TWO-WAY FINITE AUTOMATA

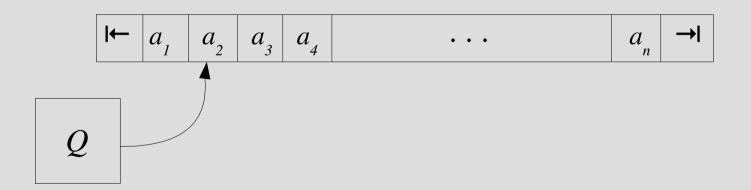
K VAMSI KRISHNA KOTESWARA RAO VEMU

CONTENTS

- Introduction
- Formal Definition
- Example
- Equivalence with FA
- Constructing DFA

Introduction

Two-way FA are similar to finite automata except that they can read the input string in either direction.



Formal Definition

- $M = (Q, \Sigma, \longleftarrow, \rightarrow l, \delta, s, t, r)$
 - Q is a finite set (the *states*)
 - \sum is a finite set (the *input alphabet*)
 - \vdash is the *left endmarker*, \vdash ∉ \sum
 - \rightarrow is the *right endmarker*, \rightarrow $\notin \Sigma$
 - δ : $Q \times (\Sigma \cup \{ \vdash, \rightarrow I \})$ → (Q ×{L,R}) is the *transition* function
 - $-s \in Q$ is the start state
 - $-t \in Q$ is the accept state
 - $-r \in Q$ is the reject state, $r \neq t$

Formal Definition (Contd...)

- for all states q
 - $-\delta(q, \vdash) = (u, R)$ for some $u \in Q$,
 - $-\delta(q, \rightarrow l) = (v, L)$ for some $v \in Q$
- for all symbols $b \in \Sigma \cup \{ \not \leftarrow \}$
 - $-\delta(t,b) = (t,R)$
 - $-\delta(t, \rightarrow I) = (t, L)$
 - $-\delta(r, b) = (r, R)$
 - $-\delta(r, \rightarrow I) = (r, L)$

Formal Definition(Contd...)

- Let $a_0 a_1 a_2 \dots a_n a_{n+1} = \vdash x \rightarrow \vdash$ for any input x
- A *configuration* of the machine on input x is a pair (q,i) such that $q \in Q$ and $0 \le i \le n+1$
- The start configuration is given as (s, 0)
- The *next configuration* relation (denoted with \rightarrow_x^{l})

$$-\delta(p, a_i) = (q, L) \Rightarrow (p, i) \rightarrow_x^{l} (q, i-1)$$

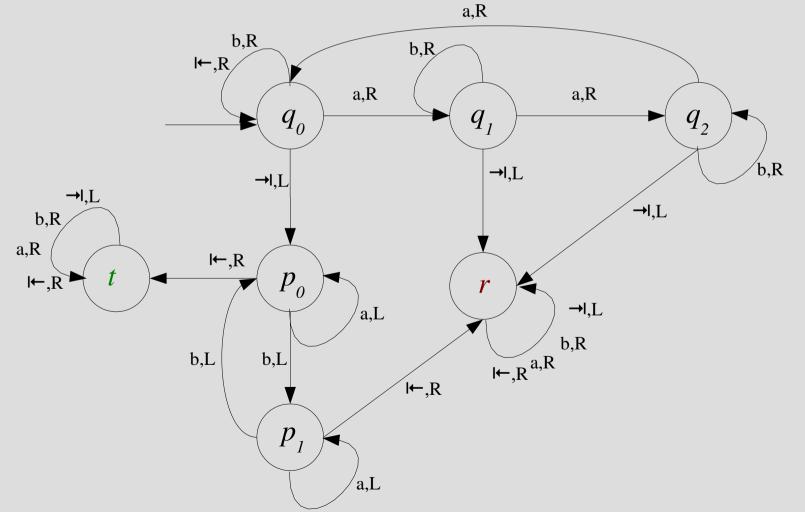
$$-\delta(p, a_i) = (q, R) \Rightarrow (p, i) \rightarrow_x^{1} (q, i+1)$$

Formal Definition (Contd...)

- Lets define \rightarrow_x^n inductively for $n \ge 0$
 - $-(p, i) \rightarrow_{x}^{0} (p, i)$
 - if $(p, i) \rightarrow_x^n (q, j)$ and $(q, j) \rightarrow_x^l (u, k)$ then $(p, i) \rightarrow_x^{n+l} (u, k)$
 - $-(p, i) \to_{x}^{*} (q, j) \Leftrightarrow \exists n \ge 0 (p, i) \to_{x}^{n} (q, j)$
- The machine *accepts* the input x if $(s, 0) \rightarrow_x^* (t, i)$ for some i
- The machine *rejects* the input x if $(s, 0) \rightarrow_x^* (r, i)$ for some i
- The machine *halts* on input *x* if it either *accepts* or *rejects x*, otherwise it is said to *loop* on *x*
- The set *L*(*M*) is defined to be the set of strings *accepted* by M

Example

• $L = \{ x \in \{a,b\}^* \mid \#a(x) \text{ is a multiple of 3 and } \#b(x) \text{ is even } \}$



Equivalence with FA

- Basic idea for the proof
 - consider the string w = xz
- $T_r: (Q \cup \{\bullet\}) \rightarrow (Q \cup \{\bot\})$, where
 - $T_x(\bullet)$ is the state in which the machine crosses x for the first time into z and $T_x(\bullet) = \bot$ if the machine never *emerges* from x
 - At sometime the machine may move back into x in state q from z and later either emerge from x in state p or may never emerge
 - In the first case we define $T_x(q) = p$; in the second case $T_x(q) = \bot$
 - There can be only finitely many possible tables T

Equivalence with FA (Contd...)

- if $T_x = T_y$ and M accepts xz then M accepts yz
- $T_x = T_y \Rightarrow \forall z \ (M \text{ accepts } xz \Leftrightarrow M \text{ accepts } yz)$ $\Leftrightarrow \forall z \ (xz \in L(M) \Leftrightarrow yz \in L(M))$ $\Leftrightarrow x \equiv_{L(M)} y$

where $\equiv_{L(M)}$ is a Myhill Nerode relation with finite index, as the number of tables is finite

 \therefore L(M) is regular.

Constructing DFA

• Lets define DFA M'

$$-Q' = \{ T : (Q \cup \{\bullet\}) \rightarrow (Q \cup \{\bot\}) \}$$

$$-S' = T_{\varepsilon}$$

$$-\delta'(T_{x}, a) = T_{xa}$$

$$-F' = \{ T_{x} / x \in L(M) \}$$

- We can prove that, $\delta'^*(T_x, y) = T_{xy}$ (by induction)
- $x \in L(M') \Leftrightarrow \delta'^*(s', x) \in F'$ $\Leftrightarrow \delta'^*(T_{\varepsilon}, x) \in F'$ $\Leftrightarrow T_{\varepsilon} \in F'$ $\Leftrightarrow x \in L(M)$ $\therefore L(M') = L(M)$

THANK YOU