PTAS for Euclidean TSP

K Vamsi Krishna

Computer Science and Automation, Indian Institute of Science

6th November, 2006

K Vamsi Krishna (CSA, IISc)

PTAS for Euclidean TSP

● ■ ● ● ● ○ ○ ○
 6/11/2006 1 / 35

<ロ> (日) (日) (日) (日) (日)

Outline

Introduction

Approximating TSP Euclidean TSP

Algorithm

Step 1: Perturbate Step 2: Build Quadtree Step 3: Find Best Portal-tour

Correctness

Patching Lemma Crossing Lemma Structure Theorem

Conclusion

K Vamsi Krishna (CSA, IISc)

PTAS for Euclidean TSP

Approximating TSP

- General TSP: Cannot be approximated within any polynomial time computable factor α(n)
- Metric TSP: Can be approximated within a constant factor, but has no PTAS
- **Euclidean TSP:** Can be approximated within any given factor

K Vamsi Krishna (CSA, IISc)

PTAS for Euclidean TSP

6/11/2006 3 / 35

<ロ> (日) (日) (日) (日) (日)

Problem

For fixed *d*, given *n* points in \mathbf{R}^d , the problem is to find the minimum length tour of the *n* points. The distance between any two points *x* and *y* is defined to be the Euclidean distance between them, i.e., $\left(\sum_{i=1}^{d} (x_i - y_i)^2\right)^{1/2}$.

イロト 不得下 イヨト イヨト 二日

Results

- Euclidean TSP is NP-Complete [3]
- The first PTAS was given by Arora in 1996 and shortly followed by Mitchell
- Comparison of running times

Paper	\mathbf{R}^2	R^d
Arora '96 [1]	$n^{O(1/\epsilon)}$	$n^{(O((1/\epsilon)\log n))^{d-2}}$
Arora '97 [2]	$n(\log n)^{O(1/\epsilon)}$	$n(\log n)^{(O(\sqrt{d}/\epsilon))^{d-1}}$

K Vamsi Krishna (CSA, IISc)

PTAS for Euclidean TSP

◆ ■ ▶ ■ ∽ ९ ○
 6/11/2006 5 / 35

<ロ> (日) (日) (日) (日) (日)

Basic Idea

- Generally, the basic idea of a PTAS is to define a coarse solution depending on the error parameter
 e and to find it using dynamic programming.
- The same idea appears in this algorithm. However, the coarse solution is specified probabilistically.

(日) (同) (三) (三)

Algorithm

Overview

Main Idea: Algorithm performs a recursive geometric partitioning of the instance and solves the subinstances thus produced using dynamic programming.

► Algorithm: PTAS for Euclidean TSP

- 1. Make the input well-rounded by perturbation
- 2. Build the quadtree with a random shift
- 3. Compute the optimum portal-tour using DP
- 4. Return the vertices in that order

Well-rounded Instance

Definition

An instance is said to be **well-rounded** if it satifies the following properties.

- 1. All nodes have integral coordinates
- 2. Each (non-zero) internode distance is atleast 8 units
- 3. The maximum internode distance is O(n)

K Vamsi Krishna (CSA, IISc)

PTAS for Euclidean TSP

6/11/2006 8 / 35

イロト イポト イヨト イヨト

Bounding Box

Definition

Bounding box is the smallest axis aligned square that contains all the input nodes.

K Vamsi Krishna (CSA, IISc)

PTAS for Euclidean TSP

6/11/2006 9 / 35

Perturbation Step (i): Snap to Grid

Consider a **grid** of granularity $\epsilon L/8n$ and move each node to it's nearest gridpoint.

► \forall tours $T, |c(T) - c'(T)| \le 2n\epsilon L/8n \le \epsilon OPT/4$

• Should compute $(1 + \epsilon')$ -approximate tour

K Vamsi Krishna (CSA, IISc)

PTAS for Euclidean TSP

6/11/2006 10 / 35

イロト イポト イヨト イヨト 二日

Algorithm Step 1: Perturbate

Perturbation Step (ii): Scale L to O(n)

Scale the distances by $s = \epsilon L/64n$.

•
$$\forall$$
 tours $T, c'(T) = s.c(T)$

There is no change in the approximation factor

K Vamsi Krishna (CSA, IISc)

PTAS for Euclidean TSP

イロト イポト イヨト イヨト

Dissection

Definition

A **dissection** of the bounding box is a recursive partitioning into smaller squares, until they are of unit size.

(日) (周) (三) (三)

K Vamsi Krishna (CSA, IISc)

PTAS for Euclidean TSP

6/11/2006 12 / 35

Levels of Dissection

A dissection can be seen as a **4-ary tree**. Each square and the dissection line can be assigned a **level**.

- Depth of the dissection = $O(\log n)$
- Number of leaves = $O(n^2)$
- Number of squares $= O(n^2)$
- Number of level *i* lines = 2^i
- Level *i* line forms the edge for squares at levels $i, i + 1, \cdots$

K Vamsi Krishna (CSA, IISc)

PTAS for Euclidean TSP

6/11/2006 13 / 35

(日) (周) (三) (三)

Quadtree

Definition

A **quadtree** is defined similar to dissection, except that we stop the recursive partitioning as soon as the square has atmost one node.

• • • • • • • • • • • •

- Depth of the quadtree = O(log n)
- Number of leaves with a node = n
- Number of squares = $O(n \log n)$

6/11/2006 14 / 35

Shifted Dissection

Definition

Let a, b be integers. An (a, b)-shifted dissection is defined as the dissection obtained by shifting the dissection lines modulo L, where a is the shift for vertical lines and b is for horizontal lines.

- Some squares are wrapped-around in the shifted dissection
- Number of shifted dissections $= n^2$

K Vamsi Krishna (CSA, IISc)

PTAS for Euclidean TSP

6/11/2006 15 / 35

(日) (同) (日) (日)

Shifted Quadtree

Definition

An (a, b)-shifted quadtree is obtained from the corresponding shifted dissection by cutting off the partitioning at squares that contain only 1 node.

• It can be constructed efficiently in $O(n \log^2 n)$ time

K Vamsi Krishna (CSA, IISc)

PTAS for Euclidean TSP

6/11/2006 16 / 35

イロト 不得下 イヨト イヨト 二日

Portal

Definition

Portals are the designated points on the edges of the squares through which a tour can cross the boundary of any region in the dissection. Each square has a portal at each of its 4 corners and $m = O((1/\epsilon) \log L)$ equally spaced portals on each edge.

- Assume $L = 2^k$, for some k
- Choose $m = 2^{k'} 1$, for some k'
- Portals at higher levels are also portals at lower levels

K Vamsi Krishna (CSA, IISc)

PTAS for Euclidean TSP

6/11/2006 17 / 35

Portal-tour

Definition

A tour is said to be a **portal-tour** with respect to a dissection if it crosses each edge of each square in the dissection at most r = O(c) times and always through one of the portals, however it is allowed to go through a portal multiple times.

(日) (周) (三) (三)

In terms of the original set of nodes, such a tour can be viewed as having **bent** edges. Note that straightening the bent edges at the end of the algorithm can only decrease the cost.

K Vamsi Krishna (CSA, IISc)

PTAS for Euclidean TSP

6/11/2006 18 / 35

Structure Theorem

Theorem

For a randomly picked (a, b)-shifted dissection,

$$\Pr[OPT_{(a,b)} \leq (1+\epsilon)OPT] \geq 1/2$$

K Vamsi Krishna (CSA, IISc)

PTAS for Euclidean TSP

<ロ> (日) (日) (日) (日) (日)

Dynamic Program

- > DP can be use as principle of optimality holds
- Each subproblem is specified by
 - A square, $T = O(n \log n)$
 - Multiset of $\leq r$ portals for each edge, $\leq (m+3)^{4r}$
 - Pairing of the $\leq 4r$ portals specified above, $\leq (4r)!$
 - Portals and their pairing is called an interface
- Size of the lookup table = $O(T.(m+3)^{4r}.(4r)!)$

6/11/2006 20 / 35

イロト 不得 トイヨト イヨト 二日

Dynamic Program (cont)

Table is filled bottom-up starting at the leaves of the quadtree

- Leaves i.e., squares with atmost 1 node and O(r) portals
 - Can be solved in $2^{O(r)}$ time

Internal nodes

- Enumerate interfaces for the 4 subsquares
- Multiset of $\leq r$ portals for each edge, $\leq (m+3)^{4r}$
- Traversal order of $\leq 4r$ portals specified above, $\leq (4r)^{4r} . (4r)!$
- Number of interfaces enumerated $\leq (m+3)^{4r} \cdot (4r)^{4r} \cdot (4r)!$
- Obtain cost corresponding to each subsquare and interface from the table
- Total running time = $O(T.(m+3)^{8r}.(4r)^{4r}.((4r)!)^2)$

K Vamsi Krishna (CSA, IISc)

PTAS for Euclidean TSP

6/11/2006 21 / 35

Dynamic Program (cont)

- ▶ Interface *I* for *S* on the green edges is given
- Interfaces /1, /2, /3, /4 for S1, S2, S3, S4 on the blue egdes is enumerated

 $c(S, I) = MIN_{I1, I2, I3, I4}(c(S1, I1) + c(S2, I2) + c(S3, I3) + c(S4, I4))$

K Vamsi Krishna (CSA, IISc)

PTAS for Euclidean TSP

6/11/2006 22 / 35

イロト イポト イヨト イヨト 二日

Correctness

- Sufficient to prove the structure theorem
- Need for shifted dissection

K Vamsi Krishna (CSA, IISc)

PTAS for Euclidean TSP

 · · · · ≡ · · ○ < ○</th>

 6/11/2006
 23 / 35

<ロ> (日) (日) (日) (日) (日)

Patching Lemma

Lemma

A tour π crossing a line S of length s more than thrice can be modified to cross at most twice, with an additional cost of 6s.

Proof.

- Let number of times π crosses S be t
- Pick 2k crossing points on S
- Add segments of min cost tour through those points, < 2s
- Add segments of min cost matching among those points, < s
- Make two copies of all points and segments added above, < 6s
- Consider the Eulerian traversal of the points
- ▶ It crosses *S* at most twice

K Vamsi Krishna (CSA, IISc)

PTAS for Euclidean TSP

• • • • • • • • • • • •

6/11/2006

24 / 35

Correctness

Patching Lemma

Patching Lemma (cont)

K Vamsi Krishna (CSA, IISc)

PTAS for Euclidean TSP

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Crossing Lemma

Lemma

Let $t(\pi, l)$ be the number of times π crosses a dissection line l. Then $\sum_{l} t(\pi, l) \leq 2c(\pi)$.

Proof.

- Consider an edge of π of length s
- Let u and v be lengths of horizontal and vertical projections
- It constributes at ost u + 1 and v + 1 to the LHS

•
$$u^2 + v^2 = s^2$$
 and $u + v \le \sqrt{2}s^2$

- ► $u + v + 2 \le \sqrt{2}s + 2$
- $\bullet \ s \ge 8 \Rightarrow \sqrt{2}s + 2 \le 2s$
- Summing over all the edges proves the lemma

K Vamsi Krishna (CSA, IISc)

PTAS for Euclidean TSP

(日) (周) (三) (三)

6/11/2006

26 / 35

Structure Theorem

Theorem

For a randomly picked (a, b)-shifted dissection,

$$\Pr[OPT_{(a,b)} \leq (1+\epsilon)OPT] \geq 1/2$$

K Vamsi Krishna (CSA, IISc)

PTAS for Euclidean TSP

6/11/2006 27 / 35

Proof (Outline)

Let g = 6 be the constant from the patching lemma.

- \blacktriangleright Modify the optimum tour π into portal respecting wrt dissection
- $E_{a,b}[$ increase in cost due to line $I] \leq 3g.t(\pi, I)/r$
- ▶ By linearity of expectation $E_{a,b}[$ increase in cost $] \le \sum_{l} 3g.t(\pi, l)/r$ $\le 6g.OPT/r$ $\le \epsilon.OPT/2$ if $r \ge 12g/\epsilon$
- By Markov inequality the theorem follows

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Modification Step (i): Reduce Crossings

We shall prove the bound for vertical lines. Same arguments apply for horizontal lines.

- $Pr_a[l \text{ is at level } i] = 2^i/L$
- Size of level *i* square $= L/2^i$
- ► A level *i* line *l* forms an edge for squares at levels *j* = *i*, *i* + 1, · · · , level *j* segment
- For each segment, the number of crossings should be atmost r

K Vamsi Krishna (CSA, IISc)

PTAS for Euclidean TSP

6/11/2006 29 / 35

イロト 不得下 イヨト イヨト 二日

Modification Step (i): Reduce Crossings (cont)

Modify(I, i, b) For each segment (starting from smaller to larger) which has more than r crossings apply the patching lemma to reduce it to 4.

Let c(j) be the number of level j segments for which patching is applied

►
$$\sum_{j} c(j) \le t(\pi, l)/(r-3)$$
, why?

• Increase in cost $\leq \sum_{j} c(j).g.\frac{L}{2^{j}}$ (by patching lemma)

E_a[increase in cost]

$$\leq \sum_{i\geq 1} \frac{2^{i}}{L} \cdot \sum_{j\geq i} c(j) \cdot g \cdot \frac{L}{2^{j}} = g \cdot \sum_{j\geq 1} \frac{c(j)}{2^{j}} \cdot \sum_{i\leq j} 2^{i}$$
$$\leq g \cdot \sum_{j\geq 1} 2 \cdot c(j) \leq \frac{2g \cdot t(\pi, l)}{r-3}$$

K Vamsi Krishna (CSA, IISc)

PTAS for Euclidean TSP

6/11/2006 30 / 35

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Modification Step (i): Reduce Crossings (cont)

- ► E_a [total increase in cost] $\leq \frac{2gt(\pi, l)}{r-3} + \frac{t(\pi, l)}{2r}$ $\leq 3gt(\pi, l)/r$, when r > 15
- Patching on line / may increase the crossings on some horizontal line, however it is not a problem, why?

Modification Step (ii): Move to Portals

- Move each crossing on line / to the nearest portal
- Interportal distance on a level *i* line $= L/2^{i}m$
- Increase in cost per crossing $= L/2^i m$
- Number of crossings $= t(\pi, I)$
- $Pr_a[I \text{ is at level } i] = 2^i/L$
- ► E_a [increase in cost] $\leq \sum_i \frac{2^i}{L} t(\pi, l) \cdot \frac{L}{2^i m}$ = $t(\pi, l) \log L/m$ $\leq t(\pi, l)/2r$, when $m \geq 2r \log L$

K Vamsi Krishna (CSA, IISc)

PTAS for Euclidean TSP

6/11/2006 32 / 35

イロト 不得 トイヨト イヨト 二日

Conclusion

Conclusion

- Recap of the algorithm
- Higher dimensions
- Other norms
- Other geometric problems
- Thank you

イロト イポト イヨト イヨト

Conclusion

References

Sanjeev Arora.

Polynomial time approximation schemes for euclidean TSP and other geometric problems.

In FOCS: IEEE Symposium on Foundations of Computer Science, 1996.

Sanjeev Arora.

Nearly linear time approximation schemes for euclidean TSP and other geometric problems.

In FOCS: IEEE Symposium on Foundations of Computer Science, 1997.

Christos H. Papadimitriou.

The euclidean traveling salesman problem is NP-complete. *Theoretical Computer Science*, 4(3):237–244, 1977.

K Vamsi Krishna (CSA, IISc)

PTAS for Euclidean TSP

イロト 不得下 イヨト イヨト

Effect of Moving to Grid Points

OPT tour (value) may change, however OPT' is not very far from OPT.

$$\blacktriangleright |OPT - OPT'| \le \epsilon OPT/4$$

•
$$OPT' \leq A' \leq (1+x)OPT'$$

$$|\mathbf{A} - \mathbf{A}'| \le \epsilon OPT/4$$

•
$$OPT \le A \le (1 + \epsilon)OPT$$

 $x = 2\epsilon/(4 + \epsilon)$, paper gives $x = 3\epsilon/4$.

K Vamsi Krishna (CSA, IISc)

PTAS for Euclidean TSP

6/11/2006 35 / 35