Modeling and Simulation Assignment 4 Due Date: 28th Nov, 2005

November 14, 2005

- 1. Consider the simplified model of the coffee board. The customers arrive with an interarrival time distribution $expo(\lambda_a)$ and stand in a queue. The coffee board services each customer one at a time in a first come first serve basis in $expo(\lambda_s)$ distributed time.
 - (a) Breifly describe with a flow chart how will you simulate such a system for the time interval [0,T].
 - (b) Let N(t) be the number of customers in the system at time t also let W_i be the waiting time for the *i*th customer before he leaves the system. Simulate the system for T = 20min given that $\lambda_a = 0.2min^{-1}$ and $\lambda_s = 0.25min^{-1}$. Ploat N(t) versus t. Also tabulate W_i .
 - (c) Simulate the system for T = 480min. Let T_j be the total time in which the system has exactly j customers. Tabulate T_j . Compute $\tilde{N} = \frac{1}{T} \sum_j jT_j$. Also report $\tilde{w} = \frac{1}{N} \sum_i W_i$ where N is the total number of customers. Report $\eta = \frac{T_0}{T}$, the fraction of time the coffee board is idle.
 - (d) Redo the previous question 10,000 times and plot the histogram of N(t) = n. Fit an appropriate distribution.
 - (e) Redo part c for various values of k = (0.2, 0.5, 1, 1.5) where $\lambda_s = 0.2k$. Also plot η versus k.
 - (f) If you are to give the best service what k will you choose. 30 marks
- 2. Let the service time of each customer be $N(\mu, \sigma^2)$. Let $\sigma^2 = \frac{r}{\mu^2}$.
 - (a) Simulate the coffee board with T = 480min with an exponential interarrival time with rate $\lambda_a = 0.2min^{-1}$. Experiment with different values of μ and plot η versus μ . Assume r = 1. Suggest suitable values of μ .
 - (b) Using your suggested value of μ experiment with r. Study the effect of r on \tilde{N} . 20 marks

3. Bholu wanted to open a coffee shop. The customers arrive with an interarrival time exponentially distributed as $\lambda_a = \frac{1}{30}min^{-1}$. He has been approached by both Bunty and Bubly for a position as the coffee shop attendent. Given that Bholu can hire only one person who should Bholu hire? It is known that Bunty has service time which is distributed as $N(\mu, \sigma^2)$, where $\mu = 20min$ while $\sigma = 15min$. It is also known that Bubly has service time which is distributed as $N(\mu, \sigma^2)$, where $\mu = 24min$ while $\sigma = 2min$. Justify your answer with simulation results. 20 marks