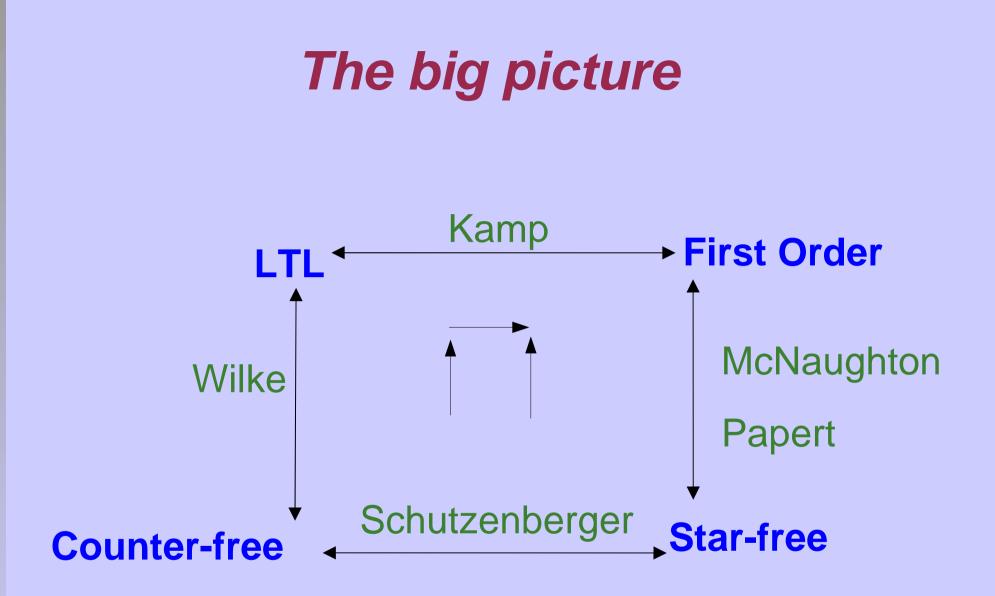
Expressive Completeness of LTL

K Vamsi Krishna & V Deepak CSA, IISc

Outline

 The big picture TL to FO Star-free to FO Counter-free to TL Temporal logic Finite Automata Examples Theorem Proof References



TL to FO • For every TL formula φ , we give a FO formula φ^+ (x) such that $L(\phi) = L(\forall x (first(x) \supset \phi^+(x)))$ **φ**⁺**(X)** Φ $Q_{a}(x)$ ♦ a • $\neg \phi_1$ $\neg \phi_1^+(X)$ • $\phi_1 \vee \phi_2 \qquad \phi_1^+(x) \vee \phi_2^+(x)$ ♦ Χφ₁ $\exists y(succ(x,y) \land \phi_1^+(y))$ Fφ₁ $\exists y(x < y \land \phi_1^+(y))$ • $\phi_1 U \phi_2 = \exists y(x < y \land \phi_2^+(y) \land \forall z((x < z < y) \supset \phi_1^+(z)))$

- A language is called star-free if it can be constructed from finite languages by applications of boolean operations and concatenation
 - eg. A*.a.b.~(A*.a.A*) where A = {a,b,c}
 - ◆ is same as ∃x ∃y (S(x,y) ∧ Q_a(x) ∧ Q_b(y) ∧ ¬∃z(y<z ∧ Q_a(z)))

Star-free to FO (cont)

 For every star-free expression r, we give a FO formula $\varphi(x,y)$ such that • $L(r) = L(\forall x \forall y (first(x) \land last(y) \supset \phi(x,y))$ φ **(x,y)** r • a $Q_a(x) \wedge x = y$ • \neg r₁ \neg $\phi_1(x,y)$ • $r_1 + r_2$ $\phi_1(x,y) \lor \phi_2(x,y)$ • $r_1 r_2 = \exists y_1 \exists x_2 ((x \leq y_1 \leq y) \land \phi_1(x, y_1) \land succ(y_1, x_2))$ $\wedge \phi_2(\mathbf{X}_2,\mathbf{y})$)

Counter-free to TL

- Every language expressible in temporal logic is a regular language.
- Now, what class of regular languages are expressible in temporal logic?
- Is there any structural property of minimal DFAs of languages that can be expressed in temporal logic?

Temporal logic (TL)

A temporal formula φ over ∑ is defined as φ := a | ¬φ | φ∨φ | Xφ | Fφ | φUφ, a ∈ ∑
The temporal formulas are interpreted over strings (finite words).

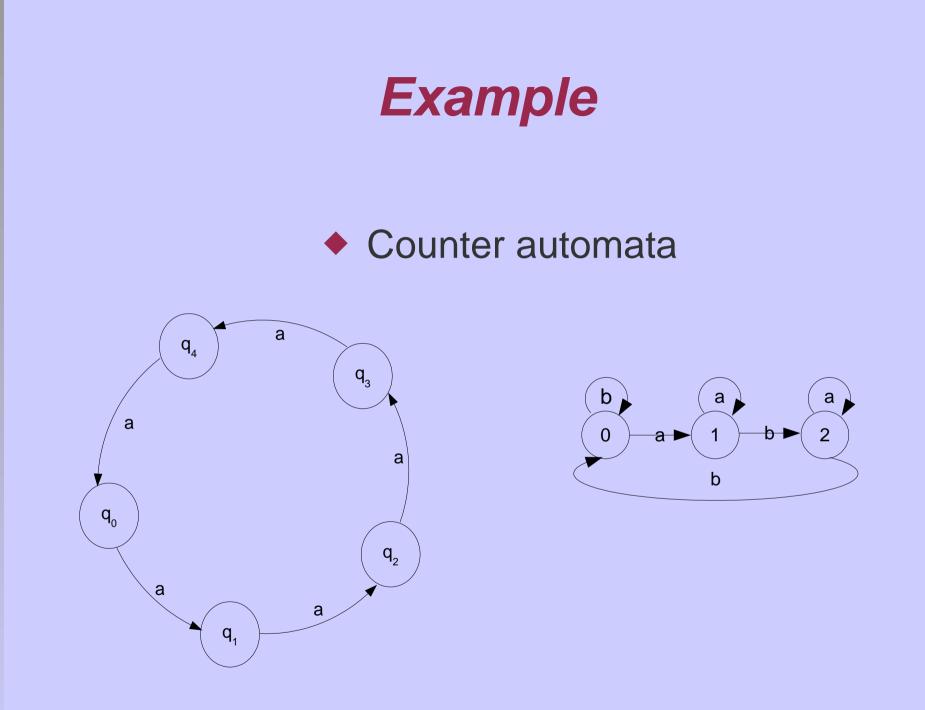
- The positions of a string of length n are indexed
 0, ..., n-1.
- u(i,j) denotes the string u(i)u(i+1)...u(j-1) for $0 \le i \le j \le n$.
- u(i,*) denotes the suffix u(i,n).

TL (cont.)

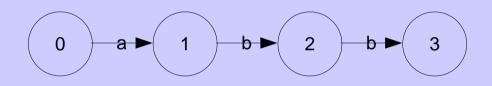
** F and U are strict modalities **

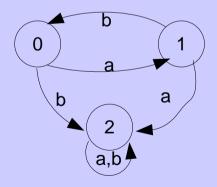
Finite Automata (DFA)

- A DFA is a tuple A = (Σ , Q, q_I, δ , F).
- $L(A) = \{ u \in \Sigma^+ \mid \delta^*(q_i, u) \in F \}.$
- A minimal DFA for a regular language L is denoted by A_L.
- Counter : Given a DFA A, a sequence
 q₀, q₁, ..., q_{m-1} of distinct states is a counter for a string *u* if m>1 and δ*(q_i,u) = q_{i+1} for i<m, where by convention, q_m = q₀.
- A DFA is *counter-free* if it does not have a counter.



Counter-free automata





Definitions

A pre-automaton is a triple (∑, Q, δ).
Given a set Q, Q^Q is the set of all functions on Q
For α : Q → Q, Q'⊆ Q, α [Q'] = {α (q) | q ∈ Q'}.
Given α, β : Q → Q, we write αβ for the composition of α and β, i.e., for the function given by q → β(α(q)).

Definitions (cont.)

For a pre-automaton A=(∑, Q, δ) and for every u∈ ∑*, we define its *transformation*, u^A, as follows: For every q ∈ Q, we set u^A(q) = δ*(q,u).
S^A = {u^A | u ∈ ∑+}
For α:Q → Q, we set L_α^A = { u ∈ ∑+ | u^A = α }.
L_α^{A'} = L_α^A ∪ {∈} if α = id_Q.
If A is counter-free and u^A[Q] =Q, then u^A = id_Q.

 A regular language L is expressible in TL if and only if A_L is counter-free

Proof (Outline)

- It suffices to prove that for every pre-automaton
 A, and every α∈ S^A, the language L^A_α is
 expressible in temporal logic.
- Proof goes by induction on |Q| in the first place and then on $|\Sigma|$.
- We distinguish two cases:
 - Case1: For all symbols $a \in \Sigma$, $a^{A}[Q]=Q$.
 - Case2: There is some symbol $b \in \Sigma$, $b^A[Q] \subset Q$.

Proof

• Let $b^{A}[Q] = Q' \subset Q$ • $\Gamma = \sum -\{b\}$ B is the pre-automaton that results from A by restricting it to the symbols from Γ . • $U_0 = \Gamma^* b$ $\bullet \Delta = \{ \mathbf{u}^{\mathsf{A}} \mid \mathbf{u} \in \mathbf{U}_{\mathsf{o}} \}$ • $C = (\Delta, Q', \delta')$ where $\delta'(q, \alpha) = \alpha(q)$ • h : $U_0^+ \rightarrow \Delta^+$ is the function defined by $h(u_0...u_{n-1}) = u_0^A...u_{n-1}^A$ for $u_0,...,u_{n-1} \in U_0$

Proof (cont.)

Lemma 1

Let ∑ be an alphabet, b ∈ ∑, and Γ = ∑ - {b}. Assume L ⊆ ∑⁺ and L' ⊆ Γ⁺ are TL-expressible. Then so are Γ*bL, Γ*b(L+∈), ∑*bL, ∑*b(L+∈), L'b∑* and (L'+∈)b∑*.

Lemma 2

Let ∑, ∆ be alphabets, b ∈ ∑, Γ=∑ - {b}, and U₀=Γ*b. Further, let h₀ : U₀ → ∆ be an arbitrary function and h : U₀⁺ → ∆⁺ be defined by h(u₀ ... u_{n-1}) = h₀(u₀)... h₀(u_{n-1}) for u₀,...,u_{n-1} ∈ U₀. For every d∈ ∆, let L_d = {u∈ Γ⁺ | h₀(ub) =d}.
If L ⊆ ∆⁺ and L_d for every d∈ ∆ are TL-expressible then so is h⁻¹(L) Γ*.

- Thomas Wilke. Classifying discrete temporal properties.
- Wolfgang Thomas. Languages, Automata, and Logic.