Password mechanism

allow passwd t shadow t:file {read, write, append, ...}

passwd , /etc/shadow
. write
euid: ré)ot create r-------- root root
- passwd_t shadow t
euidA = x5 >
wrlte
create
uid: A
B8 2 = euid: root
euid: A
bash
execv
{r-s ------ root root

/usr/bin/passwd

domain transitions

uid: A
euid: root
passwd t

bash

€XeCv

r-§------ root root
passwd exec t

/usr/bin/passwd

1: allow wuser t passwd exec t:file {execute, ...}

2: type_transition user t passwd exec t:process passwd t;
3: allow user t passwd t:process transition;
4: allow passwd t passwd exec t:file entrypoint;

passwd

Privilege Separation
(from Provos etal, Preventing Privilege Escalation, USENIX Security Symp03)

Mebwork conmnectxen

Eonn™ o n™ el ol =i B " ™ Bl

-— =
Aulh Hesull Mahyvork _
Procassing -‘J'l.l.l_ﬂ'l'E'il'ﬂh:'-EHh:lﬂ- %
-_-"-i.,._

[ircer privile '
H - .
Lizer Metwodk Data

;l..IE'BFFh'I:tl_lE-ﬂ- -— :

* Std design S SH

- On start, SSH daemon binds a socket to port 22 and waits for new
CNXNnS.

— Every new connection handled by a forked child.

— Child needs to retain superuser privileges throughout its lifetime to
create new pseudo terminals for the user, to authenticate key
exchanges when cryptographic keys are replaced with new ones, to
clean up pseudo terminals when the SSH session ends, to create a
process with the privileges of the authenticated user, etc.

* With privilege separation
— forked child acts as the monitor

— monitor forks a slave that drops all its privileges and starts accepting
data from the established connection.

— monitor now waits for requests from the slave. If a request not
permitted in the pre-authentication phase issued by the child,
monitor terminates.

e Can model the monitor as an FSM

Network Logins
* Terminal device driver thru, say, RS232

— Shell (fd 0,1,2): user level

- Kernel level:

* Line terminal disc (echo chars, assemble chars to lines, bs, C-u,
gen SIGINT/SIGQUIT, C-S, C-Q, newline (CR+LF),...)

e terminal device driver

* Network login: similar to terminal login
— init, inetd, telnetd/sshd, login

— Pseudo-terminal device driver

* pseudo-terminal is a special IPC that acts like a terminal

* data written to master side received by the slave side as if it was the result of a
user typing at an ordinary terminal & viceversa

— Netw cnxn thru telnetd/sshd server& telnet/ssh client

fork
rlogind »login shell
exec, exec

stdout/errl] stdin

KERNEL |
TCP/IP term disc
netw dev driver pty master pty slave

| o o

Process States terminated

schedule @ wait for event

preempt
created

/_\
blocked

T~

event done

asleep:

— wakeup: ready to run
— stop: stopped & asleep (4.2+BSD/SVR4)

stopped:
— continue: ready to run

stopped & asleep:

— continue: asleep

initial:

- create (fork): ready to run
enter ker thru

— traps/software interrupts (syscall)

— dev interrupts (disks, terminals, clock),

— aveoantinnoe

* ker running:

- ret from interrupt, ret from syscall: user running
— interrupt: still in ker

— exit: zombie & then wait

— sleep: asleep

— swtch: ready to run

— stop: stopped (4.2BSD+/SVR4) thru SIGSTOP(cannot be
caught/blocked/ign)/SIGTSTP(ctrl-Z)/
SIGTTIN/SIGTTOU)

® user running:
- syscall, interrupt: ker running
* ready to run:

— swtch: ker running

UNIX Process States

user
runnin

sys. call, return from
Interrupt syscall or interrupt
interrupt
Q | .
erne exit
running

swtch sleep
initial swtch
idle

fork rteady to 1
run * wakeup asleep \({
stop

continue

ntinue
stop stop

stopped +
asleep

fork

wakeup

Linux Process states:
TASK _RUNNING: The process is either current or ready to run.

TASK INTERRUPTIBLE: The process is waiting for an event or
resource, but can be woken up by a signal.

TASK _UNINTERRUPTIBLE: The process is waiting directly on
hardware conditions and cannot be woken up by signals.

TASK _ZOMBIE: The process has terminated but not removed
from task vector yet.

TASK STOPPED: The process is Stopped.

TASK EXCLUSIVE: Can be OR-ed with TASK INTERRUPTABLE OT
TASK_UNINTERRUPTABLE states: it will be woken up alone instead of all
the waiters to avoid the thundering herd problem

Switching Details

* process/context vs mode switch (ker2user & vv)

* process AS: also has

- u-area (process info of interest to ker: tbl of files opened,
savearea, ...): not in Linux

- proc area:info needed even if process swapped out

— private ker stack:func call seq can be tracked in ker
* Modes

— user-mode, process context: applns; sig handlers
— user-mode, system context: illegal

- ker-mode, process context : syscalls, exceptions
kernel can modify AS, u-area, private kernel stack

- ker-mode, system context : interrupts, system tasks
ker cannot modify AS, u-area, ker stack of curr process or block

Design Alternatives for Saving State

* Process model: each thread has a ker stack for
syscall/exception

— when thread blocks in ker, stack contains execution state:
call sequence+ local vars

- no need to explicitly save state

syscalll (argl) {

thread block();
f2(arg2);
return;

¥

Interrupt Model: Recent 2.6 kernel, V or some RT OS

— all syscalls+exceptions treated as interrupts
- single kernel stack per processor for all ker ops

- to block, must save state (probably in thread/process
structure)
* ker recaptures stack

* on thread resumption, a new stack allocated and continuation
called

— may be complex: state to be saved may span multiple
modules

— saves stack space: eg: sleep during page fault handling

* handler code issues a disk read req and blocks
* after disk read complete, ker retrns thread to user level

* state to be saved: ptr to page read in, update of mem mapping
data

e Can combine both with continuation:

- thread_block(void (*contfn)())

— if NULL arg for thread block, process model. Otherwise,
interrupt model.

syscalll (argl) {

save argl & other state
thread block(f2);

// not reached

¥
£20) {

restore argl & other state

thread syscall return(status);}

Process Subsystem (old!)

* A process is an entry in the process table from the kernel point of
view

* Process table: array of task struct structure accessed as a double-
linked list.

— static array of pointers of length NR TASKS (a constant
defined in include/linux/tasks.h).

— list structure traversed thru pointers next task and prev task

* task struct contains both low-level and high-level information,
ranging from the copy of some hardware registers to the inode of
the working directory for the process. (defined in sched.h)

e Current pointer pOiIltS to task_struct of current l‘UIlIliIlg ProCesS,
it can be modified only by scheduler.
extern struct task struct init_task;
extern struct task struct *task[NR_TASKS]; //old!
extern struct task struct *current; //old!

task struct contents:

2 Scheduling information: need resched, counter, nice

* Identifiers (pid, uid, gid, effective uid, effective gid, ...)

* Links: orig parent (p opptr), parent (p pptr) for ptrace, child
(p_cptr), younger/older sib (p_y/osptr), prev task, next task

* Times & Timers

* Tty: tty struct (ttys associated with process)

* File System: fs struct (cur dir); files struct (file descriptors for
open files)

* Signals: sig_struct

* Virtual Memory: mm_struct

* Process Specific Context (CPU Registers, Stacks, ...)

* thread group: collection of LWPs in a MT application

Stack & Current in Linux 2.4

Stack & process descriptor stored in 2 contig pages (8K)

current points to descr (got by masking 13 Isbits of esp!)

static inline struct task struct * get current(void) {
struct task struct *current;
__asm__ ("andl %%esp,%0; ":"=1" (current) : "0" (~8191UL));
return current;

)

#define current get current() // process descriptor

union task union {

task t task;

unsigned long stack[INIT TASK SIZE/sizeof(long)];
15

define INIT TASK SIZE 2048*sizeof(long)

Thread: an execution within a process Thre adS
A multithreaded process: many concurrent executions

Separate: CPU state, stack

Shared: Everything else: text, data, heap, environment
Linux: sharing can be fine-grained thru clone

- int clone(int (*fn)(void *), void *child stack, int flags, void *arg) flags:
CLONE_PARENT, FS, FILES, SIGHAND, PTRACE, VFORK, VM,
_PID, THREAD

* Inspired by rfork from Plan9
- _syscall2(int, clone, int, flags, void *, child_stack);
int kernel thread(int (*fn)(void *), void * arg, unsigned long flags){
int p = clone(0, flags| CLONE VM);
if (p) return p; /* parent */

else { fn(arg); exit();}

int kernel thread(int (*fn)(void *), void * arg, unsigned long flags) {
long retval, dO;

~asm_ volatile (
"movl %%esp,%%esi\n\t"
"Int $0x80\n\t" /* Linux/i386 system call */
"cmpl %%esp,%%esi\n\t" /* child or parent? */
"je 1f\n\t" /* parent - jump */

/* Load arg into eax, and push it. That way, it does
* not matter whether called function compiled with
* .mregparm or not. */

"movl %4,%%eax\n\t"

"pushl %%eax\n\t"

"call *%5\n\t" /* call fn */
"movl %3,%0\n\t" [* exit */
"int $0x80\n"

11 1 :\tll

"'=&a" (retval), "=&S" (dO)
:"0" (_ NR clone), "i" (NR exit),
Ilrll (arg), III.,II (fn),
"b" (flags | CLONE VM)
: "memory");
return retval;

#define syscall2(type,name,typel,argl,type2,arg2) \
type name(typel argl,type2 arg2) { \
long res;\
~_asm__ volatile ("int $0x80" \
"=a" (_ res)\
: "0" (__ NR ##name),"b" ((long)(argl)),"c" ((long)(arg2))); \
__syscall return(type, res);\
}
#define syscall return(type, res) \
do {\
if ((unsigned long)(res) >= (unsigned long)(-125)) { \
errno = -(res); \
res = -1; \
P\
return (type) (res); \
} while (0)

Thread Support

* Operating system
- Advantage: thread scheduling done by OS
* Better CPU utilization
— Disadvantage: overhead if many threads
— 1-thr, 1-CPU or n-thr, 1-CPU or n-thr, n-CPU
* User-level
- Advantage: low overhead

- Disadvantage: not known to OS

* E.g., a thread blocked on I/0O blocks all the other threads within
the same process

* ker thread: shares ker text, global data but has own ker stack

- need not be associated with an user process
- good for asynch I/0 & interrupts

- need ker stack, save area, sched/synch info
- context switch fast as mem mappings intact

- "old" unix: pagedaemon, nfsd
* LWP: ker-supported thread; depends on avlblity of ker threads

— each LWP indep scheduled, shares AS &other resources with process
- can make syscalls & block for I/0

- needs phys mem for ker stack, also reg context, user state & user reg
context

- costly as creating, deleting, synch involves syscalls; significant
resources

— blocking requires ker involvement

- single LWP impl=> cannot customize for appln

u} u2 u3 ul uil 11‘5
‘ < ‘ ‘
user thread schedulers

AS P1I AS P2
Ll LZ L3 L4 L5
kl k2 k3 k4 k§ k6 }7

ker thread scheduler

cpul cpu2 Cpu3
* Linux has only 1-1 threading model

— Threads are tasks! Need thread group for aggregation

Linux Concurrency Model

* Within appl: clones (incl threads & processes of other systems)
* Inside kernel:

— Kernel threads: do not have USER context

— deferrable and interruptible ker funcs:

* Softirq: reentrant: multiple softirgs of the same type can be run
concurrently on several CPUs.

- No dyn alloc! Have to be statically defined at compile time.

* Tasklet: multiple tasklets of the same type cannot run
concurrently on several CPUs.

- Dyn alloc OK! Can be allocated and initialized at run time (loadable
modules). Impl thru softirgs

* Bottom Half: multiple bottom halves cannot be run concurrently
on several CPUs. No dyn alloc!

— Impl thru tasklets

e Across HW: IPI

Fork & forkl in MT processes

* Process with exactly 1 LWP=> same semantics as “old Unix”
process

* copy all LWPs on fork? Solaris9 but not Posix

— one LWP blocked in parent: what about in child? Restart?
Concurrent syscalls? EINTR or wait(disk)?

— one LWP has open netw cnxn: if closed, unexpected user
msg to remote node

- one LWP changing a shared data structure: corruption thru
the new copy of LWP? How to make a “consistent” copy?

* copy only calling LWP? Forkl: Solaris10; good for exec'ing

— some user thrs not on LWPs that were in parent

— child process should not try to acq locks held by LWPs not
in child (deadlock!) but user code cannot know! these
locks mav be held bv ulib POSIX

fork1(): only calling LWP created in child fork]_
registration of fork handlers (_atfork)
prepare: prior to fork in the ctxt of calling LWP. LIFO
parent: after fork. FIFO
child: after fork in context of 1 thr in child. FIFO
LIFO/FIFO order to enable preserving of locking order

int pthread atfork(void (*prepare) (void),
void (*parent) (void), void (*child) (void));

handles orphaned mutexes
prepare fork handlers lock all mutexes (by calling thr)
parent/child fork handlers unlock mutexes

indep libs & appl progs can protect themselves

lib provides fork handlers

e Creation

Posix Model of Concurrency

- pthread create(tp, attrp, fptr, argp)

- pthread attr xxx(): manipulate attr of a thread

* Init/destroy; set/get detachstate, inheritsched, schedparam,
schedpolicy, scope, stackaddr, stacksize

* Exit
— pthread

— pthreac

| exit(retvalp)

| join(t, **v): wait for another thread termination

— pthreac

__detach(t): storage for thread can be reclaimed

when thread terminates (no zombie)

* Thread Specific Data (indexed by key)

- pthread key create(keyp, fpdestructor)/ delete()

- pthread_setspeciﬁc 0O/ _getspecific () mapping betw key and thread

Signal: pthread sigmask(how, newmask, saveprev): change

signal mask

for calling thread

— pthread Kkill(t, sig) sigwait: suspend thr till sig
ID: pthread self(t)
- pthread equal(tl, t2)

- pthread once(once?, fptr): ensure some init at most once

Scheduling

— pthread setschedparam()/ getschedparam()

Cancellation (cancellation pts: join, cond wait, cond timedwait,
sem_wait, sigwait, testcancel)

— pthread

— pthread

— pthread

|_cancel(t) by others /pthread testcancel(void) by self
setcancelstate()/type()

| _cleanup pop()/ push(): if a thread exits or cancelled

(with locked mutexes?), cleanup handlers executed; LIFO order

* Mutex

- pthread mutex init()/ destroy()

- pthread mutexattr xxx()
* Init/destroy; set/get pshared, protocol, prioceiling
— pthread mutex setprioceiling()/ getprioceiling()

- pthread mutex lock()/_trylock()/ unlock()
* Condition Variable

- pthread cond init()/ destroy()

— pthread condattr xxx()
* Init/destroy; set/get pshared
- pthread cond wait()/ timedwait()

— pthread cond signal()

- pthread cond broadcast()

int X,y; Condition variables
pthread mutex t mut =PTHREAD MUTEX INITIALIZER;

pthread cond t cond = PTHREAD COND INITIALIZER;
// (waiter) Wait until x is greater than y
pthread mutex lock(&mut);
while (x <= y) pthread cond wait(&cond, &mut);
/* operate on x and y */
pthread mutex unlock(&mut);
// (signaller) Signal if modifications on x and y st x>y
pthread mutex lock(&mut);
/* modify x and y */
if (x > y) pthread cond broadcast(&cond);

pthread mutex unlock(&mut);

// (waiter) if timeout also
struct timeval now;
struct timespec timeout;
int retcode;
pthread mutex lock(&mut);
gettimeofday(&now);
timeout.tv sec = now.tv sec + 5;
timeout.tv nsec = now.tv usec * 1000;
retcode = 0;
while (x <=y && retcode != ETIMEDOUT)
retcode = pthread cond timedwait(&cond, &mut, &timeout);
if (retcode == ETIMEDOUT) {/* timeout occurred */}
else { /* operate on x and y */}

pthread mutex unlock(&mut);

* Semaphore

- sem init()/ destroy()
- sem_open()/ close()
- sem_wait()/ trywait()
- sem_post()

- sem_getvalue()

- sem_unlink()
* fork() Clean Up Handling
- pthread_atfork()

* Async safe? Some pthread calls not safe to call from sig
handlers

— A user thr lib may have taken a lock to ensure, say, that

only one user changing Qs. If pthread mutex lock, etc,
mav deadlock

Spinlocks & Semaphores

* Shared data betw different parts of code in kernel
— most common: access to data structures shared between user
process context and interrupt context

* In uniprocessor system: mutual excl by setting and clearing
interrupts + flags

* SMP: three types of spinlocks: vanilla (basic), read-write, big-
reader
— Read-write spinlocks when many readers and few writers

* Eg: access to the list of registered filesystems.

- Big-reader spinlocks a form of read-write spinlocks optimized for
very light read access, with penalty for writes

* limited number of big-reader spinlocks users.
* used in networking part of the kernel.

* semaphores: Two types of semaphores: basic and read-write
semaphores. Different from IPC's

— Mutex or counting up()& down(); interruptible/ non

Spinlocks: (cont’d)
* A good example of using spinlocks: accessing a data strucuture
shared betw a user context and an interrupt handler

spinlock t my lock = SPIN_LOCK UNLOCKED;

my_ioctl () { // _ioctl: definitely process context!
spin_lock irg(&my_ lock) ; // and known that interrupts enabled!
/* critical section */ // hence, _irqg to disable iinterrupts

spin unlock irg(&my_ lock) ;

}

my_ irg handler () { // _irqg handler: definitely system (or intr
spin_lock (&lock) ; // context) & hence known that intr disabled!
/* critical section */ // can use simpler lock

spin_unlock (&lock) ;

spin_lock: if interrupts disabled or no race with interrupt context
spin_lock_irq: if interrupts enabled and has to be disabled
spin_lock_irgsave: if interrupt state not known

Signals:

* oldest ipc method used by UNIX systems to signal asynchronous
events. ONLY 1BIT INFO!

can be generated by a keyboard interrupt or an error condition
or by other processes in the system (if they have the correct
privileges)

— kernel & superuser can send a signal to any process

— a process can also send a signal to other processes with same
uid/gid

Processes can handle signals themselves or allow kernel to

handle

— If kernel handles the signal, default action for the signal: eg, SIGFPE
causes core dump and causes the process to exit

— SIGSTOP (causes a process to halt its execution) and SIGKILL handled only by
kernel

List of signals on an Linux/Intel machine: SIGHUP SIGINT SIGQUIT SIGILL SIGTRAP
SIGIOT SIGBUS SIGFPE SIGKILL SIGUSR1 SIGSEGV SIGUSR2 SIGPIPE SIGALRM
SIGTERM SIGCHLD SIGCONT SIGSTOP SIGTSTP SIGTTIN SIGTTOU SIGURG SIGXCPU
SIGXFSZ SIGVTALRM SIGPROF SIGWINCH SIGIO SIGPWR

Slgnals (cont’d)

* void (*signal(int signo, void (*func) (int))) (int) =

* typedef void Sigfunc(int); Sigfunc *signal(int, Sigfunc *)
- Signal is a func that returns a ptr to a func that ret void (prev sigh)

- Or, sighandler t signal(int signum, sighandler t handler);

* Linux implements signals using information stored in in
task_struct of process:

- struct sigpending pending: currently pending signals
— blocked: mask of blocked signals

- struct signal_struct *sig has array of sigactions that holds info
about how the process handles each signal

* Signals generated by setting appropriate bit in signal field of
pending. If not blocked, scheduler will run handler in the next
system scheduling.

* Every time a process exits from a system call, the signal and
blocked fields are checked, and if there is any unblocked signal,
the handler is called.

#include <signal.h>
static void sig usr(int); /* one handler for both signals */
int main(void) {
if (signal(SIGUSRI1, sig usr) == SIG ERR)
err sys("can't catch SIGUSR1");
if (signal(SIGUSR2, sig usr) == SIG ERR)
err sys("can't catch SIGUSR2");
for (; ;) pause(); }
static void sig usr(int signo) { /* argument is signal number */
if (signo == SIGUSRI1) printf("received SIGUSR1\n");
else if (signo == SIGUSR2)
printf("received SIGUSR2\n");
else err dump("received signal %d\n", signo);

return; }

signal: V7, SVR2/3/4 (handler uninstalled, no blocking of
signals, no autostart of interrupted system calls)

sigset, sighold, sigrelse, sigignore, sigpause: SVR3/4 (no autostart)

signal, sigvec, sigblock, sigsetmask(unblock a signal), sigpause:
4.x BSD (autostart 4.2; default 4.3/4.4)

sigaction, sigprocmask, sigpending, sigsuspend: autostart
unspecified (POSIX.1), optional(SVR4, 4.3/4.4BSD, Linux)

sigprocmask: change the list of currently blocked signals
sigpending: allows examination of pending signals (ones
which have been raised while blocked)

sigsuspend: replaces with given signal mask & suspends process
until a signal

int sigaction(int signo, const struct sigaction *act, struct sigaction *oact)
struct sigaction {

void (*sa handler)();

sigset t sa mask; /* addl signals to block */

int sa flags; /* restart?, alt stack?, waitchild?, uninstall handler? ...*/ }

Unreliable signals

old V7 code: race with a new signal for process before signal reinstalled
int sig int();

signal(SIGINT, sig int);

sig int() {

/* another signal can come here! can cause default action */
signal(SIGINT, sig int);

Another race
int sig int flag;

main() {
int sig int();

.s.i.gnal(SIGINT, sig int);

while (sig int flag==0) /* signal can come here! */ pause();
}

sig int() {
signal(SIGINT, sig int);
sig int flag=1

}

int sighold(int sig); int sigrelse(int sig) SYSV
sighold(SIGQUIT); sighold(SIGINT)

C.S.

sigrelse(SIGINT); sigrelse(SIGQUIT)

int sig int flag;
main() {

int sig int();
signal(SIGINT, sig int);

sighold(SIGINT);
while (sig int flag==0) sigpause(SIGINT); //atomically release signal

/* wait for a signal to occur */ // and pause

Restarting of interrupted system calls by signals 4.3BSD
Can only call reentrant functions within signal handlers

int oldmask;

/* SIGQUIT: quit key + core image; SIGINT: interrupt key ~C */
oldmask= sigblock (sigmask(SIGQUIT)|sigmask(SIGINT));

/* block SIGQUIT/INT */

C.S.

sigsetmask(oldmask) /* reset to old mask */

int sig int flag;
main() { int sig int();
signal(SIGINT, sig int);

sigblock(sigmask(SIGINT)); /* sigblock returns mask before */
while (sig int flag==0) sigpause(0); /*wait for signal to occur */
/* sigpause(0) <> sigsetmask + pause as signal can in betw */
/* process signal... */

#include <signal.h> No Qing for non-real time signals!

main() {
int childPid, i;
void SigIntHandler();

sigblock(sigmask(SIGINT));
signal(SIGINT, SigIntHandler);

childPid = fork();

if (childPid > 0) { /* parent */
for (i=0;1 < 10 ; i++) kill(childPid, SIGINT);
printf("Parent has issued %d signals to the child\n", i);

} else { /* child */
sleep(2); /* sleep for 2 secs so that signals overwritten */
while (1) sigpause(0);

}

}
void SigIntHandler(int signo) {

printf("Child : received a signal\n");
}

Executing Signal Handlers in Linux

On signal (either from kernel or another process), ker checks some
conditions (disp, etc) before calling do signal

do signal in kernel while (user) signal handler in user mode
After signal handler run, kernel code executed further

- However, ker stack no longer contains hw context of interrupted
program as Kker stack emptied on user mode

— Also, sig handlers can reenter kernel (syscalls, etc.)

Solution: copy hw context saved in ker stack to user stack of curr
process

— When sig handler terminates, sigreturn syscall automatically invoked
to copy hw context back to kernel stack & restore the user stack

- Sigframe struct pushed on stack has some code for calling sigreturn:
stack has to be executable!!!

pselect

syscall handling

~/csa/os99/udpbcast

Linux Save Structs
* Struct pt regs //scratch regs; IA-32: all!

— Minimal state that needs to be saved, say, on dev
interrupts

- [A-64: 2KB but lots of FP; at 2GBps=> 1microsec
* Ker uses only 4 FP regs => 0.2 microsec
* Struct switch stack // preserved regs: null! for IA-32
- Need not be saved (saved by ker funcs if nec)
— Stack unwinding may be necessary

* Func may save orig preserved reg on stack but when
blocking, saves the curr value in struct

* Struct thread struct //misc thr state managed lazily

- debug regs, FP, ... need a fault mech on ker access

— Ker stack ntr saved in this struct (not lazv!)

/* defines the way registers stored on stack during a system call. */
struct pt regs {

long ebx;

long ecx;

long edx;

long esi;

long edi;

long ebp;

long eax;

int xds;

int xes;

long orig eax; // non-neg =>sig has woken up a INTERRUPTIBLE

long eip; //process that was sleeping on a syscall

int xcs;

long eflags;

long esp; int xss; };

struct thread struct {
unsigned long espO, eip, esp, s, gs;
/* Hardware debugging registers */
unsigned long debugreg[8]; /* %%db0-7 debug regs */
/* fault info */
unsigned long cr2, trap no, error code;
/* floating point info */
union 1387 union i387;
/* virtual 86 mode info */
struct vim86 struct * vin86 info;

unsigned long screen_bitmap;

unsigned long v86flags, vBbmask, saved espO;
/* 10 permissions */
int ioperm; unsigned long io bitmap[IO BITMAP SIZE+1];

Internal Thread interface
* void flush thread(void) in flush_old_exec

* start thread(regs, new eip, new esp) in load elf binary

* int copy thread(int nr, unsigned long clone flags, unsigned long
esp, unsigned long unused, struct task struct * p, struct pt_regs *
regs) in do fork to init child's ker stack with CPU regs except eax

* void exit thread(void) // NULL for x86

* void release thread(struct task struct *dead task) in sys wait4

* switch to(prev,next,last) Why last? Else in schedule():

* A (prev=A, next=B) => B (prev=B, next=C) =>
C (prev=C, next=A) => A (prev=A, next=B)
e Next is B rather than C! Info about C lost!

* C's info needed as C may be scheduled to be run elsewhere on a
SMP this invocation of schedule

* When switch to macro ends, force prev to be C by calling switch to(prev,
next, prev)

#define set fs(x) (current->addr limit = (x))

#define start thread(regs, new eip, new esp) do { \
~asm_ ("movl %0,%%fts ; movl %0,%%gs": :"r" (0)); \
set fs(USER DS); \
regs->xds = USER DS; \

regs->xes = USER DS;
e regs->xss = USER DS;
regs->xcs = USER CS;
regs->eip = new eip;
regs->esp = new _esp;
} while (0)

//If get fs() == USER DS (0x2B), checking is performed; with
// get fs() == KERNEL DS, checking bypassed

void flush thread(void) {
struct task struct *tsk = current;
memset(tsk->thread.debugreg, 0, sizeof(unsigned long)*8);
clear fpu(tsk); /* Forget coprocessor state*/
tsk->used math = 0;

#define savesegment(seg,value) asm volatile("movl %%" #seqg ",
%0":"=m" (*(int *)&(value)))
retval = copy thread(0, clone flags, stack start, stack size, p, regs);
/] first 2 args historical; not needed now!
int copy thread(int nr, unsigned long clone flags, unsigned long esp,
unsigned long unused, struct task struct * p, struct pt regs * regs){
struct pt regs * childregs;
childregs =((struct pt regs *)(THREAD SIZE +(unsigned long)p)) -1;
struct cpy(childregs, regs);
childregs->eax = 0; // return val
childregs->esp = esp;

p->thread.esp = (unsigned long) childregs;
p->thread.esp0 = (unsigned long) (childregs+1);

p->thread.eip = (unsigned long) ret from fork;

savesegment(fs,p->thread.fs);
savesegment(gs,p->thread.gs);

unlazy fpu(current);
struct cpy(&p->thread.i387, ¤t->thread.i387);
return(0); }

Context Switch
* Happens thru calls to schedule(). 550 of them!

In cpu idle, down, sys sigsuspend, do signal,
Sys pause but many in driver code
void cpu idle (void) { /* endless idle loop with no priority at all */
while (1) {
void (*idle)(void) =pm idle;//power mgmt idle func
if (!idle) idle = default idle;
if (!current->need resched) idle();
schedule();
check pgt cache() //frees pages if excess in cache; } }
asmlinkage int sys pause(void) {
current->state = TASK INTERRUPTIBLE;
schedule();
return -ERESTARTNOHAND; }

regs->eax = -EINTR; // from sys sigsuspend
while (1) {
current->state = TASK INTERRUPTIBLE;
schedule();
if (do signal(regs, &saveset)) return -EINTR;
}
...no signal: /* Did we come from a syscall? */ // in do signal
if (regs->orig eax >= 0) {
/* Restart the system call - no handlers present */
if (regs->eax == -ERESTARTNOHAND ||
regs->eax == -ERESTARTSYS ||
regs->eax == -ERESTARTNOINTR) {
regs->eax = regs->o0rig eax;

regs->eip -= 2;}}

need resched

* need resched set on do fork to let child run first to avoid
most of the COW overhead when the child exec()s afterwards

* Also if task's quantum might have expired already, but not
scheduled off yet; thru resched task, poll idle, etc.

static void poll idle (void){ int oldval;
__sti();
/* another CPU has just chosen a thread to run here? */
oldval = xchg(¤t->need resched, -1);
if ('oldval)
asm volatile(
1
"cmpl $-1, %0;"
"rep; nop;" SIX times!

"je 2b;" ::"m" (current->need resched));}

void default idle(void){
if (current cpu data.hlt works ok && !'hlt counter) {

_ cli();
if (current->need resched) sate halt();

else sti();

}
}
#define sti() ~asm volatile ("sti":: :"memory")
#define cli() ~asm__ volatile ("cli":: :"memory")
#define safe halt() @ asm volatile ("sti; hlt": : :"memory")

struct prio array {
int nr active;
unsigned long bitmap[BITMAP SIZE];
list t queue[MAX PRIO];

}; //prio array t

#define switch to(prev,next,last) do { //last is in ebx \
asm volatile("pushl %%esi\n\t" \ //esi, edi,ebp preserved
"pushl %%edi\n\t" \
"pushl %%ebp\n\t" \
"movl %%esp,%0\n\t" /* save ESP to prev->thread.esp */ \
"movl %2,%%esp\n\t" /*restore ESP f. next->thread.esp: new stack!*/\

"movl $1f, %1\n\t" /* save EIP into prev->thread.eip*/ \

"pushl %3\n\t" /* push next->thread.eip */ \
"imp switch to\n" \

"1:\t" "popl %%ebp\n\t" \
"popl %%edi\n\t" \

"popl %%esi\n\t" \

"=m" (prev->thread.esp)(%0),"=m" (prev->thread.eip)(%1)//upd mem\
"m" (next->thread.esp)(%?2),"m" (next->thread.eip)(%3), //read mem \
"a" (prev)(%eax), "d" (next)(%edx)); // saves eax/edx implicitly! \

} while (0) // note: bold chars are embedded comments!!!

 updates

~ switch to()

- The next thread structure with kernel stack pointer
- Thread local storage descriptor for this processor

- fs and gs for prev and next, if needed

- Debug registers, if needed
- I/O bitmaps, if needed
e switch to() then returns upd prev task struct

Process A Process B
Execution Execution
-
Process B
*—o Yields
scheduler tick
~tick() L "

schedule()

schedule()

Time o
Process C Process C Process A
Execution Execution Execution

0 ® ? = O
o Progess G
scheduler_tick() Yields

schedule()

asmlinkage void schedule(void) { switch (prev->state) {

task t *prev, *next; case TASK INTERRUPTIBLE:
runqueue t *rq; if (unlikely(signal pending(prev))){
prio array t *array; prev->state = TASK RUNNING;
list t *queue; break; }

int idx; default: deactivate task(prev, rq);

if (unlikely(in interrupt())) case TASK RUNNING: ;

BUG(); !

need resched: .
- #if CONFIG SMP

rev = current; .
P pick next task:

rq = this rq(); #endif
release kernel lock(prev, . . o .
smp processor id()); if (unlikely(!rg->nr running)) {

prepare arch schedule(prev); #1f CONFIG_SMP

prev->sleep timestamp = jiffies; load_balance(rq, 1);

if (rgq->nr running)
goto pick next task;

H#endif

spin lock irqg(&rg->lock);

next = rq->idle;
rq->expired timestamp = 0;
goto switch tasks;
}
array = rq->active;
if (unlikely(!array->nr active)) {
/* Switch active & expired arrays.*/
rq->active = rq->expired;
rq->expired = array;
array = rg->active;
rq->expired timestamp = O;
}

idx = sched find first bit
(array->bitmap);

queue = array->queue + idx;

next = list entry(queue->next,
task t, run list);

switch tasks:

prefetch(next);
clear tsk need resched(prev);
if (likely(prev !'= next)) {
rq->nr switches++;
rq->curr = next;
prepare arch switch(rq);
prev=context switch(prev, next)
barrier();
rq = this rq();
finish arch switch(rq);
} else spin unlock irq(&rqg->lock);
finish arch schedule(prev);
reacquire kernel lock(current);

if (need resched())

goto need resched;}

static inline void deactivate task(struct task struct *p, runqueue t *rq) {
rg->nr running--;
if (p->state == TASK UNINTERRUPTIBLE) rq->nr uninterruptible++;
dequeue task(p, p->array);
p->array = NULL;
}
static inline void dequeue task(struct task struct *p, prio array t *array) {
array->nr active--;
list del(&p->run list);
if (list empty(array->queue + p->prio))
__clear bit(p->prio, array->bitmap); // no tasks at prio priority
}
static inline int need resched(void){
return unlikely(current->need resched);

}
#define this rq() cpu rg(smp processor id())

static inline task t * context switch(task t *prev, task t *next) {

struct mm struct *mm = next->mm;

struct mm_struct *oldmm = prev->active mm;

if (unlikely(!mm)) { // kernel thread
next->active mm = oldmm; // borrow old AS to avoid flushing tlb
atomic inc(&oldmm->mm count);
enter lazy tlb(oldmm, next, smp processor id()); //

} else
switch mm(oldmm, mm, next, smp processor id());

if (unlikely(!prev->mm)) { //kernel thread
prev->active mm = NULL; // unborrow borrowed AS!
mmdrop(oldmm);

}

/* Here we just switch the register state and the stack. */

switch to(prev, next, prev);

return prev; }

#define in interrupt() ({ int cpu = smp processor id(); \

(local irq count(cpu) + local bh count(cpu) = 0); })

#ifdef CONFIG SMP
#define TRQ STAT(cpu, member) (irq stat[cpu].member)
#else
#define IRQ STAT(cpu, member) ((void)(cpu), irg stat[0O].member)
#endif

/* arch independent irq stat fields */
#define softirq pending(cpu) IRQ STAT((cpu), softirq pending)
#define local irq count(cpu) IRQ STAT((cpu), local irqg count)
#define local bh count(cpu) IRQ STAT((cpu), local bh count)
#define syscall count(cpu) @ IRQ STAT((cpu), syscall count)
#define ksoftirgd task(cpu) @ IRQ STAT((cpu), ksoftirqd task)

Veritying the User Parameters

* All syscall params must be checked before user's req
satistied by kernel

- Mem checks common to almost all syscalls
* Verify that linear addr in UAS with corr perms

- < PAGE OFFSET (above ker AS) a)

- Inside UAS, in mapped region b)

- Time consuming (even corr syscalls penalized!)
e Linux 2.2+: only a) done thru verity area

#define access ok(addr,size) ({ unsigned long flag, sum; \
asm("addl %3,%1 ; sbbl %0,%0; cmpl %1,%4; sbbl $0,%0" \
M=&r" (flag), "=r" (sum):"1" (addr),"g" ((int)(size)),"g" (current->addr limit.seq));

flag; }) //code eq to: addr+size<addr || addr+size >current->addr limit.seg
static inline int verify area(int type, const void * addr, unsigned long size) {

return access ok(tvpe. addr.size) ? 0 : -EFAULT:}

#define get user(x,ptr) // no checking! \

({ int ret gu, val gu; \
switch(sizeof (*(ptr))) { \
case 1: get user x(1, ret gu, val gu,ptr); break;

case 2: get user x(2, ret gu, val gu,ptr); break;

case 4: get user x(4, ret gu, val gu,ptr); break;

default: get user x(X, ret gu, val gu,ptr); break;

} \
(x) = (__typeof (*(ptr)))_val gu; \
__ret gu; \
})
#define get user x(size,ret,x,ptr) \
asm volatile ("call get user " #size \

"=a" (ret),"=d" (x) :"0" (ptr))

— -

#define get user size(x,ptr,size,retval) do { retval = 0;
switch (size) { \
case 1: get user asm(x,ptr,retval,"b","b","=q"); break; \
case 2: get user asm(x,ptr,retval,"w","w","=r"); break; \
case 4: get user asm(x,ptr,retval,"1","","=r"); break; \

default: (x) = get user bad();}} while (0)

#define get user asm(x, addr, err, itype, rtype, ltype) asm volatile (
"1: mov'"itype" %2,%"rtype"1\n" \
"2:\n" \
".section .fixup,\"ax\"\n" \
"3: movl %3,%0\n" \

xor'itype" %"rtype"1l,%"rtype"1\n" \

" jmp 2b\n" \

" previous\n" \
".section ex table,\"a\"\n" \
y .align 4\n" \

" Jlong 1b,3b\n" \

".previous" : "=r"(err), ltype (x) : "m"(_ m(addr)), "i"(-EFAULT), "0"(err))

