
Expressive Completeness of LTL

K Vamsi Krishna & V Deepak
CSA, IISc

Outline

 The big picture
 TL to FO
 Star-free to FO
 Counter-free to TL
 Temporal logic
 Finite Automata
 Examples
 Theorem
 Proof
 References

The big picture

First OrderLTL

Star-freeCounter-free

Wilke

Kamp

McNaughton

Papert

Schutzenberger

TL to FO

 For every TL formula ϕ, we give a FO formula ϕ+

(x) such that L(ϕ) = L(∀x (first(x) ⊃ ϕ+(x)))

 ϕ ϕ+(x)
 a Qa(x)
 ¬ϕ1 ¬ϕ1

+(x)
 ϕ1 ∨ ϕ2 ϕ1

+(x) ∨ ϕ2
+(x)

 Xϕ1 ∃y(succ(x,y) ∧ ϕ1
+(y))

 Fϕ1 ∃y(x<y ∧ ϕ1
+(y))

 ϕ1Uϕ2 ∃y(x<y∧ϕ2
+(y)∧∀z((x<z<y)⊃ϕ1

+(z))

Star-free to FO

 A language is called star-free if it can be
constructed from finite languages by appli-
cations of boolean operations and concate-
nation

 eg. A*.a.b.~(A*.a.A*) where A = {a,b,c}
 is same as ∃x ∃y (S(x,y) ∧ Qa(x) ∧ Qb(y) ∧

¬∃z(y<z ∧ Qa(z)))

Star-free to FO (cont)

 For every star-free expression r, we give a FO
formula ϕ(x,y) such that

 L(r) = L(∀x ∀y (first(x) ∧ last(y) ⊃ ϕ(x,y))

r ϕ (x,y)
 a Qa(x) ∧ x=y
 ¬ r1 ¬ ϕ1(x,y)
 r1+r2 ϕ1(x,y) ∨ ϕ2(x,y)
 r1.r2 ∃y1 ∃x2((x≤y1≤y) ∧ ϕ1(x,y1) ∧ 	succ(y1, x2)

∧ ϕ2(x2,y))

Counter-free to TL

 Every language expressible in temporal logic is
a regular language.

 Now, what class of regular languages are ex-
pressible in temporal logic?

 Is there any structural property of minimal DFAs
of languages that can be expressed in temporal
logic?

Temporal logic (TL)

 A temporal formula ϕ over ∑ is defined as
ϕ := a | ¬ϕ | ϕ∨ϕ | Xϕ | Fϕ | ϕUϕ, a ∈ ∑

 The temporal formulas are interpreted over
strings (finite words).

 The positions of a string of length n are indexed
0 , . . . , n-1.

 u(i,j) denotes the string u(i)u(i+1)…u(j-1) for
0 ≤ i ≤ j ≤ n.

 u(i,*) denotes the suffix u(i,n).

TL (cont.)

 u |= a u(0) = a
 u |= Xϕ |u| > 1 and u(1,*) |= ϕ
 u |= Fϕ ∃i , 0 < i < |u| ∋ u(i,*) |= ϕ
 u |= ϕUψ ∃i , 0 < i < |u| ∋ u(j,*) |= ϕ for every

j ∈{1,…,i-1} and u(i,*) |= ψ

** F and U are strict modalities **

Finite Automata (DFA)
 A DFA is a tuple A = (∑, Q, qI, δ, F).

 L(A) = { u ∈ ∑+ | δ*(qI,u) ∈ F }.
 A minimal DFA for a regular language L is

denoted by AL.
 Counter : Given a DFA A, a sequence

q
0
, q

1
, ..., q

m-1
of distinct states is a counter for a

string u if m>1 and δ*(qi,u) = qi+1 for i<m, where
by convention, qm = q0.

 A DFA is counter-free if it does not have a
counter.

Example

 Counter automata

q
0

q
1

q
2

q
3

q
4

a

a
a

a

a

0 1 2

b a a

b

a b

Example

 Counter-free automata

0 1 2 3a b b

0 1

2

b

b

a,b

a

a

Definitions

 A pre-automaton is a triple (∑, Q, δ).
 Given a set Q, QQ is the set of all functions on Q
 For α : Q → Q, Q’⊆ Q, α [Q’] = {α (q) | q ∈ Q’}.
 Given α, β : Q → Q, we write αβ for the

composition of α and β, i.e., for the function
given by q → β(α(q)).

Definitions (cont.)

 For a pre-automaton A=(∑, Q, δ) and for every
u∈∑*,we define its transformation, uA, as
follows: For every q ∈ Q, we set uA(q) = δ*(q,u).

 SA = {uA | u ∈∑+}
 For α:Q → Q, we set Lα

A = { u ∈∑+ | uA = α }.
 Lα

A' = Lα
A ∪ {∈} if α = idQ.

 If A is counter-free and uA[Q] =Q, then uA = idQ.

Theorem

 A regular language L is expressible in TL if and
only if AL is counter-free

Proof (Outline)

 It suffices to prove that for every pre-automaton
A, and every α∈SA, the language Lα

A is
expressible in temporal logic.

 Proof goes by induction on |Q| in the first place
and then on |∑|.

 We distinguish two cases:
 Case1: For all symbols a∈∑, aΑ[Q]=Q.
 Case2: There is some symbol b∈∑, bA[Q] ⊂ Q.

Proof

 Let bA[Q] = Q’ ⊂ Q
 Γ = ∑ - {b}
 B is the pre-automaton that results from A by

restricting it to the symbols from Γ.
 U0 = Γ*b
 ∆ = {uA | u∈U0}
 C = (∆,Q’, δ’) where δ’(q, α) = α(q)
 h : U0

+→∆+ is the function defined by
h(u0…un-1) = u0

A… un-1
A for u0,…,un-1∈ U0

Proof (cont.)

 Lα
A is TL-expressible.

 Lα
A = L0 ∪ L1∪ L2

 L0 = Lα
B

 L1 = ∪ α=βbΑβ’ Lβ
B’ bLβ’

B’

 = ∪ α=βbΑβ’ (Lβ
B’ b∑* ∩ Γ * bLβ’

B’)
 L2 = ∪ α=βbΑγβ’ Lβ

B’ bh-1(L γ
C)Lβ’

B’

 = ∪ α=βbΑγβ’ (Lβ
B’ b∑* ∩ Γ * bh-1(L γ

C) Γ * ∩ ∑* bLβ’
B’)

Lemma 1

 Let ∑ be an alphabet, b ∈∑, and Γ = ∑ - {b}.
Assume L ⊆ ∑+ and L’ ⊆ Γ+ are TL-expressible.
Then so are Γ*bL, Γ*b(L+∈), ∑*bL, ∑*b(L+∈),
L’b∑* and (L’+∈)b∑*.

Lemma 2

 Let ∑, ∆ be alphabets, b ∈∑, Γ=∑ - {b}, and
U0=Γ*b. Further, let h0 : U0 → ∆ be an arbitrary
function and h : U0

+ → ∆+ be defined by
h(u0 … un-1) = h0(u0)… h0(un-1) for u0,…,un-1 ∈ U0.
For every d∈∆, let Ld = {u∈Γ+ | h0(ub) =d}.

 If L ⊆ ∆+ and Ld for every d∈∆ are
TL-expressible then so is h-1(L) Γ *.

References

 Thomas Wilke. Classifying discrete temporal
properties.

 Wolfgang Thomas. Languages, Automata, and
Logic.

