	symmetric	asymmetric
without triangle inequality		
with triangle inequality	3/2 Worst-case analysis of a new heuristic for the traveling salesman problem, Christofides, '76	0.842 log_2 n Approximation Algorithms for Asymmetric TSP by Decomposing Directed Regular Multigraphs, Kaplan, et al., '05
		0.999 log_2 n A new approximation algorithm for the asymmetric TSP with triangle inequality, Blaser, '03
		log_2 n On the worst-case performance of some algorithms for the asymmetric traveling salesman problem, Frieze, et al., '82
	8/7 8/7-Approximation Algorithm for (1,2)-TSP (Extended Version), Berman & Karpinski, '06	5/4 A 3/4 approximation algorithm for maximum ATSP with weights zero and one, Blaser, et al., '04
weights {1,2}	65/56, 315/271 An Improved Approximation Algorithm for TSP with Distances One and Two, Blaser & Shankar Ram, '05	4/3 Approximation Algorithms for Asymmetric TSP by Decomposing Directed Regular Multigraphs, Kaplan, et al., '05
	7/6 The traveling salesman problem with distance one and two, Papadimitriou, et al., '93	4/3 Computing cycle covers without short cycles, Blaser, et al., '01
		17/12 An approximation algorithm for the asymmetric traveling salesman problem with distances one and two, Vishwanathan, '92
weights [a, ta]	2/(t+1) Approximation results toward nearest neighbour heuristic, Monnot, '01	
sharpened triangle inequality	min {1+\frac{2\beta-1}{3\beta^2-2\beta+1}, 2/3 + \beta / 3(1-\beta) } Approximating algorithms for the TSP with sharpened triangle inequality, Bockenhauer, et al., '00	1/{1-1/2{\beta+\beta^3}} An Improved Approximation Algorithm for the Asymmetric TSP with Strengthened Triangle Inequality, Blaser, '03
		\frac{\beta}{1-\beta} Approximations for ATSP with parameterized triangle inequality, Sunil Chandran & Shankar Ram, '02
	3/2\beta^2 Towards the notion of stability of approximation algorithms and the traveling salesman problem (extendend abstract), Bockenhauer, et al,'01	
relaxed triangle inequality	4\beta Performance guarantees for the TSP with a parameterized triangle inequality, Bender & Chekuri, '99	
	\frac {3\beta^2+\beta}{2} Performance guarantees for approximation algorithms depending on parameterized triangle inequalities, Andreae & Bandelt, '95	

euclidean	PTAS Nearly Linear Time Approximation Schemes for Euclidean TSP and other Geometric Problems, Arora, '98 PTAS Guillotine subdivisions approximate polygon subdivisions: Part II - A simple PTAS for geometric k-MST, TSP, and related problems, Mitchell, '96 PTAS	
	Ploynomial-time approximation scheme for Euclidean TSP and other geometric problems, Arora, '96	
planar	PTAS An Approximation Scheme for Planar Graph TSP, Grigni, et.al., '95	