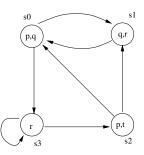
Automated Verification


Mid-Semester Exam (2006)

Max Marks: 28, Weightage: 20%, Time: 2 hours

- 1. Consider the ω -language over the alphabet $\{a, b, c\}$ containing all infinite words in which every a is eventually followed by a b, and every b is eventually followed by a c. Give a Büchi automaton which accepts the language. (2)
- 2. Recall that McNaughton's theorem states that deterministic Muller automata have the same expressive power as Büchi automata. (3)
 - (a) Describe briefly the route to complementation of Büchi automata taken by Safra's construction.
 - (b) Show how McNaughton's theorem can be proved using Safra's construction.
- 3. The kernel of an ω -language is the set of all ultimately periodic words in it (i.e. words of the form $u.v^{\omega}$.) Show that two ω -regular languages are the same if and only if their kernels are the same. (4)
- 4. Which of the following temporal logic identities are correct? Justify your answer. (2)
 - (a) $\Box(\varphi \lor \psi) \equiv \Box(\varphi) \lor \Box(\psi)$
 - (b) $\Diamond(\varphi \land \psi) \equiv \Diamond(\varphi) \land \Diamond(\psi)$
- 5. Describe the Vardi-Wolper automaton for the formula $((p \lor \neg p)Up)$. (4)
- 6. LTL can be interpreted over *finite* words over the alphabet 2^{P} in a natural way. Describe a way of interpreting LTL over these finite models (i.e. give the formal semantics).

Describe how you can modify the Vardi-Wolper construction to obtain a classical NFA \mathcal{A}_{φ} which accepts precisely the set of finite models of an LTL formula φ . (4)

- 7. Draw a Venn diagram to show the relationship between the classes below. Give an example of a language in *each region* of your diagram (4)
 - LTL: the class of all languages over $\{a,b\}$ which can be described by LTL formulas
 - ω -REG: the class of ω -regular languages over $\{a, b\}$.
 - Det-ω-REG: the class of deterministic ω-regular languages over {a, b}
 (i.e. those accepted by deterministic Büchi automata).
- 8. Consider the transition system \mathcal{T} given below.

In which states of \mathcal{T} does the CTL formula $AG(EF(p \lor r))$ hold? (3)

9. Give brief answers to the following questions: (2)

- (a) True or False: To check if a Büchi automaton has a cycle containing a final state, and that this cycle is reachable from the initial state, requires time quadratic in the number of states and transitions in the automaton
- (b) Give a Monadic Second Order Logic formula which describes the language of Question 1.