Interprocedural Data flow Analysis

Aditya V. Nori MSR India

Functional Approach

- Compute a function for each procedure describing the "abstract" effect of the procedure.
- These functions are then used in a standard (intraprocedural) algorithm.
- The solution computed is an MOP solution only if the underlying DFF is distributive.

Functional Approach - Snags

- Computation of values from $L \rightarrow L.$ This space must be finite for termination.
- Guaranteed to terminate only for finite lattices.
- Computationally expensive.

Call String Approach

Basic Idea:

- Consider procedure calls and returns as ordinary transfers of control.
- Avoid data propagation along interprocedurally invalid paths.
- Tag propagated data with a call string.

Definitions

A call string γ is a tuple of call blocks $c_1, c_2, ..., c_j$ in N^{*} for which there exists an execution path $q \in IVP(r_1,n)$ terminating at some $n \in N^*$, such that the path decomposition of q has the form

$$q_1||(c_1,r_{p_2})||q_2||\cdots||(c_j,r_{p_{j+1}})||q_{j+1}||$$

where $q_i \in IVP_0(r_{p_i},c_i)$ for each $i \leq j$, $q_{j+1} \in IVP_0(r_{j+1},n)$.

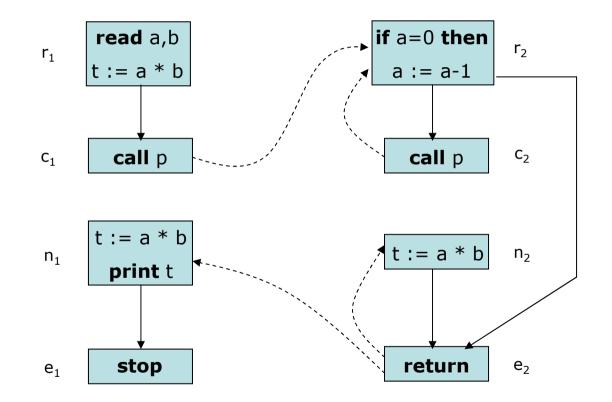
Define $CM:IVP(r_1,n) \rightarrow \Gamma$, such that $CM(q) = \gamma$.

Example

main program
read a, b;
t := a * b;
call p;
t := a * b;
print t;
stop;
end

procedure p
if a = 0 then return;
else
 a := a - 1;
 call p;
 t := a * b;
endif;
return;
end

Interprocedural CFG G*



The following call strings are possible: (λ), (c_1), (c_1c_2), ($c_1c_2c_2$) ...

Let Γ denote the set of all call strings γ corresponding to IVPs in G^* .

If G^* is nonrecursive $\Rightarrow \Gamma$ is finite else it is infinite.

```
Let (L,F) be a DFF. Define a new DFF (L<sup>*</sup>,F<sup>*</sup>) as follows:
• L^* = L^{\Gamma}.
```

• F* will be defined later.

```
If \xi \in L^* and \gamma \in \Gamma, then intuitively,
\xi(\gamma) = \text{data propagated along paths in } CM^{-1}(\gamma).
```

L* is a semilattice

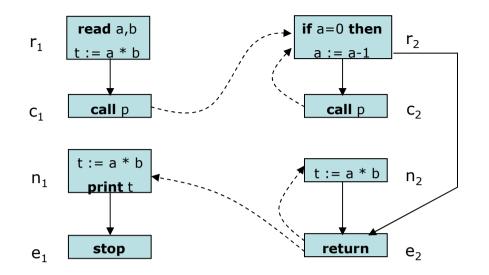
- Meet operation in L^{*} is a pointwise meet on Γ . That is, for $\xi_1, \xi_2 \in L^*, \gamma \in \Gamma$, $(\xi_1 \land \xi_2) (\gamma) = \xi_1(\gamma) \land \xi_2(\gamma)$.
- The smallest element in L^{*} is O^{*}, where O^{*}(γ) = O for each $\gamma \in \Gamma$.
- The largest element in L^{*} is Ω^* , where $\Omega^*(\gamma) = \Omega$ for each $\gamma \in \Gamma$.

Definition: $^{\circ}\Gamma \times E^* \to \Gamma$ is a partially defined function such that for each $\gamma \in \Gamma$ and $(m,n) \in E^*$ s.t. $CM^{-1}(\gamma) \cap IVP(r_1,m) \neq \emptyset$, we have:

γ° (m,n) =

- γ if (m,n) $\in E^{0}$
- γ [[m] if (m,n) is a call edge in E¹
- $\gamma(1:\#\gamma-1)$ if (m,n) is a return edge st. $\gamma(\#\gamma)$ is its corresponding call edge.

Lemma: Let $\gamma \in \Gamma$, $(m,n) \in E^*$, $q \in IVP(r_1,m) \text{ s.t. } CM(q)=\gamma$. Then $\gamma_1=\gamma \circ (m,n)$ is defined iff $q_1=q||(m,n) \in IVP(r_1,n)$, in which case $CM(q_1) = \gamma_1$.



$$\lambda^{\circ}(c_{1},r_{2}) = (c_{1})$$

$$(c_{1})^{\circ}(c_{2},r_{2}) = (c_{1}c_{2})$$

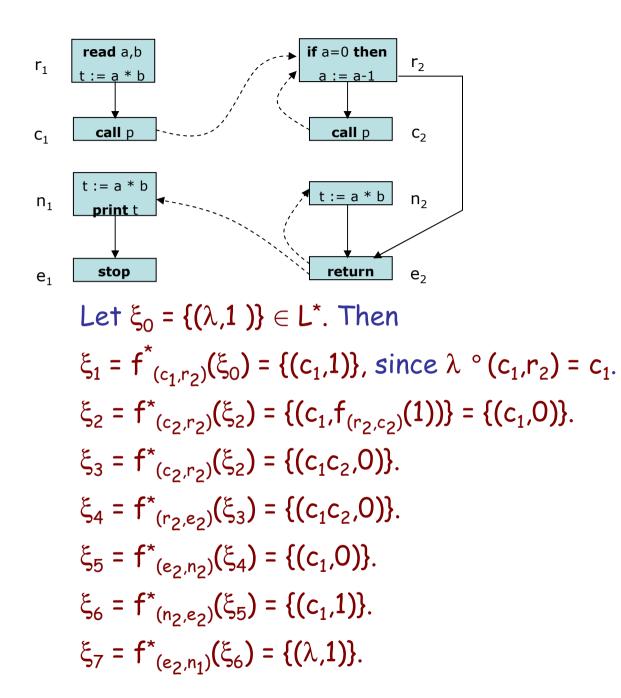
$$(c_{1}c_{2})^{\circ}(e_{2},n_{2}) = (c_{1})$$

$$(c_{1}c_{2})^{\circ}(e_{2},n_{1}) = \bot$$

Definition of F*

Let $(m,n) \in E^*$ and let $f_{(m,n)}$ be the data propagation map associated with (m,n). Define $f^*_{(m,n)}:L^* \to L^*$ as follows: For each $\xi \in L^*$, $\gamma \in \Gamma$, $f^*_{(m,n)}(\xi(\gamma)) =$ $-f_{(m,n)}(\xi(\gamma_1))$ if there exists a γ_1 st. $\gamma_1 \circ (m,n) = \gamma$ otherwise.

Intuitive interpretation: $f_{(m,n)}^{*}(\xi)$ represents information at the start of n which is obtained by propagation of the information ξ at the start of m along the edge (m,n).



Definition of F*

 F^* is the smallest set of maps $L^* \to L^*$ which contains $\{f^*_{(m,n)}: (m,n) \in E^*\}, id_{L^*}, and is closed under functional composition and meet.$

Lemma:

- If F is monotone in L, then F^* is monotone in L^* .
- If F is distributive in L, then F^* is distributive in L^{*}.
- If F is distributive in L, then for each $(m,n) \in E^*$, $f^*_{(m,n)}$ is continuous in L^{*}, i.e., $f^*_{(m,n)}(\wedge_k \xi_k) = \wedge_k f^*_{(m,n)}(\xi_k)$, for every collection $\{\xi_k\}_{k \ge 1} \subseteq L^*$.

DFP for G*

Find the MFP solution of the following equations: $x_{r_1}^* = \{(\lambda, 0)\}, \text{ where } \lambda \text{ is the empty call string.}$ $x_n^* = \wedge_{(m,n) \in E^*} f_{(m,n)}^*(x_m^*), n \in N^* - \{r_1\}.$

Existence of a solution?

Simple induction on iteration number.

Convert this solution to values in L: For each $n \in N^*$, $x'_n = \wedge_{\gamma \in \Gamma} x_n^*(\gamma)$.

MFP vs. MOP?

Definition: Let $path_{G^*}(r_1,n)$ denote the set of all execution paths leading from r_1 to $n \in N^*$. For each $p = (r_1, s_2, ..., s_k, n) \in path_{G^*}(r_1, n)$, define $f_p^* = f_{(s_k, n)} \circ f_{(s_{k-1}, s_k)} \circ \cdots \circ f_{(r_1, s_2)}$. For each $n \in N^*$, define (MOP) $\gamma_n^* = \wedge \{f_p^*(x_{r_1}^*) : p \in path_{G^*}(r_1, n)\}.$

Theorem: If (L,F) is a distributive DFF, then, for each $n \in N^*$, $x_n^* = y_n^*$.

Summary - Call String Approach

- If Γ is infinite (G^* has recursive procedures) \Rightarrow not a feasible solution.
- Practical variant of this algorithm is given in the paper.
- Further extensions by keeping track of semantic restrictions (call-return being a special case) that control flow paths.