
Scheduling

Prof. K. Gopinath
IISc

Scheduling problematic!
● eg: Sol 2.2. Expt: Mix of jobs with

– typing (text editor using X: interactive)
– video (RT video player: captures data from

digitizer, dithers to 8b & then displays thru X:
continuous media)

– compute (make appl: batch)

● 1st Expt: Make all jobs timesharing
– input events (mouse/kbd) not accepted, video freezes, sh

does not run!

– batch class spawns and parents wait for children=> "I/O"
intensive => repeated priority boosts for sleeping

– window server identified as "CPU-intensive" and priority
decreases

– typing appl suffer as X does not run!

● 2nd Expt: assign RT to video:
– input not accepted, video degrades badly
– video active all the time: so TS tasks (shell, X) not

run!

● 3rd Expt: assign X to RT:
– mouse OK but batch hogs the CPU

● 4th Expt: assign X+video to RT:
– typing and batch suffer, sh does not run
– flushing dirty pages to disk, process swapping do

not happen!

● 5th Expt: X+typing+video in RT with P(X)>P
(typing)>P(video):
– typing does not run as it needs STREAMS!

How to model?
● Scheduling CPUs

– QoS for multimedia

● Scheduling I/Os
– Linux2.6: elevator, deadline, anticipatory, complete

fair queuing, noop

● Scheduling network packets
– QoS for packets

● Scheduling groups of processes across
dispersed nodes
– Grid computing

Stochastic models

Operational models

Test 1. Writes-Starving-Reads

In the background, perform a streaming write, such as:
while true
do
 dd if=/dev/zero of=file bs=1M
done

Meanwhile, time how long a simple read of a 200MB file takes:
time cat 200mb-file > /dev/null

Test 2. Effects of High Read Latency

 Start a streaming read in the background:
while true
do
 cat big-file > /dev/null
done

Meanwhile, measure how long it takes for a read of every file in the
kernel source tree to complete:
time find . -type f -exec cat '{}' ';' > /dev/null

The Results

I/O Scheduler and Kernel Test 1 Test 2

Linus Elevator on 2.4 45 secs 30 mins, 28 secs

Deadline I/O Scheduler on 2.6 40 secs 3 mins, 30 secs

Anticipatory I/O Scheduler on 2.6 4.6 secs 15 secs

Short-Term Scheduling

running

ready blocked

created

schedule

preempt

event done

wait for event

terminated

Short-Term Scheduling (STS)
● Process execution pattern consists of

alternating CPU cycle and I/O wait
● CPU burst – I/O burst – CPU burst – I/O burst...

● Processes ready for execution held in a
ready (run) queue

● STS schedules process from the ready
queue once CPU becomes idle

Other:
● Medium-Term: swap out
● Long-term: admission control

Utilization

idle

idle

idle

idle

idle

idle

1st I/O
operation

I/O
ends

2nd I/O
operation

I/O
ends

3rd I/O
operation

CPU

Disk

CPU

Disk idle idle

idle

idleJob1 Job1

Job1 Job1Job2

Job2

Job2

Responsiveness
Job 1
arrives

Job 1
terminates

Job1 Job2 Job3

Job 2
terminates

Job 3
terminates

Job 2
arrives

Job 3
arrives

Job1
Job3

Job2

Job 1 terminates Job 3
terminates

Job 2 terminates

Scheduling Jobs
Would CPU sharing improve responsiveness if all jobs

take the same time?
No. It makes it worse!
● For a given workload, the answer depends on the

value of coefficient of variation (CV) of the
distribution of job runtimes
– CV=stand. dev. / mean
– CV < 1 => CPU sharing does not help
– CV > 1 => CPU sharing does help

● If all jobs are CPU bound (I/O bound),
multiprogramming does not help to improve
utilization

● A suitable job mix is created by a long-term
scheduling
– Jobs are classified on-line to be CPU (I/O) bound

according to the job’s history

Metrics: Response time

Job arrives/
becomes ready to run Starts running

Job terminates/
blocks waiting for I/O

Twait
Trun

Tresp

Tresp= Twait + Trun

● Response time (turnaround time) is the
average over the jobs’ Tresp

Other Metrics
● Wait time: average of Twait

– This parameter is under the system control
● Response ratio or slowdown

slowdown=Tresp / Trun

● Throughput, utilization depend on user
imposed workload=>
– Less useful

Note about running time (Trun)
● Length of the CPU burst

– When a process requests I/O it is still
“running” in the system

– But it is not a part of the STS workload
● STS view: I/O bound processes are short

processes
– Although text editor session may last hours!

Off-line vs. On-linescheduling
● Off-line algorithms

– Get all the information about all the jobs to
schedule as their input

– Outputs the scheduling sequence
– Preemption is never needed

● On-line algorithms
– Jobs arrive at unpredictable times
– Very little info is available in advance
– Preemption compensates for lack of

knowledge

Tradeoffs
● Efficiency: spend as much time in user

processes as possible
● Fairness: avoid starvation, give each

process a fair share
● Priority handling: allow more

important processes better service
● Real-time constraints: a guaranteed

level of service
● Hardware constraints: how much does

it cost to switch processes?

Issues...
●What is the Application Profile? A program alternates between
CPU usage and I/O.

● Relevant question for scheduling: is a program compute-
bound (mostly CPU usage) or I/O-bound (mostly I/O wait)?

●When scheduling occurs:

● When a process is created
● When a process terminates
● When a process issues a blocking call (I/O, semaphores)
● On a clock interrupt
● On I/O interrupt (e.g., disk xfer done, mouse click)
● System calls for IPC (e.g., up on semaphore, signal, etc.)

●Multi-level scheduling (e.g., 2-level in Unix)

● Swapper decides which processes should reside in memory
● Scheduler decides which ready process gets the CPU next

● Can preemption occur?

– Preemptive schedulers can take control from a
process at interrupt

– Non-preemptive scheduler does not
● What are we trying to optimize?

– CPU utilization: Fraction of time CPU is in use

– Throughput: average# of jobs completed per time unit

– Turnaround Time: average time between job
submission and completion

– Waiting Time: average amount of time a process is
ready but waiting

– Response Time: time until system responds to a cmd

– Response Ratio: (Turnaround Time)/(Execution Time)
-- long jobs should wait longer

● Different applications require optimizing
different things
– Batch systems (throughput, turnaround time)
– Interactive system (response time, fairness, user

expectation)
– Real-time systems (meeting deadlines)

● Overhead of scheduling
– Context switching expensive (minimize context

switches)
– Data structures & book-keeping used by scheduler

● What is being scheduled?
– Basic abstraction: Jobs
– Jobs might be processes, might be threads "

processes in Unix, threads in Linux or Solaris

Real workloads
● Exp. Dist: CV=1; Heavy Tailed Dist: CV>1
● Dist. of job runtimes in real systems is heavy

tailed
– CV ranges from 3 to 70

● CPU sharing does improve responsiveness
– CPU sharing is approximated by time slicing:

interleaved execution

First-Come-First-Serve (FCFS)
● Schedules the jobs in the order in which

they arrive
– Off-line FCFS schedules in the order the jobs

appear in the input
● Runs each job to completion
● Both on-line and off-line
● Simple, a base case for analysis
● Poor response time
Shortest Job First (SJF)
● Best response time
● Inherently off-line

– All the jobs and their run-times must be
available in advance

Using preemption
● On-line short-term scheduling

algorithms
– Adapting to changing conditions

● e.g., new jobs arrive

– Compensating for lack of knowledge
● e.g., job run-time

● Periodic preemption keeps system in
control

● Improves fairness
– Gives I/O bound processes chance to run

Shortest Remaining Time first (SRTF)
● Job run-times ("CPU burst") are known or “predict”
● Job arrival times are not known
● When a new job arrives:

if its run-time is shorter than the remaining time of the
currently executing job:
preempt the currently executing job and schedule the
newly arrived job

else continue the current job and insert the new job into a
sorted queue

● When a job terminates, select the job at the queue
head for execution

Non-preemptive version also (STF)!
 Optimal response time: STF among non-preemptive and

SRTF among preemptive

 Unfair to long jobs and requires knowledge of future

Round Robin (RR)
● Both job arrival times and job run-times are

not known
● Run each job cyclically for a short time

quantum
– Approximates CPU sharing

● Choose quantum so that each cpu burst
finishes most of the time

Job 1
arrives

Job1 3

Job 2
arrives

Job 3
arrives

2 1 2 31 2 31 2 1 Job2

Job 3
terminates

Job 1
terminates

Job 2
terminates

Priority Scheduling
● RR is oblivious to the process past

– I/O bound processes are treated equally with the
CPU bound processes

● Solution: prioritize processes according to
their past CPU usage

16

1

8

1

4

1

2

1
:

2

1

10 ,)1(

3211

1

−−−+

+

nnnnn

nnn

TTTTE

ETE

● Tn is the duration of the n-th CPU burst
● En+1 is the estimate of the next CPU burst

Multilevel feedback queues

quantum=10

quantum=20

quantum=40

FCFS

new jobs terminated

Multilevel feedback queues
● Priorities are implicit in this scheme
● Very flexible
● Starvation is possible: Short jobs keep

arriving => long jobs get starved
● Solutions:

– Let it be
– Aging

Priority scheduling in UNIX
● Multilevel feedback queues

– The same quantum at each queue
– A queue per priority

● Priority is based on past CPU usage
pri=cpu_use+base+nice

● cpu_use is dynamically adjusted
– Incremented each clock interrupt: 100 sec-1

– Halved for all processes: 1 sec-1

Problem with Unix: on overload, priority of all jobs
increase as little CPU for each: interactive jobs
suffer

 No Guaranteed Scheduling for RT (soft/hard) sys

Fair Share scheduling algorithms
● Given a set of processes with associated weights, a

fair share scheduler should allocate CPU to each
process in proportion to its respective weight
– Achieving pre-defined goals

● Administrative considerations
– Paying for machine usage, importance of project, personal

importance, etc.
● Quality-of-service, soft real-time: Video, audio

● Weighted Round Robin
– Shares are not uniformly spread in time

● Lottery scheduling:
– Each process gets a number of lottery tickets

proportional to its CPU allocation
– The scheduler picks a ticket at random and gives

it to the winning client
– Only statistically fair, high complexity

Linux 2.4
● The policy field of process descriptor (struct

task struct, include/ linux/sched.h) contains:
– SCHED FIFO: First-In First-Out real-time
– SCHED RR: Round-Robin real-time
– SCHED OTHER: non real-time

● The scheduler divides the CPU time in epochs
● When starting a new epoch, the scheduler

assigns a new quantum to every process
● When a process exhausts its time quantum, it

cannot run anymore until epoch terminates
● The epoch terminates when all runnable

processes have exhausted their time quantum

● Linux's tq ranges between 10 ms and 300 ms
● The Base Time Quantum is the default time quantum

assigned to a new process
– On all architectures, it is roughly equal to 50 ms

– The nice() system call can raise or lower process base tq

– On a Intel-based arch, base tq is: 6 – nice/4 ticks
● where 1 ticks is about 10 ms and -20<=nice<=19

● The counter field of process descriptor contains # of
ticks left to process before its time quantum expires
– A periodic timer interrupt decrements

current->counter once every tick

– When current->counter becomes 0, the scheduler is
invoked

– When counter of all runnable processes is 0, a new
epoch starts

● When starting a new epoch, the scheduler
(schedule(), kernel/sched.c) updates the time
quantum of all processes:
– for_each_task(p)

p->counter = (p->counter / 2) + (6 - p->nice/4);

– If a process exhausted its time quantum in the
previous epoch, it gets a fresh base time quantum

– A suspended process gets a larger time quantum
than before (half of the number of ticks left plus a
base time quantum): the “I/O premium”

– similarly, actual code gives bonus for preserving
cache+TLB state

Probs

● The scheduler scans the whole list of runnable
processes every time it must perform a
process switching

● Starting a new epoch is expensive
● I/O-bound processes are not boosted when the

number of runnable processes is high (any
epoch is quite long)

● No distinction between interactive processes
and batch I/O bound processes

Linux 2.6

● Runs in constant time
● Explicitly recognizes processes as being I/O-

bound or CPU-bound
● Any CPU has its own runqueue of runnable

processes
● Runnable processes migrate from a runqueue

to another when the runqueue lengths are
unbalanced

● Any runqueue consists of several round-robin

lists including processes having the same
priority

● At any timer tick, each CPU decrements the
number of tick lefts to the current process
before the time quantum expires

● The scheduler is invoked whenever the
process has exhausted its time quantum

● The scheduler always selects the first process
in the highest-priority list of the runqueue

● The process priority does not depend on the
number of ticks left in the time quantum

● If a process goes to sleep, it is rewarded by
increasing its priority

● Any process whose priority is higher than a
given threshold is recognized as I/O bound

● If a CPU-bound process has exhausted its time
quantum, it is inserted in a expired list, and it
is never executed again until the epoch
terminates

● If a I/O-bound process has exhausted its time
quantum, it receives a fresh time quantum
and it is inserted in the last position of the list
associated with its priority

Multiprocessor Scheduling
● Homogeneous vs. heterogeneous
● Homogeneity allows for load sharing

– Separate ready queue for each processor or
common ready queue?

● Scheduling
– Symmetric or Master/slave

● Assume Markov model: M/M/k
– In general: M/M/k/B/K/SD: arrival/departure

process exponential; k servers, B max system
capacity, K population size, SD service discipline
(FIFO, LIFO, random, priority, general)

– M/M/1: mean # in system j = util/(1-util) =ρ/(1-ρ)
ρ= mean arrival rate /mean service rate = λ/µ

● response time (f arrival to exit)= j/λ = ρ/λ(1-ρ) Little's law

Poisson Arrivals
● Assumes that in a small interval δ

– # of arrivals: λ*δ
– Prob of more than 1 arrival in δ: negligible

– Arrivals in nonoverlapping intervals statistically
indep

● Expected arrival time = 1/λ

● Probability of an arrival in time t = 1- exp(-λt)

– Probability of no arrivals in time t = exp(-λt)

● Probability of k arrivals in time t=
exp (-λt)(λt)k/k!

● Similarly, Poisson departures

Which is better?

4/

4/

departing
jobs

departing
jobs

departing
jobs

departing
jobs

arriving
jobs

shared
queue

CPU1

CPU2

CPU3

CPU4

CPU1

CPU2

CPU3

CPU4

arriving
jobs

M/M/4 4 x M/M/1

4/

4/

M/M/4!

0

5

10

15

20

25

30

0
0.

05 0.
1

0.
15 0.

2
0.

25 0.
3

0.
35 0.

4
0.

45 0.
5

0.
55 0.

6
0.

65 0.
7

0.
75 0.

8
0.

85 0.
9

0.
95

Utilization

av
er

ag
e

re
sp

o
n

se
 t

im
e

M/M/4

4 x M/M/1

M/M/1 vs M/M/2

● Response time for separate Qs (M/M/1) =
1/µ(1-ρ) with ρ=(λ/2)/µ
= 2/(2µ−λ) = (4µ+2λ)/(4µ2−λ2)

● Response time for combined Qs (M/M/2):
– E[N] =2ρ/(1-ρ2) where ρ = λ/2µ
– E[R] = E[N]/λ (Little's Law)

 = 4µ/(4µ2-λ2)

– Less than that for separate Qs

Video on Thin clients
● 1.2Mbps for video and 300kb for audio

– I frames: 100kb (1 in 12)
– P frames: 50kb (3 in 12)
– B frames: 20kb (8 in 12)
– IBBPBBPBBPBBI
– 35kb per frame avg

● 1.5Mbps:
– ~30 ms disk latency (5400 rpm: rot latency: 5.5

ms, seek time 8 ms; 5 ms xfer) ~50ms netw?

● Double buffering: decoding from MPEG into
fb0 and xfer from fb1 into netw

Layered view of the problem
●hw card support: hw scaling &YUV acceleration

● X11 acceleration support
● driver support?
● kernel support: firm timers (+soft timers), preemptable
kernel, adaptive send-buffer tuning, proportion-period
or real-rate scheduler

● TCP: nodelay option; send buffer >64KB typ.
● lib support?

● X11: how much does xlib buffer reqs to Xserver? How
long does it wait?

● XAA, DGA, XVideo extension?DirectGraphicsAccess?
● KDE/GNOME/fvwm/...

● VNC: deferUpdate (40ms default)

