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Functional Approach

• Compute a function for each procedure 
describing the “abstract” effect of the 
procedure.

• These functions are then used in a 
standard (intraprocedural) algorithm.

• The solution computed is an MOP 
solution only if the underlying DFF is 
distributive.



Functional Approach - Snags

• Computation of values from L → L. This 
space must be finite for termination.

• Guaranteed to terminate only for finite 
lattices.

• Computationally expensive.



Call String Approach

Basic Idea: 

• Consider procedure calls and returns as 
ordinary transfers of control.

• Avoid data propagation along 
interprocedurally invalid paths.

• Tag propagated data with a call string.



Definitions

A call string γ is a tuple of call blocks c1, c2, … ,cj in N*

for which there exists an execution path q∈ IVP(r1,n)
terminating at some n ∈ N*, such that the path
decomposition of q has the form

q1||(c1,rp2)||q2||L||(cj,rpj+1)||qj+1

where qi ∈ IVP0(rpi,ci) for each i � j, qj+1 ∈ IVP0(rj+1,n).

Define CM:IVP(r1,n) → Γ, such that CM(q) = γ.



Example

main program

read a, b;

t := a * b;

call p;

t := a * b;

print t;

stop;

end

procedure p

if a = 0 then return;

else

a := a – 1;

call p;

t := a * b;

endif;

return;

end



Interprocedural CFG G*

read a,b

t := a * b

call p

t := a * b

print t

stop

if a=0 then

a := a-1

call p

t := a * b

return

r1

c1

n1

e1

r2

c2

n2

e2

The following call strings are possible: (λ), (c1), (c1c2), (c1c2c2) …



Let Γ denote the set of all call strings γ corresponding 
to IVPs in G*.

If G* is nonrecursive ⇒ Γ is finite else it is infinite.

Let (L,F) be a DFF. Define a new DFF (L*,F*) as follows:

• L* = LΓ.

• F* will be defined later.

If ξξξξ ∈∈∈∈ L* and γ ∈ Γ, then intuitively, 

ξ(γ) = data propagated along paths in CM-1(γ).



L* is a semilattice

• Meet operation in L* is a pointwise meet on Γ. That is, 
for ξ1, ξ2 ∈ L*, γ ∈ Γ, (ξ1 ∧ ξ2) (γ) = ξ1(γ) ∧ ξ2(γ). 

• The smallest element in L* is 0*, where 0*(γ) = 0 for 
each γ ∈ Γ.

• The largest element in L* is Ω*, where Ω*(γ) = Ω for 
each γ ∈ Γ.



Definition: °:Γ × E* → Γ is a partially defined function 
such that for each γ ∈ Γ and (m,n) ∈ E* s.t. 

CM-1(γ) ∩ IVP(r1,m) ≠ ∅, we have:

γ°(m,n) =
– γ if (m,n) ∈ E0

– γ||[m] if (m,n) is a call edge in E1

– γ(1:#γ-1) if (m,n) is a return edge st. γ(#γ) is its 
corresponding call edge.

Lemma: Let γ ∈ Γ, (m,n)∈ E*, q∈ IVP(r1,m) s.t. CM(q)=γ. 
Then γ1=γ °(m,n) is defined iff q1=q||(m,n) ∈ IVP(r1,n),
in which case CM(q1) = γ1.



read a,b

t := a * b

call p

t := a * b

print t

stop

if a=0 then

a := a-1

call p

t := a * b

return

r1

c1

n1

e1

r2

c2

n2

e2

λ °(c1,r2) = (c1)

(c1) °(c2,r2) = (c1c2)

(c1c2) °(e2,n2) = (c1)

(c1c2) °(e2,n1) = ⊥



Definition of F*

Let (m,n) ∈ E* and let f(m,n) be the data propagation map 
associated with (m,n). Define f*(m,n):L* → L* as follows:

For each ξ ∈ L*, γ ∈ Γ,

f*(m,n)(ξ(γ)) = 
– f(m,n)(ξ(γ1)) if there exists a γ1 st. γ1 °(m,n) = γ

– Ω otherwise.

Intuitive interpretation: f*(m,n)(ξ) represents 

information at the start of n which is obtained by

propagation of the information ξ at the start of m

along the edge (m,n).



read a,b

t := a * b

call p

t := a * b

print t

stop

if a=0 then

a := a-1

call p

t := a * b

return

r1

c1

n1

e1

r2

c2

n2

e2

Let ξ0 = {(λ,1 )} ∈ L*. Then 

ξ1 = f
*
(c1,r2)

(ξ0) = {(c1,1)}, since λ °(c1,r2) = c1. 

ξ2 = f*(c2,r2)(ξ2) = {(c1,f(r2,c2)(1))} = {(c1,0)}.

ξ3 = f*(c2,r2)(ξ2) = {(c1c2,0)}.

ξ4 = f*(r2,e2)(ξ3) = {(c1c2,0)}.

ξ5 = f*(e2,n2)(ξ4) = {(c1,0)}.

ξ6 = f*(n2,e2)(ξ5) = {(c1,1)}.

ξ7 = f*(e2,n1)(ξ6) = {(λ,1)}.



Definition of F*

F* is the smallest set of maps L* → L* which contains 
{f*(m,n) : (m,n) ∈ E*}, idL*, and is closed under functional 
composition and meet.

Lemma: 
• If F is monotone in L, then F* is monotone in L*.
• If F is distributive in L, then F* is distributive in L*.
• If F is distributive in L, then for each (m,n) ∈ E*,
f*(m,n) is continuous in L*, i.e.,  
f*(m,n)(∧k ξk) = ∧k f*(m,n)(ξk), for every collection {ξk}k ≥ 1
⊆ L*.



DFP for G*

Find the MFP solution of the following equations:

x*r1 = {(λ,0)}, where λ is the empty call string.

x*n = ∧(m,n) ∈ E* f*(m,n)(x*m), n ∈ N*-{r1}.

Existence of a solution? 
Simple induction on iteration number.

Convert this solution to values in L: 

For each n ∈ N*, x′n = ∧γ ∈ Γ xn*(γ).



Definition: Let pathG*(r1,n) denote the set of all execution 
paths leading from r1 to n ∈ N*. For each 

p = (r1,s2,…,sk,n) ∈ pathG*(r1,n), define fp* = f(sk,n)°f(sk-1,sk) °

L °f(r1,s2) . For each n ∈ N*, define (MOP)

y*n = ∧ {fp*(xr1
*) : p ∈ pathG*(r1,n)}.

Theorem:  If (L,F) is a distributive DFF, then, for each n 
∈ N*, xn* = yn*.

MFP vs. MOP?



Summary – Call String Approach

• If Γ is infinite (G* has recursive 
procedures) ⇒ not a feasible solution.

• Practical variant of this algorithm is 
given in the paper.

• Further extensions by keeping track of 
semantic restrictions (call-return being 
a special case) that control flow paths.


