP
max, metric, asym A-MaxATSP
max, non-metric, sym MaxTSP
max, non-metric, asym MaxATSP

max, weights 0 & 1, sym (0,1)-MaxTSP

max, weights 0 & 1, asym (0,1) -MaxATSP

max, reoptimization, sym MaxRTSP

min, euclidean ETSP

Table 1: Notations for various TSPs

3 Solving TSP

3.1 Exact Algorithms

The straight forward brute force approach of solving
TSP by enumerating all possible tours is clearly not
feasible, even for a moderate value of n, as the number
of tours is O(n!).

However, by using the dynamic programming ap-
proach, it can be solved in O(n?2") which is better
than O(n!). The applicability of dynamic program-
ming follows from the observation below

c(i,S) = fjileig{wz'j +c(4,S = {ih}

where ¢(i, S) represents the total weight of the short-
est path from vertex ¢ to the starting vertex, say 1,
going through all the vertices in S. Now, the original
problem can be solved by computing ¢(1,V —{1}). See
[10] for analysis.

Another approach that is generally used to attack
NP-Hard problems is branch and bound. This is sim-
ilar to the brute force approach in the sense that we
start out enumerating (branch) all possible tours, how-
ever, we also start with a bound on the optimal tour
cost (and keep updating it as we find better bounds),
and skip all those tours about which we are sure that
their cost crosses the bound. Branch and bound has
been found to perform very well for practical TSP in-
stances. For further information on branch and bound
refer [1].

3.2 Heuristics

For most practical situations it is sufficient if we can
provide a mear optimal tour instead of the optimal.
This motivates us to try out heuristics which are fast
to implement and perform well in general. Early re-
search in TSP has resulted in various heuristics. As a
sample we will look at the most natural heuristic and
also give an instance for which it outputs the worst
tour.

The nearest neighbour heuristic (Table 2) always
chooses the next vertex as the one that is nearest to
the present vertex. The algorithm, when invoked with
o(1) = 1, returns the tour (1,3,2,4,1) (of weight 30
which is the worst tour) when run on the instance in
Figure 1.

e Input: Graph G with weights w;; and a start-
ing vertex o(1).

e Quput: TSP tour (¢(1),0(2),---,0(n),c(1)).

1. Initialize S = {1,2,---,n} — {o(1)}.

2. For k=2,3,---,n

(a) Choose a(k) such that

Wo(k=1),0(k) = Igleig{wa(k—n,s}

(b) §=25—{a(k)}.

Table 2: Nearest Neighbour for ATSP

3.3 Other Approaches

TSP, because of its wide applicability, has been a test-
bed for various optimization methodoligies like heuris-
tics (see Ch 4.6 of [11]), genetic algorithms [12], neural
nets [13], etc.

The other direction in which these problems are
handled is to look at certain special classes of graphs
for which they may turn out to be polynomially solv-
able. The special classes that are of interest are those
that are rich and include most instances that come up
in the application that is under consideration.

4 Approximation Algorithms

Approximation algorithms can be regarded as formal-
ization of heuristics. That is, for approximation algo-

rithms one wants a provable bound on the quality of
the solution and the running time. There are various
notions of quality. We consider the definition given
below.

Definition 1 Let II be a minimization problem with
the objective function objr, and let & be a function,
§:Z%t — QF, with § > 1. An algorithm A is said
to be a factor & approximation algorithm for I if, on
each instance I, A produces a feasible solution s for I
such that objri (I, s) < 6(|1]).OPT(I), and the running
time of A is polynomial in |I|.

Similar definition can be given for approximation
algorithm for maximization problem. Note that the
closer 4 is to 1, the better is the approximation algo-
rithm.

NP-hard problems vary greatly in their approxima-
bility in the sense that certain problems are not ap-
proximable for any polynomially computable §, some
with § that is function of |I|, some with a constant
4, and some that are approximable to any required
constant §. The approximation algorithms for a prob-
lem that achieve any given approximation factor are
refered as polynomial time approzimation schemes or
PTAS.

Theorem 1 For any polynomial time computable
function a(n), TSP cannot be approzimated within a
factor of a(n), unless P = NP.

For a proof of Theorem 1 and more on approxima-
tion algorithms see Vazirani [14].

4.1 Tools

The following tools have been repeatedly exploited in
various approximation algorithms for TSP. For the re-
mainder of this section assume the minimization TSP,
similar arguments apply for maximization TSP also.

Minimum spanning tree: A minimum weight
tree that spans all the vertices of a given graph is
called its minimum spanning tree (M ST). Note that
w(MST) < OPT, as removing any edge from Topr
makes it a spanning tree.

Minimum matching: A matching with minimum
possible weight and which leaves at most one un-
matched vertex is called a mimimum matching (M).
Note that w(M) < OPT/2, as Topr can be seen as a
collection of two matchings.

Minimum cycle cover: A cycle cover is a col-
lection of disjoint cycles that spans all the verties of
the given graph. A cycle cover with minimum possi-
ble weight is called a minimum cycle cover (C'). Note

that w(C) < OPT, as Topr is also a cycle cover. The
problem of finding minimum cycle cover is often ref-
ered as assignment problem.

Subtour patching: Subtour patching is the tech-
nique of joining the cycles in a cycle cover into a single
tour. Careful analysis of the weight of edges involved
in the patching often provides good approximations.

There are polynomial time algorithms for finding
MST, M and C [15].

4.2 Classical Algorithms

Christofides algorithm [16] for A-TSP and Repeated
assignment algorithm [17] for A-ATSP have been the
best approximation algorithms for nearly 30 years.

1. Find a minimum spanning tree of G, say
MST.

2. Compute a minimum weight matching, M, on
the set of odd-degree vertices of MST. Add
M to T and obtain an Eulerian graph.

3. Find an Euler tour, T, of this graph.

4. Output the tour that visits vertices of G in
the order of their first apperance in T,. Let
T, be this tour.

Table 3: Christofides for A-TSP

Theorem 2 Christofides algorithm (Table 3) achie-
ves a factor 8/2 approzimation for A-TSP.

Proof:
o w(T,)
o w(T,)
e = w(T,) <30PT/2 O

<w(MST) +w(M) < 30PT/2
<

T.) because of triangle inequality

Theorem 3 Repeated assignment algorithm (Table 4)
achieves a factor O(logn) approximation for A-ATSP.

Proof:

e Let S; denote the cycle cover found in j" itera-
tion of the while loop.

o w(To) < X w(S))

e = w(T,) < log,(n)OPT, as the while loop can
repeat for at most log,(n) times. O

e ASSIGN(.) solves the assignment problem
i.e., finds the minimum cycle cover.

e TOUR(.) makes a valid tour out of edges
found so far.

1. Intialize P = ¢,k =0,G' = G.
2. While & # 1
(a) Let S = {P1, P»,---, Py} be the solution
obtained by calling ASSIGN (G").
(b) V''=¢.
(¢) Fori=1tok
i. Choose v; € P;.
i. V! =V'U{v}.
ii. P=PU{P]}.
(d) G' be the induced graph on V.

3. Return the tour, 7T,, obtained by calling
TOUR(P).

Table 4: Repeated Assignment for A-ATSP

5 Literature Survey

Approximation algorithms with improved factors are
being continously found for almost all variants given in
Section 2. Table 5 lists the best approximation factors
available to date for some of the variants.

In the remainder of this section we briefly describe a
sample of 4 algorithms highlighting the essential ideas
in each case. Being short of space, proofs have been
avoided or are kept brief. For complete details see the
corresponding references.

5.1 7/12 algorithm for (0,1)-MaxATSP

This algorithm, given by Vishwanathan [30], is
the first algorithm to achieve non-trivial factor for
(0,1)-MaxATSP. The basic tool is subtour patching.
We mention that 2-cycles i.e., cycles of length two in
the cycle cover are the main cause of poor approxi-
mations for asymmetric case when compared to sym-
metric case. The paper gives a nice way of handling
2-cycles. The essential idea is to give two algorithms,
one that performs well when there are lot of 2-cycles
and one that performs well when there are very few
2-cycles.

We say vertices u and v are balanced if wyy = Wyy,-

| Problem | Factor |
A-TSP 3/2 [16]
A-ATSP 4/3logs n [18]
(1,2)-TSP 8/7[19
(1,2)-ATSP 5/4 [20
Ap-TSP,3 <1 | 3/2, depending on § [21]
A,-ATSP,y< 1 TLW [22]
Ap-TSP,B > 1 | min{4B, 55+ } [23, 24, 25]
A-ATSP,y > 1 | min{312 4y} [24, 23]
A-MaxTSP 7/8 — o(1) [26]
A-MaxATSP 31/40 [27]
MaxTSP 61/81 — o(1) [28]
MaxATSP 2/3 [18
(0,1) -MaxTSP 3/4 [20
(0,1)-MaxATSP 3/4 20
ETSP PTAS [29]

Table 5: Best Approximation Factors

Let [denote the number of weight one edges between
balanced pairs of vertices.

1. Modify wieghts:
if(wu—ov)=1&wlv—-u)=0)
then set w(u — v) =4/3

2. Find maximum weight cycle cover.

3. Patch the cycles.

Table 6: Algorithm 1 for (0,1)-MaxATSP

Lemma 1 The weight of the tour produced by Algo-
rithm 1 (Table 6) is at least 20PT[3 —1/6.

Lemma 2 The weight of the tour produced by Algo-
rithm 2 (Table 7) is at least OPT 2+ 1/6.

Theorem 4 There is a polynomial approzimation al-
gorithm for (0,1)-MazATSP which finds a tour of
length at least 7/12 of the optimal.

Proof:

e The proof of the Lemma 1 and Lemma 2 is based
on the observation that the weight of the optimum
tour in the modified graph is at least 4(OPT —
1)/3 + 1 in the case of Algorithm 1 and at least
41/3+ (OPT —1) in the case of Algorithm 2.

e At least one of the algorithms performs as well as
their average i.e., > (7/12).0OPT. O

1. Create an undirected graph G' = (V',E’)
with weight function w':
Vi={d|ueV}
why ., = 4/3 if (u,v) are balanced with wt. 1
Wl = 01if (u,v) are balanced with wt. 0

w!,,» = 1if (u,v) are not balanced

2. Find maximum weight cycle cover in G'.
(Note that each cycle corresponds to two
directed cycle covers - clockwise & counter
clockwise.)

3. Select the direction that gives more weight.

4. Patch the cycles.

Table 7: Algorithm 2 for (0,1)-MaxATSP

5.2 -+ algorithm for A,-ATSP, 7y <1

This algorithm, given by Chandran and Ram [31], is
the first constant factor approximation for A,-ATSP,
v < 1. Again, subtour patching is the basic tool. The
essential idea is to try various patchings and return
the best of them.

Lemma 3 Let C = {vi,v2,+-,Vk, V41 = uv1} be
a directed cycle in G with 2 < k < n and v €
[1/2,1). Let w € V — C, then I(vy,,u) such that
Wypw = Max{Wy, o, : 4 = 1,---,k} and w,,, . <

(725) Wom om -

Lemma 4 If a cycle cover C is input to Hamiltonian
Path algorithm (Table 8), it outputs an Hamiltonian
path H of cost < (1—;%)11;(0) In particular, if C is a

minimum cost cycle cover, w(H) < (ﬁ)OPT.

Theorem 5 The Hamiltonain Path algorithm (Ta-
ble 8) can be used to get a tour of weight at most
(% +7)OPT.

Proof:

e Lemma 3 is proved by assuming that the required
edge doesnot exist leading to contradiction with
the triangle inequality.

o Lemma 4 follows from Lemma 3.

e Run the Hamiltonian Path algorithm n times,
once with each vertex ¢, thus obtaining an Hamil-
tonian path H; ending at vertex 1.

e Input: A cycle cover C = {C1,Cs,---,C}; a
vertex u; € V. Assume u; € Cy.

e Ouput: An Hamiltonian path of G ending at
vertex uq.

1. Consider the edge (u1,v1) € C; and remove
it. Now, we have a path from v; to u;.

2. Fori=2---k do:

(a) Get an edge (u;,v;) in C; such that
Wayy vy = Max{wg .y, _, : Vo € C;} and
remove it.

(b) Add the edge (u;,vi—1). We have a path
from v; to uq.

3. We have an Hamiltonian path from vy to u;.
Output this path.

Table 8: Hamiltonian Path

e Each H; is converted into a tour 7; by adding the
missing edge.

e Select the minimum wieght tour among T;s.

e Because of the triangle inequality we are assured
that weight of at least one of the missing edges is
at most yOPT. This, together with the Lemma, 4,
implies the theorem. O

5.3 3/4 algorithm for (0,1)-MaxATSP

This algorithm was given by Blaser [20]. The basic
tool is linear programming. The idea is to find an
admissible multigraph that is 2-path colorable.

Definition 2 A multigraph is called 2-path colourable
if its edges can be coloured with two colors such that
each color class is a collection of node disjoint paths.

Definition 3 A directed multigraph is called admiss-
able if (i) the indegree and outdegree of each node is at
most two, (ii) the total degree of each node is at most
three, and (iii) between each pair of nodes, there are
at most two edges (counted with multiplicities).

Lemma 5 If there are no 2-cycles on a cycle in
an admissible multigraph G, then G is 2-path col-
orable, where 2-cycle on a cycle is a directed cycle
V1,..., 0,01 with k > 3 such that (v;,v;—1) is also
an edge for some 1.

1. Solve the relaxed LP for admissible multi-
graph, giving H*.

2. Round H* to an admissible multigraph S.

3. Find a 2-path colorable admissible graph S’
with the same weight as S.

4. Find a 2-path coloring for S’, partitioning the
edges into two sets.

5. Return the set with larger weight after patch-
ing.

Table 9: 3/4 algorithm for (0,1)-MaxATSP

Theorem 6 The algorithm in Table 9 is factor 3/4
approximation algorithm for (0,1)-MazATSP.

Proof:

e A simple modification of optimum TSP tour
gives an admissible multigraph of weight at least
(3/2)OPT, assuming n is even.

e This, with Lemma 5, implies the theorem. O

5.4 PTAS for ETSP

This algorithm, given by Arora [29], is a breakthrough
result in the area of approximations. The basic idea of
the algorithm is to perform recursive geometric parti-
tioning of the instance and solve the subinstances thus
produced using dynamic programming,.

1. For each possible shift (a,b)

(a) Consider the (a, b)-shifted dissection.

(b) Compute the optimum portal-tour.

(c) Let T(q4,) be the tour after removing the
portals.

2. Return the minimum weight tour over all
T(a,ps-

Table 10: PTAS for ETSP

Definition 4 Bounding box is the smallest axis
aligned square that contains all the input nodes.

Definition 5 A dissection of the bounding box is a
recursive partitioning into smaller squares, until they
are of unit size.

Definition 6 Let a,b be integers. An (a,b)-shifted
dissection is defined as the dissection obtained by shift-
ing the dissection lines modulo L, where a is the shift
for vertical lines and b is for horizontal lines. Note
that some of the squares are wrapped-around in the
shifted dissection.

Definition 7 Portals are the designated points on the
edges of the squares through which a tour can cross
the boundary of any region in the dissection. Fach
square has a portal at each of its 4 corners and m =
O((1/€e)log L) equally spaced portals on each edge.

Definition 8 A tour is said to be a portal-tour with
respect to a dissection if it crosses each edge of each
square in the dissection at most r = O(1/e) times and
always through one of the portals, however it is allowed
to go through a portal multiple times.

Each subproblem is specified by (i) a square (ii)
a multiset of < r portals for each edge and (iii) a
pairing of these < 4r portals. We can look at (ii) and
(iii) as specifying an interface for the square. Dynamic
programming can be used because of the observation

below
4

c(S,I) = 11’2171};’14 Z c(Si, I;)

i=1

Theorem 7 For a randomly picked (a,b)-shifted dis-
section,

Pr(OPT(a < (1 +€)OPT) > 1/2

where OPT\, 3 is the cost of an optimum portal-tour
with respect to (a,b)-shifted dissection.

Proof:

The proof is based on estimating the increase in
weight by modifying an optimum tour into a portal
tour.]

Theorem 8 There exists a PT AS for ETSP.

Proof:

The size of the look-up table in the dynamic pro-
gram and the time needed to compute an entry of the
table are poylnomial in n, for any given e. This, to-
gether with Theorem 7, implies a PT AS for ETSP. O

6 Conclusions and Future Work

Even after continous effort and improved approxima-
tions for various versions of TSP, there still remains a

lot to be achieved in this respect. One of the intrigu-
ing problem being “Does there exist a constant factor
approximation for ATSP?”

Our future work would mainly focus on

1. Improving bound for (1,2)-TSP [19].

2. Looking for an interesting special class of graphs
for which TSP would be polynomially solv-
able [32].

3. Improving bounds for RTSP and MaxRTSP [33].

4. Performing computational experiments with var-
ious heuristics.

References

[1] E. L. Lawler, Jan Karel Lenstra, A. H. G. Rin-
nooy Khan, and D. B. Shmoys, editors. The
Traveling Salesman Problem: A Guided Tour of
Combinatorial Optimization. John Wiley & Sons,
1985.

[2] Alexander Schrijver. On the history of combina-
torial optimization (till 1960). In K. Aardal, G.L.
Nemhauser, and R. Weismantel, editors, Hand-
book of Discrete Optimization, pages 1-68. Else-
vier, 2005.

[3] Charikar, Motwani, Raghavan, and Silverstein.
Constrained TSP and low-power computing. In
WADS, 1997.

[4] S. R. Kosaraju, J. K. Park, and C. Stein. Long
tours and short superstrings. In FOCS, 1994.

[5] C. H. Papadimitriou and M. Yannakakis. The
traveling salesman problem with distances one
and two. Mathematics of Operations Research,
18:1-11, 1993.

[6] C. H. Papadimitriou. The euclidean traveling
salesman problem is NP-complete. Theoretical
Computer Science, 4(3):237-244, 1977.

[7] G. Gutin and A. P. Punnen, editors. The
Traveling Salesman Problem and Its Variations.
Kluwer, 2002.

[8] Michelangelo Grigni, Elias Koutsoupias, and
C. H. Papadimitriou. An approximation scheme
for planar graph TSP. In FOCS, 1995.

[9] Ausiello, Bonifaci, and Laura. The on-line asym-
metric traveling salesman problem. In WADS,
2005.

[10]

[14]

[15]

[16]

[18]

[19]

[20]

[21]

Ellis Horowitz and Sartaj Sahni. Fundamentals
of Computer Algorithms. Galgotia Publications,
1998.

Jonathan L. Gross and Jay Yellen, editors. Hand-
book of Graph Theory. CRC, 2003.

J. Y. Potvin. Genetic algorithms for the trav-
eling salesman problem. Annals for Operations
Research, 63(3):337-370, 1996.

J. Y. Potvin. The traveling salesman problem:
a neural network perspective. ORSA Journal on
Computing, 5(4):328-348, 1993.

Vijay V. Vazirani. Approzimation Algorithms.
Springer-Verlag, 2001.

Douglas B. West. Introduction to Graph Theory.
Prentice-Hall, 1996.

N. Christofides. Worst-case analysis of a new
heuristic for the traveling salesman problem.
Technical report, GSIA, Carnegie-Mellon Univer-
sity, Pittsburgh, 1976.

A. M. Frieze, G. Galbiati, and F. Maffioli. On
the worst-case performance of some algorithms
for the asymmetric traveling salesman problem.
Networks, 12(1):23-39, 1982.

Kaplan, Lewenstein, Shafrir, and Sviridenko. Ap-
proximation algorithms for asymmetric TSP by
decomposing directed regular multigraphs. Jour-
nal of the ACM, 52, 2005.

Piotr Berman and Marek Karpinski. 8/7 approxi-
mation algorithm for (1, 2)-TSP. In SODA, 2006.

Markus Bldser. A 3/4-approximation algorithm
for maximum ATSP with weights zero and one.
In APPROX, 2004.

Bockenhauer, Hromkovic, Klasing, Seibert, and
Unger. Approximation algorithms for the TSP
with sharpened triangle inequality. Information
Processing Letters, 75:133-138, 2000.

Markus Bliser. An improved approximation algo-
rithm for the asymmetric TSP with strengthened
triangle inequality. In ICALP, 2003.

Bockenhauer, Hromkovic, Klasing, Seibert, and
Unger. Towards the notion of stability of approx-
imation for hard optimization tasks and the trav-
eling salesman problem. ECCC, 6(31), 1999.

[24]

[25]

[31]

[32]

[33]

Bender and Chekuri. Performance guarantees for
the TSP with a parameterized triangle inequality.
In WADS, 1999.

Thomas Andreae and Hans-Jurgen Bandelt. Per-
formance guarantees for approximation algo-
rithms depending on parametrized triangle in-
equalities. STAM Journal on Discrete Mathemat-
ics, 8(1):1-16, 1995.

Chen and Nagoya. Improved approximation al-
gorithms for metric max TSP. In ESA, 2005.

Markus Blaser, L. Shankar Ram, and Maxim
Sviridenko. Improved approximation algorithms
for metric maximum ATSP and maximum 3-cycle
cover problems. In WADS, 2005.

Zhi-Zhong Chen, Yuusuke Okamoto, and
Lusheng Wang. Improved deterministic approx-
imation algorithms for max TSP. Information
Processing Letters, 95(2):333-342, 2005.

S. Arora. Polynomial-time approximation scheme
for Euclidean TSP and other geometric problems.
In FOCS, 1996.

Sundar Vishwanathan. An approximation al-
gorithm for the asymmetric travelling salesman
problem with distances one and two. Informa-
tion Processing Letters, 44(6):297-302, 1992.

L. Sunil Chandran and L. Shankar Ram. Approx-
imations for ATSP with parametrized triangle in-
equality. In STACS, 2002.

J. Mark Keil. Finding Hamiltonian circuits in
interval graphs. Information Processing Letters,
20(4):201-206, 1985.

Giorgio Ausiello, Bruno Escoffier, Jérome Mon-
not, and Vangelis Th. Paschos. Reoptimization
of minimum and maximum traveling salesman’s
tours. In SWAT, 2006.

