Synch

Prof. K. Gopinath
[ISc

Fundamentals

* Pl:y=y+1 || P2:y=y-1 ; initially y=1
— Interleaving model of concurrency
* Only result: y=1
— True concurrency model
* y can be 0,1,2!
- 0: t=y; s=y-1; y=t+1; y=s
- 1: P1 atomically followed by P2 or vice versa
- 2: t=y; s=y-1; y=s; y=t+1;
— Granularity of atomic actions true reason for diff
* P1: t=y; y=t+1 || P2: s=y-1; y=s
— Only one “critical” reference

-y can be 0,1,2

Synch
Two types of synch:
— Mutual Exclusion
— Condition synchronization
Fine-grained synch: using HW primitives
Coarse-grained synch: constructed atomic actions

Properties:

— Mutual Exclusion (safety)
— Absence of deadlock or progress (liveness)
— Absence of unnecessary delay (safety)

* Should depend only on processes trying to enter

- Eventual Entry (liveness)

- Sometimes also worry about “bounded wait”

Terms

Atomic actions; Critical sections; history; trace
Deadlock: no transitions to other states

Livelock: “busy loop”: transitions to other states but does not change
anything

Safety: nothing bad happens
— Eg: partial correctness

Liveness: something good happens eventually
— Eg: termination;

Every property can be formulated in terms of safety and liveness
properties

- total correctness: safety+liveness

Scheduling Policy: Fairness

* Unconditional Fairness: every unconditional atomic action is eventually
executed eg: round robin; Peterson's alg/tie-breaker alg

* Weakly fair: (1) unconditionally fair (2) every conditional atomic action
that is eligible executed eventually, assuming that its guard becomes
true and is not subsequently falsified, except possibly by the process
executing the conditional atomic action

* strongly fair: (1) unconditionally fair (2) every conditional atomic
action that is eligible executed eventually, assuming that its guard is
infinitely often true eg: test&set

continue=true; try=false; weak fairness: may not terminate
Loop: while(continue) { strong fairness: will terminate
try=true; eventually
try=false
}

Stop: <await try --> continue=false>

Mutual Exclusion

P: while{
Entry protocol
Critical section
Exit protocol
Non-critical section

} o=>

bool in1=in2=false;

/| Mutex: ~(inl && in2)

P1: while(1) {
inl=true;
<Critical section;>
in1=false;

<Non-critical section;>

P2: ...

bool in1=in2=false;

/| Mutex: ~(inl && in2)

P1: while(1) { // Mutex && ~inl
<await ~in2 --> inl=true;>
/| Mutex && inl
<Critical section;>
in1 =false;
<Non-critical section;>

/| Mutex && ~inl

P2: ...

<await ~in2 --> inl =true;>:
while (in2); inl=true ? no Mutex
inl =true; while (in2) ? deadlock

<await !lock --> lock=true>

Test & Set

TS(lock, cc) Test & Test & Set

<cc=lock; lock=true>
e Lock:

* Lock: - Repeat
- Repeat - while (lock);
- TS(lock, cc) - TS(lock, cc)
- Until 'cc - Until 'cc

e Unlock:
- lock=talse

e Too much contention
for the bus!

Peterson's alg

* Break deadlock by a tie: let last bool in1=in2=false;
be the one that entered cs last if // Mutex: ~(inl && in2)

both interested _ ,
P1: while(1) { // Mutex && ~inl

bool in1 =in2=false;
/| Mutex: ~(inl && in2)

P1: while(1) { // Mutex && ~inl

inl=true; last=1;
while(in2 && last=1);

/] Mutex && inl

inl=true; last=1; . .
<Critical section;>

<await ~in2 or last=2>

/[Mutex && inl

inl=false;
<Non-critical section;>

// Mutex && ~inl

}
Both P1 and P2

<Critical section;>
inl=false;
<Non-critical section;>

/| Mutex && ~inl

read/write last (multi-writer)

write their own in but read other's

Subtlety in Peterson's alg

. (PC1, PC2, last, in1, in2) [last,in1/2]
Note that if last=1; followed by

inl=true; (0,0 O, 1, 0, 0)
INCORRECT! COMPILEROPTS! (1, 0, 1,0, 0)
(1, 1, 1, 0, 0)
P1: 0 while(1) { (2, 1, 1, 0, 0
1 <Non- Critical section;> (2, 2, 1, 0, 0)
2 last=1; (3, 2, 1, 0, 0) [1,1,0]
3 inl=true; (3 3 2 0 0 [1,1,1]
4 while(in2 && last=1); (3, 4 2,0, 1) [2,1,1]
5 <Critical section;> (3, 5 2,0 1) PC2 blocked
6 inl=false; (4 5 2,1, 1)
} (5 5 2, 1, 1)
Let state of 2 processes be INCORRECT code CORRECT

(PC1, PC2, last, in1, in2)

2-Process Solution (Peterson ‘81)

process p ::
initially - flag[p] Op@ 2

while true do
2:NCS;
1:flag[p] := true;
0: turn := p;
5: await (-flag[q] Oturn = q);
4.CS:;
3:flag[p] := false
od

process g ::

initially - flaglq] 0q@ 2

while true do

2:
: flaglq] := true;

: turn := q;

: await (-flag[p]turn = p);
: CS;

. flag[q] := false

W s 01 O

od

NCS;

Exclusion Property

* Exclusion is a safety property (indicates that
something bad does not happen).

—(p@4 A q@4)
* How to prove safety properties? Invariants.

* An assertion is an invariant if it is true in every
state every time the program runs (i.e., it is
always true).

How to Prove an Invariant

¢ Use known invariants:

invariant I, 1 0]

invariant]

¢ By induction:

(i) I holds initially
(ii) I not falsified by
any statement

execution

invariant I

Proof of Exclusion Property
¢ Objective: Prove = (p@4 Oq@4) (10)

¢ Strategy: Derive other invariants that imply (I0)

! (44 2

* Define an assertion that describes program's “state
when p is in CS.

¢ 1st attempt: p@4 [0 - flaglgl O(turn = q)(I1)

(from await condition)

¢ Is this an invariant? Initially true, not falsified by
statements of p, but falsified by statement 1 of g

when p@4 [(turn = p) holds
¢ Potential invariant is too strong: Weaken it.

What Does “Weaken It” Mean?

New (I1 Reachable
program
states

Statement 1
of process g

In state t,
In state s, p@4 Oturn = p)Oflaglql
p@4 turn = p) holds holds,so (I1) is violated.

Try a Weaker Invariant

* Weaken invariant by adding extra disjunct to the
consequent.

p@4 0 - tflaglqg] O(turn = q) 0q@0 (I1)

* Is this an invariant? Yes!!!
* Similarly, the following is an invariant

q@4 0 - flag[p] O(turn = p) OUp@0 (I2)

Exclusion Proof (Continued)

* Two more simple invariants are required:
p@10,3..5} U tlag[p] (I3)
q@10,3..5}+ U tlaglq] (I14)

* Finally, we want to prove that (I1), (I2), (I3), and
(I4) together imply (10).

¢ Strategy: Use (I1) through (I4) to prove:
p@4 Og@4 [J false (which implies (I0))

Proof of (10)

p@4 Uq@4
0 p©@4 Oqg@4 Oflaglp] dtlaglql,

by (I3) and (I4)

0 (turn = p) O(turn = q), by (I1) and (I12)
[false, predicate calculus

This concludes the proof of (10).

Progress Proof

* Progress is a liveness property (indicates that
something good eventually happens).

* Progress properties are proved using “leads-to”

assertions.

¢ A leads-to B iff whenever A holds, either B holds,
or B will hold in the future.

* How can we prove leads-to assertions?

Proving A leads-to B

1) From other leads-to assertions (e.g., using
transitivity). Example:

A leads-to C, C leads-to B

A leads-to B
2) From program text and fairness.
Example:

4:x .= 0; P@4 leads-to p@>d

Proving A leads-to B

3) Use a well-founded ranking.

R.: S—)T

S: the states of the program
T: an ordered set with no infinite chains such that

Example: Non-negative integers.

(q@5 O(-1f

Progress Proof
* First, we need the following invariant:

pP@12,5} Ug@12,5} O

ag

ag

(p@2 U q@2))

* This assertion shows that, unless both processes
are in their nonCS, some statement is enabled.
That is, there is no deadlock.

q] Oturn = q)) O

pl Oturn = p)) O
15)

Progress Proof

* To prove progress for p, prove
p@1 leads-to p@4 (LO)
(progress for exit section is trivial).

e Proof overview:

p@1 leads-to p@>5, prog. text and fairness
p@> leads-to p@4 (L1)

¢ (LO) follows from above and transitivity.

Proof of (I1.1)

* Clearly, it suffices to prove
p@>5 leads-to -p@>.

* Define well-founded ranking R as follows:
(Note: Could use “prog. text and fairness” instead.)

0 if —|p@5
1 if p@b Oturn=q Og@>5
g.pc+2 if p@>db O(turn=p O-q@>5)

e
|
A

(g.pc “ program counter of process q”)

Proof of (I1.1)

1) p@old R=10R=qg.pc+2
0 R>0

We show that, if R > 0, then each statement
execution decreases R. (Note that (I5) implies
that while p@5 holds, there is always an enabled
statement.)

First, check statements of process p. R > 0
implies p@5. Statement 5 decreases R to zero.

Proof of (I1.1)

Check statements of process q.
Statements 1, 2, 3, & 4:

R = q.pc + 2 before these statements are
executed. These statements do not affect turn or
q@5, but do decrease g.pc. Therefore, they all
decrease R.

Statement O:

If R > 0 holds before, then p@5 Og@O0 holds, so
R = 2. After execution, p@5 Uturn = q Ug@5
holdsTh erefore, R = 1 holds afterwards.

Proof of (I1.1)

Statement 5:
If R > 0 before, then

p@>5 Uq@o
0 p@>5 Oq@>5 Oflaglpl, by (I3)
O p@b Og@d O (turn=p),

statement 5 of g is enabled
[0 R=5+42=7

After execution, p@5 Og@4 O(turn=p), so
R =4 + 2 = 6. This concludes proot of (LO).

n-process solution

Use 2-process solution as
basis

Entry protocol loops thru
n-1 stages

Each stage uses a 2-
process solution to
determine winner

in[i] indicates which
stage P[i] is executing

last[j] indicates which
process was last to begin
stage j

Atmost n-i processes past i™
stage

Solution is livelock-free, avoids
unnecessary delay, ensures
eventual entry

O(n?)
Bounded numbers

- No large #

Note perf bug; should be
forj =1 ton-1

int in[l:n] = ([n] 0), last[l:n] = ([n] 0);

process CS[1 = 1 to n] {
while (true) {
for [=1 to n] { /* entry protocol */
/* remember process i is in stage j and is last */
last[j] = i; in[i] = §;
for [k =1 ton st 1 = k] {
/* wait if process k is in higher numbered stage
and process i was the last to enter stage j */

while (in[k] >= in[i] and last[j] == 1) skip;
}
}
critical section;
in[i] = 0; /* exit protocol */

noncritical section;

}

Figure 3.7 The n-process tie-breaker algorithm.

Get a ticket # larger than any Ticket Alg

previous; wait till ticket # is next

TICKET Invariant: P[i] incs => Froblem: unbounded

numbers (next, number)

* Need fetch&add for a fine
— All non-0 values of turn unique: grained solution

foralli, j: 1<=i,j<=n,j!=1i:
turn[i] =0 or turnl[i] != turn[j]

- turn[i]=next &

* FA(var, incr):

| | <temp=var; var+:=1nct;
Bakery algorithm: instead of above ;eturn temp>

ticket alg, sets its number 1 larger
than any existing & waits till it is

smallest — Critical section entry

* Also thru test&set

BAKERY Invariant: P[i] in cs => - turn[i]=number
turn[i] !'=0 & for all j: 1<=j<=n,

S : , , — Number+=1
j!=1: turn[j] =0 or turnl[i] <turn|j]

— Critical section exit

int number = 1, next = 1, turn[l:n] = ([n] 0);
predicate TICKET is a global invariant (see text)

process C8[1 = 1 to n] {
wiile (true) {

(turn[i] = number; number = number + 1;)
(await (turn[i] == next);)

critical section;

(next = next + 1;)

noncritical section;

Figure 3.8 The ticket algonthm: Coarse-grained solution.

int number = 1, next = 1, turn(l:n] = ([n] 0);

process C5[1 = 1 to n] {
wille (true) {
turn[i] = FA(number,1); [* entry protocol */
while (turn[i] != next) skip;
critical section;
next = next t+ 1; /* exit protocol */
nonctitical section:

Figure 39 The ticket algonthm: Fine-grained solution.

e eurn{lal = ([n] @):
predicate BAKERY is a global invariant — see text

process CS[1 =1 to n] {

while (true) f{
(turn[i] = max(turn[l:n]) + 1;)
for [7=1ton st 3 1= 1]

{ await (turn[j] == 0 or turn[1] < turn[j]j;)

critical section;
tirnfi] = {;
noncitical section;

Figure 3.10 The bakery algonthm: Goarse-grained solution.

Fine Grained 2-process Bakery

turnl =turn2=0

P1:

while (1) {
turnl=turn2+1
while (turn2!=0 & turnl>turn2);
critical section

turn1=0
non-critical section
}
P2:...
Prob: both P1 & P2 in c.s with init.

Soln: tie break: set condition to
turn2>=turnl in P2

Prob: race condition
P1 reads turn2=0 => cs

P2 reads turnl1=0, sets turn2=1
=> CS

Soln: each process sets turn to any

value >=1
while (1) {

turnl=1; turnl=turn2+1

while (turn2!=0&turnl>turn2);
critical section
turnl =0

non-critical section

Symmetric Bakery
* P1incs: (turnl1>0) & (turn2=0 or turnl <=turn2)

* P2 incs: (turn2>0) & (turnl=0 or turn2< turnl)
* Use lexicographic order to make it symmetric

- turnl >turn2 in P1 --> (turnl,1) > (turn2,1)
- turn2>=turnl in P2 --> (turn2,2) > (turnl,1)

* n-process solution: Global turn[1:n] = 0

* BAKERY: P[i] in cs --> forall j: 1<=j<=n, j<>i: turn[j]=0
or turn[i] <turn[j] or (turn[i]=turn[j] & i<j)

P[i]: while (1) {
turn[i]=1; turn[i]= max(turn[1..n])+1;
forall j:1..n st i<>j while ((turn[j]<>0) & (turn[i],i) > (turnl[j], j));
cs; turn[i] =0; non-cs

} // Note that there is no guarantee that 2 processes do not get same #

i+ & i e ¢ O B e] == o 1 R 4

process CS[1 =1 to n] {
while (true) {
turn(i] = 1; turn[i] = max(turn[l:n]) + 1;
for [7=1tomn st 7 !1=1]
while (turn[j] != 0 and
(turn[i],1) > (turn[j],])) skip;
critical section;
turn(1i] = 0;
noncritical section:
}
J

Figure 3.11 Bakery algorithm: Fine-grained solution,

Properties of Bakery

* requires that a process be able to read a word of
memory while another process is writing it

— variables read by multiple processes, but written by only a
single process: good for dcs!

* bakery alg works regardless of what value is obtained
by a read that overlaps a write

— only the write must be performed correctly. The read may
return any arbitrary value (a safe register)

- implements mutual exclusion without relying on any
lower-level mutual exclusion

- reading and writing need not be atomic ops

— Before this algorithm, it was believed that mutual exclusion problem
unsolvable without using lower-level mutual exclusion (infinite
regress!!!)

Lamport's Bakery alg for n processes

R

Process P
do{

choosing|i] = true
D number[i] = max(number[0], number[1],... number[n- 1])+ 1;
choosing[i] = false

for(j=0;j< nj++){
1.0 Whileg(choosing[j]);

while((number| j]!= 0) & & ((number[j], J) < (number|[i],1)));
C critical section
E number|i] = G;

remainder section

} while(1)

tl
t2

Structure of the algorithm

R - code prior to using Bakery algorithm

T - creating of a ticket and awaiting for permission to
enter critical section
D - creation of a number (first part of a ticket)
T-D - awaiting for the permission to enter critical section

C - critical section itself
E - code executed upon exit from critical section

Basic Lemma

Lemma 1:

Foranyi=j, It PisinCand P isin Cu (T-D), then

(number [i],1)< (number|],])

Lemma 1 - Proof

Consider time 's': R is in C (critical section)
» number[i] has been selected and still exists
» number[j] has been selected and still exists

» Exists time point 't1'<'s', where R performs a check
(choosing[j]==0) and passes it

» Exists time point 't2', t1<t2<s, where R performs a check
(number[j]!=0) and (number[i],i) <(number[jl,j)
Since at time ‘t1’ (choosing[j]==0), either
» CASE A: number[j] was chosen after ‘t1’ but before ‘s’
» CASE B: number[j] was chosen before ‘t1’

Lemma 1 — Proof — CASE A

Since at time ‘t1’, P already checks for permission to
enter critical sect1on computation of number[1] was
computed before that and persists until ‘s

Thus, at the time P, starts to compute its number(j], it
has to take into account of ‘max’ value of number][i].
So it creates a value which is greater then number[i] at
least by 1, and it persists until time ‘s’

That is (number[i],i) <(number[j]l,j) at time ‘S’

Lemma 1 — Proof — CASE B

Both number[i] and number[j] were computed before
‘t1’, thus also before time ‘t2’ and persisted until ‘s’

At time ‘t2’, R performed check (number[j]!=0) &
(number[j],j) <(number[i],i), which failed, since P, is
in C at time ‘s’

number[j] was chosen before ‘t2’ and persisted, thus
first part of the check could not fail, also 1’ and 4’ are
different, so (number[i],i) <(number[j],j) at time ‘s’

Lemma 2 — mutual exclusion:

Bakery Algorithm satisfies mutual exclusion propert

Assume in contradiction that there are two different
processes that have entered critical section

Then conditions of Lemma 1 are true for both
processes symmetrically, that is
» (numberl[i],i) <(number[j],j]) and

» (number[jl,j) <(number[i],i):

» a contradiction

We conclude that mutual exclusion is satisfied

Lemma 3 — progress

Bakery Algorithm guarantees progress

Suppose progress is not guaranteed

Then eventually a point is reached after which all
processes are in T or R

By the code, all the processes in T eventually
complete D and reach T-D

Then the process with the lowest (number,ID) pair is
not blocked from reaching C, that is enters critical
section

We conclude that Bakery algorithm satisfies progress

Lemma 4 — fairness
Bakery Algorithm guarantees lockout-freedom

Consider a particular process P| in T and suppose it
never reaches C

The process eventually completes D and reaches T-D

After that any new process that enters D perceives
number[i] and chooses a higher number

Thus, since R does not reach C, none of these new
processes reach C either

But by Lemma 3 there must be continuing progress,
that is infinitely many entries to C

Contradiction:Pi blocks the entry to C

Remark on Fairness

A process that obtained a ticket (number[k],k) will wait at

most for (n-1) turns, when other processes will enter the
critical section

For example if all the processes obtained their tickets at the
same time they will look like (q,1),(q,2)...(q,n)

In which case process inill wait for processes
Pl Pn_lto complete the critical section

Bakery alg satisfies “FIFO after a wait-free doorway” fairness

property: if Pi completes doorway before Pj enters T, then Pj
cannot enter C before Pi. However, it is not FIFO based on
time of entry, etc.

RMW shared variables

* Test&set * Compare & swap
f(test&set,v)=(v,1) f(CAS(u,v),w)

* Swap (w,v) if u=w
f(swap(u),v)=(v,u) (w,w) otherwise

e Fetch& add * LoadLinked & Store
f(fetch&add(u),v) = Conditional

(v,v+u)

[.oad-linked/Store-Conditional

Exchange what is in R4 with (R1)
Try:MOV R4, R3 //R3=R4
LL (R1), R2
SC R3, (R1) //if no mem op in betw, SC returns 1 else 0 in R3
BEQZ R3, Try
MOV R2, R4

Incr a memory value atomically:
Try:LL (R1), R2

INCR R2, R3

SC R3, (R1)

BEQZ R3, Try

* 2 meanings: Atomicity
- no other action in between (typ in OS)

— either prev state or new state (typ in DB) on failure or visibility
of state due to some action

* Interrupts most common reason for lack of atomicity on a uniprocessor
* Some atomicity (& security!) problems

- Setuid prog (mknod + chown) vs mkdir: on a heavily loaded system:
(rm foo; In /etc/passwd foo) before chown

- read/write; pread/pwrite; append to a file (Iseek + write)
- open with O CREAT|O EXCL : (open + creat)

- dup2 (fd, fd2) when fd2 open
(close (fd2) + fentl(td, F DUPFD, {d2))

* int dup(int fd) returns lowest numbered available fd; -1 on error

* int dup(int fd, int fd2) returns copy of fd in fd2; closes fd2 if already open; if
fd equals fd2, returns fd2 without closing it

- pselect: signals & select

Old Unix ways of locking (using link)

#define LOCKFILE "seqno.lock"
#include <sys/errno.h>
extern int errno;

my_lock() {
int tempifd;

char tempfile[30];
sprintf(tempfile, "LCK%d", getpid());

/* Create a temporary file, then close it. If the temporary file already exists,
the creat() will just truncate it to 0-length.*/

if ((tempfd = creat(tempfile, 0444)) < 0) err sys("can't creat temp file");
close(tempifd);

/ * Now try to rename temporary file to the lock file. This will fail if the lock file
already exists (i.e., if some other process already has a lock). */

while (link(tempfile, LOCKFILE) < 0) {
if (errno !'= EEXIST) err sys("link error");
sleep(1);

}

if (unlink(tempfile) < 0) err sys("unlink error for tempfile");

}
my_unlock() {... unlink(LOCKFILE) ...}

Other “Unix” locking

Note that creat alone cannot be used

— Creat does not fail if the file EEXISTs (truncs it)
— Also cannot check if file exists and then creat it
* Race condition: if((fd=open(file, 0))<0) /*race here*/
fd=creat(file, 0644) /*rw-r—r-- */

create the lock file, using open() with both O CREAT (create file if it
doesn't exist) and O EXCL (error if create and file already exists). If this
fails, some other process has the lock.

Try to create a temporary file, with all write permissions turned off. If
the temporary file already exists, the creat() will fail. But: does not
work if one of the processes is root!

Other Probs: crashes do not release locks; how long to wait to retry; no
notification to waiters; with busy waiting, priority inversion possible

Concurrency & Locking at Various Levels
* At HW level

— Instruction level
e At kernel level

- Between HW events and kernel code
* Due to Interrupts (interrupt handler and kernel code)
- Between 2 segments of kernel code

* Due to true concurrency (SMP)

* Due to interleaved concurrency (2 procs coroutining or two
kernel threads)

* At thread level inside a process
* Across processes on a single machine

* Across multiple machines: at HW/kernel/appl level

Interrupts & Kernel code

Interrupts (or process scheduling) can occur anytime

Interrupt handler can also call brelse just like kcode

- However, interrupt handler should not block

- Otherwise, the process on whose (kernel) stack the interrupt
handler runs blocks

Can expose data structures in an inconsistent state
— List manipulation requires multiple steps
— Interrupt can expose intermediate state

Interrupt handler can manipulate linked lists that kernel code
could also be manipulating

— Need to raise “processor execution level” to mask interrupts (or
scheduling)

— Check & sleep (or test & set) should be atomic

Sleep and wakeup: Producer-Consumer problem

#include "prototypes.h"
#define N 100
int count = 0;

void producer(void) {

Int item;
while (TRUE) {

produce item(&item);

if (count == N) sleep();

enter item(item);
count = count + 1;

if (count == 1)
wakeup(consumer);

void consumer(void) {

int item;

while (TRUE) {
if (count == 0) sleep();
remove item(&item);
count = count - 1;

if (count == N -1)
wakeup(producer);

consume item(item);

}
}

Race problem if just before sleep,
consumer swapped out and
producer signals

Semaphores

< await s>0; s -=1 >

* Busy wait solution
down(s) or wait(s): while(s<=0); s -:=1
up(s) or signal(s): s +=1

* Better:

wait(s): s.val -=1;
if (s.val<0) add (this, s.list); sleep

signal(s): s.val +=1;

if (s.val<=0) p=remove(s.list); wakeup(p)

Semaphores: Solving Producer-Consumer problem

semaphore mutex = 1;
semaphore empty = N;
semaphore full = 0;

void producer(void) {

int item;
while (TRUE) {

produce item(&item);

down(&empty); ...l
down(&mutex); ...11
enter item(item);
up(&mutex);
up(&full);

vold consumer(void)-{
int item;
while (TRUE) {
down(&full);
down(&mutex);
remove item(&item);
up(&mutex);
up(&empty);
consume item(item);
}
}

easily can deadlock if slightly
incorrect (eg: exch I & II)

initsem(semaphore *sem, intval) { ¢ Mutex thru Semaphore

*sem = val semaphore sem;
} initsem(&sem, 1);
void P(semaphore *sem) { P(&sem);
*Sem —— 1 . use resource
. V(&sem);
while (*sem <0) sleep ()
} * Event-wait

void V(Semaphore *sem) { semaphore event;

initsem(&event, 0);
*sem += 1; ()
P(&event);

if (*sem<=0) wakeup thread |
blocked on sem event processing

V(&event);

}

boolean t CP(semaphore *sem) { * Countable Resources

, semaphore counter;
if (*sem>0) {*sem -= 1; return

(TRUE) } else return(FALSE) initsem(&counter, count);
1 P(&counter); use resource; V(&counter)

Have we solved the problem?

P() and V() must be executed atomically
In uniprocessor system may disable interrupts

In multi-processor system, use hardware
synchronization primitives

- TS, FAA, etc...
Involves some limited amount of busy waiting

Event Counters:
Read(E): return curr val of E
Advance(E): atomically incr E by 1
Await(E,v): Wait until E >=v
event_counter in = 0; void consumer(void) {
event counter out = O;

int item, sequence = 0;
void producer(void) { while (TRUE) {

int item, sequence = 0;
while (TRUE) {

produce item(&item);

sequence = sequence+1;
await(in, sequence);

remove item(&item);
sequence = sequence + 1;

| advance(&out);
await(out, sequence - N);

, , consume item(item);
enter item(item); -

advance(&in);

monitor ProducerConsumer {

condition full, empty; integer count;
void enter() {

if (count = N) wait(full);

enter item;

count := count + 1;

if (count = 1) signal(empty);
}

void remove() {

if (count = 0) wait(empty);
remove item;
count := count - 1;
if (count = N - 1) signal(full);
}
count := 0;

}

Monitors

void producer() {
while (true) {

produce item;

ProducerConsumer.enter,

}
}

void consumer() {

while (true) {

ProducerConsumer.remove;

consume item; —
- Condition q

S

}
}

ta

Ent ueue

Scheduling Issues

* P does x.signal() =>Q may need to be scheduled

— P waits till the newly scheduled Q leaves monitor or waits
for another condition

* Penalises the signaller!

- Q waits until P leaves monitor or waits for another
condition

* Used in Java: all locks dropped on wait and regained
before returning from wait

- Has notify and notifyAll
* Prob: Q's invariant may no longer be true!

- Concurrent Pascal: compromise

* P signals only once & exits the monitor; Q starts

Java Monitors

void wait(); Enter a monitor's wait set until notified by

another thread

void wait(long timeout); Enter a monitor's wait set until
notified by another thread or timeout milliseconds elapses

void wait(long timeout, int nanos); Enter a monitor's wait
set until notified by another thread or timeout milliseconds
plus nanos nanoseconds elapses

void notify(); Wake up one thread waiting in the monitor's

wait set. (If no thread

s are waiting, do nothing.)

void notifyAll(); Wake up all threads waiting in the monitor's

wait set. (If no thread

s are waiting, do nothing.)

Java (contd)

* Each Java monitor has a single nameless anonymous
condition variable on which a thread can wait() or signal one
waiting thread with notify() or signal all waiting threads with

notifyAll().

* This nameless condition variable corresponds to a lock on the
object that must be obtained whenever a thread calls a
synchronized method in the object.

- Only inside a synchronized method may wait(), notify(),
and notifyAll() be called.

* Methods that are static can also be synchronized. There is a
lock associated with the class that must be obtained when a
static synchronized method is called.

Simulation of a monitor with semaphores

typedef int semaphore;
semaphore mutex = 1;

void enter monitor(void) {

down(mutex);

}

void leave_normally(void) {
up(mutex);

}

void leave with signal(semaphore c) {

/* signal on ¢ & exit monitor */
up(c);

}

void wait(semaphore c) {
up(mutex);
down(c);

1

Message Passing: Mailboxes, Ports, CSP
Send/Receive; Blocking/non-blocking

vold consumer(void){

tvpedef int MSIZE]; L :
ypedef int message[] int item, i; message m;

void producer(void){

for (1 =0;1i<N;i++)

int item; send(producer, &m);

message m; while (TRUE) {

while (TRUE) { receive(producer, &m);
produce item(&item); extract item(&m, & item);
receive(consumer, &m); send(producer, &m);
bulid message(&m, item); consumer item(item);
send(consumer, &m); }

} }

Problems with Semaphores

* Too complex?

— Needs low-level atomic op to construct, blocking & unblocking
involve context switches, manipulates scheduler and sleep Qs

* Good for resources held for long times, not for short
* Good as V only wakes up if someone can run

* But this can result in convoys
— Low priority process P1 that has locked an imp lock (L) preempted
by P2 which then waits for L

* Imp lock: Often log lock in txnal systems
* P3 also needs L, P4 also, ... all wait
- P1 scheduled again (FIFO) & unlocks L
- P2 gets lock (P1 preempted), P2 uses lock, then P3, ...
- For next upd, P2 goes back to Q again, then P3, P4,...
- Lock-unlock: 100's of insts; lock-wait-dispatch-unlock: 1000's

Active Entities

User level: multiple processes running at same time (Unix) or one
process at any time (DOS) or coop multi-tasking (Win3.1)

Kernel level: only one ker thread active even with multiple syscalls,
exceptions, interrupts: only one running at any time with rest blocked
or (Linux 2.x) spinning

— Or fully pre-emptible kernel (Solaris)

Processes: "classical" Unix abstraction

- single addr space, single thread
- not good enough for TP monitors, db servers

Threads: user/kernel or LWPs: Solaris & Unixware: m:n model

SYNCH: not needed for non-preemptive kernels except for blocking: eg:
read from file to buffer, buffer needs to be locked for reads (lock,
wanted flags)

— interrupts: raise ipl or block all interrupts
— MP/RT: need new model

Creating Processes in Unix

* Fork+exec: start new activity executing new code or fork
alone: to do diff parts of the same code (servers forking, MP
code)

* id 0 swapper; id1 init; id 2 pagedaemon

* pid _t get{p,pptid; {u,g}id t get{u,eu,g,eg}id; int setuid(uid t
uid); int setr{e,r}uid(uid t ruid, uid t euid)

- real ID: ID of the calling process
- effective ID: set ID bit on the file being executed

— May need something simpler (esp in parallel prog)
* Threads

- Different model: combines fork+exec in one call

- int pthread create(pthread t * thread, pthread attr t * attr, void *
(*start_routine)(void *), void * arg)

Multiprogramming

* Multiprogramming: multiple jobs (processes) in the
system

— Interleaved (time sliced) on a single CPU OR
— Concurrently executed on multiple CPUs
- Both of the above
* Why multiprogramming?
— Responsiveness, utilization, concurrency
* Why not?
— Overhead, complexity

- Some embedded systems do not have multiple processes
or fixed # (may have multiple threads)

e Multi-user?

- IBM's CMS: no multi-user
— Win NT (non-server): similar

The cost of multiprogramming

* Switching overhead
— Saving/restoring context wastes CPU cycles

* Degrades performance

- Resource contention (memory, block buffers,...)
— Cache/TLB misses

* Complexity

— Synchronization, concurrency control, deadlock
avoidance/prevention

Process Management

fork, exec (heavy weight), clone (threads)

Process identity

— PID, credentials (user ID, group ID), personality (for emulation
libraries)

Process environment
— Command line arguments; shell variables

Context
— Scheduling context (e.g., registers)

— Accounting info, open file table, file system context, signal handler
table, address space info

Same PCB structure for all process types
- Thread shares some of data structures of parent
- Each PCB is just a series of pointers into kernel tables

Process control block (PCB)

PCB kernel |user CPU

state
I PSW
memory N text -
. B IR

files W i
accounting \ PC
priority heap SP
user \ general
CPU registers) fe”;’sct’:ffs
storage - slac

* pid t fork(void):
- returns O in child and f()I‘k
— returns pid of child in parent
— returns -1 on error

* Old impl: copy parent's data,heap, stack; New: copy on write
(COW)

— Child inherits u/gid, eu/gid, seuid/seguid flags; cwd, root dir;
umask, signal mask/dispositions; all open fds, close-on-exec flag for
all open fds; env, attached shared mem segments, resource limits

- Before exec, child can redirect stdin/out; close fd's inherited but not
needed; change uid/process grp; reset signal handlers

- Diffs: return val; pid/ppid; file locks; pending alarms/signals
cleared; child values for user/sys time

* Vfork: child & parent execute in same addr space

— Parent blocks until child execs or exits (eg: csh)

Execlp + build args-> execvp; execvp+ try with path ->

execv EX ec
— P: path has to be looked up (pathify!)

- int execlp(const char *file, const char *arg, ...)
- int execvp(const char *file, char *const argv[])
- int execv(const char *path, char *const argv[])
Execl + build args-> execv; Execle + build args-> execve
- L: make a list of args (listify!)
- int execl(const char *path, const char *arg, ...)

- int execve(const char *path, char *const argv[], char *const
envpl[]);

execv + use environ -> execve
- E: add explicit env (envify!)
12v(v sticks), p2null, add e explicitly!

execlp execl execle
ibuild argv l build argv ibuild argv
€XeCvp > execv > execve
try each use
with PATH environ

prefix

Death

* Exit (Clib call) or exit (syscall)
— Parent dies before child: parent of child=>init

— Child before: SIGCHLD signal (default disp: IGN)

— Parent can wait for child (any or specific)
* Pid_t wait(int * stat_loc)
* Pid t waitpid(pid t pid, int * stat loc, int options)
* Till parent waits, a terminated child becomes a zombie

* When a process inherited by init terminates, init does an implicit
wait to fetch termination status: no zombie

// int pipe(int fd[2]) returns 2 fds, fd[0] for reading, fd[1] for

// writing with fd[0] connected to fd[1] chi S rOCESS]rfd
int main(void){ = pipe |
int n, td[2]; pid t pid;
char line[MAXLINE]; parent < child

if (pipe(fd) < 0) err sys("pipe error"); HJ pipe

if ((pid = fork()) < 0) err sys("fork error");

else if (pid > 0) { /* parent */
close(fd[0]);
write(fd[1], "hello world\n", 12);
} else { /* child */
close(fd[1]);

n = read(fd[0], line, MAXLINE);
write(STDOUT FILENO, line, n);

}
exit(0);

Outline of shell ~ *ork0==04
while(read(stdin,buffer,nchar)){ dup2(td[1], stdout);

ampr= “& in cmd” close(td[1]);
close(fd[0]);

execlp(cmdl, cmdl, 0)

}
dup2(fd[0], stdin);

if cmd cd, etc: execute directly
if(fork()==0) {
if (redirect output) {
fd=creat(newtfile, fmask)
close(stdout); dup(fd); //use close(td[0]);
close(fd) // dup2(fd,stdoury ~ Crosetdl1l);
} }
...redirect input and err execve(cmd2, cmd2, 0)

if (pipe) { ’
pipe(fd) //creates 2 fds, fd[0] if ('lampr) retid=wait(&status)

// for R and fd[1]1W 7

Process Tree

* Init reads /etc/inittab # Run gettys in standard runlevels

1:2345:respawn:/sbin/mingetty ttyl

* Opens tty 2:2345:respawn:/sbin/mingetty tty2
~ Fd 0,1,2 set to dev 3:2345:respawn:/sb%n/m%ngetty tty3

. . 4:2345:respawn:/sbin/mingetty tty4

- Login printed 5:2345:respawn:/sbin/mingetty tty5

— Read user name 6:2345:respawn:/sbin/mingetty tty6

Initial env set (-p: add to existing env; envp: TERM, etc,)
uid, gid=0
execle(“/bin/login”, “login”, “-p”, username, (char*)0, envp)

Getpwname (get password file entry); getpass - get a password; use
crypt/md5 to validate pwd

Fail: login calls exit(1);noticed by init; respawn action

Success: chdir; chown for terminal device; setgid; initgroups; initenv
(HOME, SHELL, USER, PATH, ...)

Setuid; then execl(“/bin/sh”, “-sh”, 0) (2" arg: login shell)

init forks one
per tty

»

Jfork 4

init

¢GX6C

getty

iexec

login

init

|
\ thru getty/login

login she

1

ternm

i fds 0,1,2

n dev dr

lver

: RS-232 cnxn

fork/exec

o of /bin/sh
1nit that executes

init

| /etc/rc script

L 4

\ . .
inetd I thru inetd, telnetd, login

y fork telnet req login shell
inetd y fds 0,1,2

i exec term dev driver
telnetd : netw cnxn

Network Logins

* Terminal device driver thru, say, RS232
— Shell (fd 0,1,2): user level

- Kernel level:

* Line terminal disc (echo chars, assemble chars to lines, bs, C-u,
gen SIGINT/SIGQUIT, C-S, C-Q, newline (CR+LF),...)

* terminal device driver
* Network login: similar to terminal login
— init, inetd, telnetd/sshd, login
- Pseudo-terminal device driver

— Netw connection thru telnetd/sshd server and telnet/ssh
client

fork
rlogind »login shell
exec, exec

stdout/errl] stdin

KERNEL |
TCP/IP term disc
netw dev driver pty master pty slave

| o o

