
VM

Prof. K.Gopinath

 A primary function of an OS: manage its memory; MMU
CPU speed: mem speed: disk speed = 1: 5 : ???

OS very simple if no mem mgmt:
 one program at a time in memory, loaded contiguously,
 simple linking/loading, no addr translation
 RT/embedded or very small systems

Requirements:
 run a program larger than phys memory (avoid overlays)
 prog need not know about phys mem config (HW independence)
 allocate & manage mem resources
 run partially loaded programs (reduce startup time)
 run >1 program at same time (incr CPU util)
 movable programs during execution (relocatable)
 allow sharing (share text; DLLs)

 Monoprogramming without swapping or paging

Multiprogramming and memory usage
 Utilization of CPU with n processes with prob p for I/O wait: 1-p^n
 Fixed partitions (example: IBM OS/360 MFT)
 Relocation and protection (base & limit registers)

Swapping: interactive systems; swap space on disk
 Multiprogramming with variable partitions
 holes, compaction?, stack/data segment growth
 Mem mgmt with bit maps/linked lists/buddy system; coalescing
 first/best/next/quick fit with linked lists/bit maps
 internal and external fragmentation with buddy system

 50% rule: if # of processes in memory is n, mean number holes n/2.
In equilibrium: half of the ops above allocs and the other

 half deallocs; on avg, one hole for 2 procs
 unused memory rule: (n/2)*k*s=m-n*s
 s, k*s: avg size of process, hole; m: total memory
 fraction of memory wasted: k/k+2
 overhead of paging: process size*size of page entry/page size
 +pagezise/2

some interesting results
● if n is the number of allocated areas, then n/2

is the number of holes for “simple” alloc algs
(not buddy!) in equilibrium

● dynamic storage alloc strategies that never
relocate reserved blocks: mem eff not
guaranteed!
– with blocks 1 and 2, can run out of mem even with

2/3rds full
● 23 seats in a row, groups of 1 and 2 arrive; do we need

to split any pair to seat? no more than 16 present
– Solution: no single is given seat 2, 5, 8, ... 20

● not possible with 22 seats; no more than 14 present

VM: AS as an abstraction to free program from phys mem locs

● CPU gen VA; trans to real addr

● HW+SW have to cooperate

● costly: about 10% CPU time on busy sys+ fragmentation
(paging)

OLD solutions:

● AS size smaller than phys mem

– PDP-11; 16bit AS=> 64KB I+ 64KB D

– also curr SPARC/IA-32: 32bit AS size but 36 bit phys mem

– also curr RS/6000: each process has 32 bit AS size but 52
bit system VA size

● overlay: needs info on phys mem config

● curr out-of-core computations

● swapping: few in memory at same time and swapped out to
swap (disk) if nec

“NEW” solution:

 Demand paging: page frame (phys page), virtual page; RWX
perms on page

 page fault, fault handler

 page: unit of mem alloc, prot, addr trans

min faulted in: arch-dep: MVC (6B) on IBM 370: 2 pages for inst
itself; the block of chars to move can straddle 2 pages each

 page into mem only on ref; also possible: anticipatory paging

 adv: large AS, fast program startup, multiprogramming,
better than swapping

 critical: trans from VA to PA has to be efficient

 Segmentation: segments contiguous, base + len, all accesses
checked to be within

 Segment+Paging: segment need not be phys mem contiguous

 Logical Segmentation: on Unix, high-level abstraction of
contiguous virt pages

Functional requirements of a demand-paged arch:

 addr space mgmt: fork, exec, vfork, exit, change size of
data/stack segment, add a new region (shm)

 addr trans: maps

 phys mem mgmt: kernel/users; phys memory as cache:
consistency/currency

 mem prot: kernel from users, one user from another, user
from himself (code/data), SIGSEGV

 mem sharing: text, COW in fork/exec, DLL, monitor system
load: avoid thrashing, ...

VAS: differences in protection, init, sharing for diff types:

 text

 initialized data (read from file; possibly from swap: sticky!)

 uninitialized data (zfod)

 stack, heap (alloc on first access, later from swap)

 modified data (from swap)

 shared memory (prot set on first alloc)

 shared libraries (text shared but data COW)

 bss (zfod)--------v

exec file --txt/init data--> main mem -->dirty pages--->swap on disk

 stack/data (alloc)-^ ^------<---faults-----------------v

Translation maps:

HW addr translations: TLB, ...

Addr Space Map: full maps; HW(TLB) may have only small
(MIPS) or inexact (sim: no referenced bit in VAX/R3000)

Phys mem map: reverse mapping to remove trans for a virt
page on a phys page

Backing store map: file?, shared lib obj file?, swap device

Page Repl Policies: working set, locality, LRU

 local: working set; Unixware

 global: common with min number for each process

allocation algs: equal, proportional to size of process, priority. .

free of a page: reclaim only when necessary or (better)
maintain a pool of free pages

control thrashing by working set model or page fault freq, prepaging,
analyse program structure (array algs)

 I/O interlock, locking in mem (high priority, real-time, ...)

Probs of circular dependencies with
native root/swap mirroring

● One plex has to be detached on failure
● need txn (say, 2-phase) to effect detachment
● volume has to be locked as volume config
 changing and system concurrent
● config daemon a user process but its page

may be on swap
● if 2-phase transaction (daemon & kernel),

deadlock!

Possible Solutions
● plock daemon (expensive: 5MB ker mem)
● “single-phase” kernel txn wihout daemon
● recognize swapper process specially
● write special code for root/swap mirroring
Simlarly: mem alloc problems:
 initiating I/O requires a small amt of mem
 swapper fails to get mem to do I/O to swap &

 sleeps: DEADLOCK!

SVR4 VM Arch:

 concept of file mapping central

 user mmap: lets users map file/AS to AS/file and use mem
insts for R/W

 kernel map: entire AS seen as mappings to diff objs (files, ...)

 HP-UX: has user mmap + std buf cache;

 AIX 3.1: only in kernel (no mmap)

 SVR4, AIX4.1: both

 SVR4 integrates 3 diff ways of accessing files for achieving
consistency: demand paging of executables, mmap'ed files,
read/write to open files

 last method reads data into buffer cache in old Unix

 “new” Unix: map files into kernel VAS <vnode, offset>

 old buf cache mostly redundant except for metadata
(superblocks, indir blocks, inodes, directories) as these not
repr as <vnode, offset>: uses <dev, blk #>

 read/write atomic whereas mmap atomic only at word/byte
level

 sharing of a file by 2 processes A&B using rdwri: 1 in buffer
 cache, 1 in each AS (1 mem2mem copy into each AS)

 sharing of a file by 2 processes A&B using mmap: 1 in mem
 shared

 Two types of sharing: shared and private

 Private: on write, COW.

 paddr = mmap (addr, len, prot, flags, fd, offset)

 flags: MAP_SHARED, MAP_PRIVATE, MAP_FIXED

 prot: PROT_READ, PROT_WRITE, PROT_EXECUTE

 munmap (addr, len) ; mprotect (addr, len, prot)

 mem obj: abstraction of mapping between a region of mem and
 backing store

 several types of backing store: swap space, local/remote
 files, frame bufs

 unify all these types thru OO

 AS: a set of mappings to different data objs

 fs provides name space for mem objs

 vnode layer: VM subsystem interacts with FS

 many mem objs can be mapped to a vnode but a mem
 obj associated with only 1 vnode

 if mem obj not associated with a file: anonymous obj: user
 stack, etc.

 VM arch indep of Unix: hence non-Unix sys can use VM;
 hat for portability

 physical mem server as a cache of mem objs;
 uses COW extensively

 struct page, struct as, struct seg, struct hat, struct anon

 anon layer->swap layer=>swap device

 ^ struct proc

 ^ v

 FS<=vnode layer<- as layer=>VAS

 v v

 page layer=>phys mem<-hat layer (Fig 14.3/14.5)

page: each page mapped into by 1+ mem objs but only 1
backing store (vnode); identity given by <vnode, offset>

struct has vnode ptr, offset in vnode, hash chain ptrs (hashed
on id), ptrs for vnode page list, ptrs for being on free list or
I/O list (to disk), flags (locked, wanted, in-transit), refcount
for sharing thru COW, hat-info (copies of mod & ref bits, all
translations of a page)

lowlevel i/f for finding a page given identity, add/del from hash
Qs & synch

 as: primary per-process abstraction; provides high-level i/f to
process AS; struct proc points to as

 struct as has hdr of linked list of segs (non-overlapping,
shared/priv, page-aligned addr ranges sorted by base addr),
struct hat, AS size, hint to the last seg that faulted, synch
flags, resident set

 as layer: as_alloc (fork/exec), as_free (exec/exit), as_dup
(fork), as_map, as_unmap (map/unmap mem obj into as;
mmap/munmap/...), as_setprot, as_checkprot (mprotect),
as_fault (handler), as_faulta (faultahead)

 seg: identical oo i/f to rest of VM (Fig 14.7)

 base class: base, size, ptr to as, fwd/bwd ptrs on seglist

 virt funcs: seg_ops (dup, fault/faulta, set/chkprot, unmap,
sync, swapout)

 private data: s_data

 addl virt func seg_create (needed as called before seg_ops
initialized)

anon page: created when a process modifies a MAP_PRIVATE
mapping to an obj

 has no perm storage; discarded on exit of process or unmap

 initialized pages mapped to file but become anon after 1stmod

 ref count for sharing

 swap layer provides backing store

anon obj: source of all zeroes (/dev/zero)

 uninitialized data/stack: MAP_PRIVATE mapping to anon obj

 on first access, these data/stack regions become anon pages

 but anon obj (/dev/zero) DOES NOT provide backing store!

 Swap does...

anon interface: anon_dup (dupl refs to a set of anon pages; incr
ref counts), anon_free, anon_private (makes a priv copy of a
page & alloc new anon), anon_zero (creates a 0-filled page
with a new anon), anon_getpage (resolves a fault, read from
swap-device if nec)

hat: all hw-dep code (HW addr translation) but redundant info!
 Info can be discarded at will and rebuilt from machine-indep
layer

 setup & maintain mappings reqd by MMU (page tables,
 translation buffers)

 sole i/f between kernel and MMU but opaque to VM subsytem

 ops on hat_layer: hat_alloc, hat_free, hat_dup (dupl
translations during fork), hat_swapin, hat_swapout(to
rebuild/release hat info on swap in/out)

 ops on a range of pages of a process: hat_chgprot, hat_unload
(inval xlations & flush corresp TLB entries), hat_memload
(load xlation for 1 page), hat_devload (used by seg_dev)

 ops on all xlations of a given page: hat_pageunload (unload all
xlations: inval PTE & flush TLB entry), hat_pagesync (upd
mod/ref bits in all xlations from struct page) (Fig 14.6)

 keeps all xlations of a shared page on a linked list and
 stores the list ptr in hat-dep field in struct page

 ref port of SVR4 to Intel uses mapping chunk to monitor all xlations for a given page

seg drivers:

 seg_vn: mappings to reg files and to the anon obj

 seg_map: kernel internal mappings to regular files

 seg_dev: mappings to char devices that impl mmap (frame
 bufs, phys mem, kernel virt mem, bus mem etc.)

 seg_kmem: misc nonpaged mappings for kernel text, data,
 bss & dyn alloc kernel mem

 seg_u: mappings to u area

 seg_objs: map kernel objs to user space

 seg_kp: for MT systems:

 allocates thread, kernel stack, LWP structs

 may be in pageable or non- mem

 also allocates red zones (single w-prot page at end of

 stack) to prevent kernel stack ovfl

seg_vn: maps user addr to reg files (executable text &
 initialized) or anon obj (bss, user stack)

 addl thru shared mem or mmap

 has per-segment curr & max prot (set on init map) or per-
page prot array

 ptr to vnode of mapped file (vnode provides all ops on file)

 mapping type (shared or private), offset in file,

 anon_map:ptr to anon pages: mod pages of private mappings

seg_map: optimized version of seg_vn providing quick but
transitory kernel mappings to files

 solves “old” consistency problem with fs: buf cache has
 one copy of disk block & mmap possibly elsewhere

 segmap_getmap (maps part of a vnode to KVA)

 segmap_release (release the map & upd disk if mod)

Fig 14.13/14

SWAP layer: maintains information necessary to locate page

 page in mem: anon struct stores ptr to page struct

 page not in mem: swap_xlate (anon struct) ret
 vnode/offset in swap using VOP_GETPAGE

 segments must both reserve and allocate swap space;
 conservative policy

 per-page allocs of swap (swap_alloc/_free): fragmentation
 of swap dev

 struct anon []: one element for each page on dev

 swapinfo for each swap dev: vn/offset, ptrs to beg/end of
 anon array

 maintinains free list and on list of swapinfos for devs

Fig 14.8/9

SVR4: pos of a anon struct in anon array==pos of swap page in
 swap dev

 swap_alloc returns ptr to anon struct: "name" of anon page

 swapctl(int cmd, void *argument)

 cmd: SC_ADD/_REMOVE/_LIST/...

 argument: ptr to swapres struct

 segments that have anon mem have anon ref array:
 one element for each page in segment

 if page non-anon, then NULL

 anon struct: ref count, ptr to page (if resident) or next free
 elem if free

 ptr to new anon (if one swap dev removed and its swap
 realloc to another swap device)

VM ops:

Creating a new mapping: exec or mmap

 VOP_MAP called: checks if another mapping exists and
deletes it (as_unmap)

 as_map then called: allocs a seg & create on it

 mmap: checks that perms !> opened with; seg records
maxprot; mprotect checks maxprot

 exec: private mappings to text, data, stack regions

 text: mapped PROT_READ/_EXECUTE to file;
 initialized:PROT_WRITE to file; bss & stack: anon obj

as_free to free AS (exit)

anon page handling: anon pages created by

 write to MAP_PRIVATE page mapped to file/anon obj

 1st access to shared mem page

 swap has to be alloc on creation as backing store gone

 private part of seg has ptr to anon_map which points to anon
ref array

 for each page of seg, array element NULL if page not
anonymous or refers to one anon struct (pointing to
page/swap)

Fig 14.10/11

Fig 14.12

process creation: as_dup called: dupl parent's AS by as_alloc &
SOP_DUP on segs

 parent's params (seg base, size, vp, offset, prots, seg_ops,
mapping) copied

 text, data, stack: MAP_PRIVATE in both

 MAP_SHARED seg in parent: same in child

 data structs (anon_map/array) created lazily on mod (eg: for
debugging text)

 fork: anon pages shared COW with child (anon_dup) with
indep anon_map/array

 call hat_chgprot to write-protect all anon pages

 next call anon_dup for new anon_map & anon ref array;
 then clones all the refs in array by copying ptrs and incr
 ref counts

 fault on first write!

page fault handling: trap routine for both prot and val faults

 as_fault called; uses hint or searches the sorted segments to locate
seg

 SOP_FAULT called (seg_vn: segvn_fault); conv fault addr to logical
pn in seg; check if real or spurious fault (send SIGSEGV if real)

 spurious: to do COW or reference bit simulation

 pn used as index into anon_map & per-page prot array

 if anon_map entry exists: anon_getpage (may find it in mem)

 elsif seg mapped to file: VOP_GETPAGE (may find it in mem)

 elsif mapped to anon obj: anon_zero to return zero-filled page

 _getpage handles special cases:

 if page on free list, reclaim from list

 if page inval for ref bit sim, reclaim by making page val

 if page in transit, wait for I/O to complete

 if page may already be in mem: search hashQs thru <vnode, offset>

 page now in memory; have to check for COW, etc.

How COW?

● If write access to private mapping &
● seg/per-page prots allow write &
● Page has no anon struct (private

mapping to file) or its ref count >1
(COW on anon pages after fork)

● Call anon_private to privatise page
● Then call hat_memload to load new

translation for the page into page
tbls/TLBs

SVR4 VM
● Modular (seg drivers), portable (hat layer)

● Supports various forms of sharing: COW for indiv pages,
MAP-SHARED mapping to anon obj for shared mem, shared
access to files thru mmap, eff thru mmap, supports shared
libs, supports execution of remote files (thru vnodes),
integrated buffer cache+VM, debugging with breakpoints
(text MAP_PRIVATE)

– VM arch uses vnode ops for all file and disk accesses:
● does not require special support for exec'ing NFS

binaries. Swap devices can be on remote nodes=>
diskless op

● But: more info/page, swap fragmentation & fs overhead,
deadlocks possible with VOP_PUTPAGE (have to wire down
indirect blocks to avoid it), more complex/slower; COW may
be slower than informed prefetching

Page Replacement Algs
● FIFO: Belady's Anomaly

– Reference string: 123412512345
– No. of Faults as function of page frames:12(1 page

frame), 12(2), 9(3), 10(4), 6(5), 6(6)
– Not a stack alg! As fault(k)<=fault(k-1) violated
– Uses the time when page enters mem as priority

● Optimal (unrealizable): victimize pages
referred farthest in future
– Uses the time when page is to be used

● FIFO second chance (= FIFO if all pages referenced)

– Maintain circular Q and a ref bit for each page & a pointer

– On page fault, from ptr, clear ref bits of referred pages &
pick first page with ref bit 0

● Enhanced second chance or NRU: Ref & Mod
(R &M) bits; clock interrupt clears R bit for
all; victimization order: (~R, ~M), (~R,M) ,
(R, ~M), (R,M)

● LRU or NFU: Strict LRU also unrealizable
– keep ctr for each page
– on clock interrupt, ctr shifted right; ref bit copied

to high bit, lsb dropped
– Victimize page with least ctr value

● Page Buffering: pool of free frames, put victim
into free list, if req page avlbl on free list,
reuse; clean dirty pages during idle time

