DAA 2006: Mid-Term Exam II

Q1.[5] Show that for every maximum flow there is a saturated cut which proves that the flow is maximum.

Q2.[5] We have *n* vectors v_1, \dots, v_n . Each vector v_i is an array (a_{i1}, \dots, a_{in}) of *n* integers. Compute all $\binom{n}{2}$ dot products (v_i, v_j) for $i \neq j$ in $o(n^3)$ time. $[o(n^3)$ means a function f(n) such that $\lim_{n\to\infty} \frac{f(n)}{n^3} = 0$. An algorithm with running time $O(n^{3-\delta})$ for some $\delta > 0$ is an $o(n^3)$ algorithm.]

Q3.[7.5] Show that the number of distinct minimum cuts in an undirected graph (assume all edge weights are one) is at most $\frac{n(n-1)}{2}$. That is, show that the number of distinct cuts whose value is equal to the value of the min cut in the graph is at most $\frac{n(n-1)}{2}$.

Q4.[7.5] Consider an undirected graph G = (V, E) with |V| = n and |E| = m and let all edge weights be one. For any two vertices u, v let d(u, v) denote the length of the shortest path between u and v in G. Let $S \subset V$ be a set of marked vertices. For any $u \in V$ define

$$d(u,S) = \min_{v \in S} d(u,v).$$

So d(u, S) = 0 for all $u \in S$. Give and $O(m + n \log n)$ time algorithm (i.e., the running time of Dijkstra's algorithm which is used to compute shortest paths from one fixed vertex to all other vertices) to compute *all* the values d(u, S) for all $u \in V - S$. That is, in time $O(m + n \log n)$ compute all the n - |S| values d(u, S), where $u \in V - S$.