Automated Verification

Assignment 2

(Due on Tue 14th Feb 2006)

1. Describe the language accepted by the following Büchi automaton:

- 2. Prove or disprove: every finite language of ω -words is ω -regular.
- 3. Prove that the language $L=\{a^ib^i\,|\,i\geq 0\}^\omega$ is not $\omega\text{-regular}.$
- 4. Consider the Büchi automaton \mathcal{A} below:

- (a) Describe the language accepted by A.
- (b) Give a Büchi automaton that accepts its complement.
- (c) Prove that you cannot give a deterministic Büchi automaton that accepts the complement of L(A).
- 5. A generalised Büchi acceptance condition is given by a set $\mathcal{F} = \{F_1, \ldots, F_k\}$, with each $F_i \subseteq Q$, where Q is the set of states of the automaton. A run ρ is accepting according to this condition iff $\inf(\rho) \cap F_i \neq \emptyset$ for each $i \in \{1, \ldots, k\}$. Argue that generalized Büchi automata have the same power as Büchi automata.
- 6. Consider the ω -language L over $\Sigma=\{a,b\}$, comprising of all ω -words which contain infinitely many a's and b's.
 - (a) Give a Muller automaton which accepts L.
 - (b) Give a Buchi automaton which accepts L.

- 7. A Rabin condition is given by a set of pairs $\mathcal{R} = \{(R_1, G_1), \dots, (R_k, G_k)\}$, with each $R_i, G_i \subseteq Q$. A run ρ is accepting according to the Rabin condition above, iff there is a pair (R_i, G_i) such that $inf(\rho) \cap R_i = \emptyset$ and $inf(\rho) \cap G_i \neq \emptyset$. i.e. the "red" states (those in R_i) are seen only finitely often, while the "green" states (those in G_i) are seen infinitely often.
 - (a) Show how to simulate a Büchi automaton by a Rabin automaton.
 - (b) Show how to simulate a Rabin automaton by a Büchi automaton.
- 8. Recall the congruence $\sim_{\mathcal{A}}$ defined in class for a given Büchi automaton $\mathcal{A}=(Q,s,\to,F).$
 - (a) Describe the equivalence classes of this relation for the Büchi automaton below.

(b) Give a procedure to compute the $\sim_{\mathcal{A}}$ equivalence classes for a Büchi automaton \mathcal{A} in general. (Hint: use the sets $W_{qq'}^F$ and $W_{qq'}$ discussed in class.)