Automated Verification

Assignment 3

(Due on Tue 21 March 2006)

1. Implement the mutual exclusion algo below (the one we have discussed
in class) in Promela. Formulate a safety property (the two processes are
never in their critical section simultaneously) and a liveness property (if
process 0 "wants” he eventually gets to enter his critical section). Verify
these properties in Spin, and explain the counter example whenever there
is one.

Initially turn is 0, and want0, want1 are false;

process0 {
do forever {
want0 := true;
while (wantl && turn == 1) {
/* do nothing */

}

turn := 0;
enter CS;

wantQ := false;
turn := 1;

And symmetrically for process1.

2. Implement Peterson’s algorithm for mutual exclusion in SPIN (the algo-
rithm is a variant of the one above, where each process first sets turn to
the other process (after setting his own ‘want’ flag) and then waits till
either the other process does not ‘want’ or the turn points back to him.

Check if mutual exclusion and starvation freedom are met.

3. Here is a problem from a list of exercises given on the Spin website
(http://www.spinroot.com/spin/Man /Exercises.html).

If two or more concurrent processes execute the same code and access
the same data, there is a potential problem that they may overwrite each
others results and corrupt the data. The mutual exclusion problem is the
problem of restricting access to a critical section in the code to a sin-
gle process at a time, assuming only the indivisibility of read and write
instructions. (The problem disappears if one can assume an indivisible
test-and-set instruction.) The problem and a first solution were first pub-
lished by Dijkstra.



The following ‘improved’ solution appeared one year later in the same
journal (Comm. of the ACM, Vol. 9, No. 1, p. 45) by another author. It
is reproduced here as it was published (in pseudo Algol).

1 Boolean array b(0;1) integer k, i, j,

2 comment process i, with i either 0 or 1 and j = 1-i;
3 CO: b(i) := false;

4 C1: if k != i then begin

5 C2: if not b(j) then go to C2;

6 else k := i; go to Cl1 end;
7 else critical section;

8 b(i) := true;

9 remainder of program;

10 go to CO;

11 end

Model the solution in Promela, and prove or disprove the correctness of
the algorithm.

. This question involves reasoning about the correctness of the Alternat-
ing Bit Protocol using Spin. For more details on the protocol look at
Chapter 4 of Holzmann’s book (Design and Validation of Computer Pro-
tocols) available online at www.spinroot.com and “spin-book-ch4.pdf” on
the course webpage.

Formulate an appropriate correctness criterion for the protocol. Verify it
in Spin. Also verify whether the protocol is robust (i.e. it satisfies the
correctness criterion above) in the face of messages being (a) lost, (b)
duplicated, (c) and reordered.



