Formal Methods in Computer Science

Assignment 3

(Due on Thu 27th Oct 2005)

1. Describe the languages accepted by the following grammars:

(a) $\begin{array}{ccc} S & \rightarrow & AA \mid 0 \\ A & \rightarrow & SS \mid 1 \end{array}$

(b)
$$S \rightarrow bS \mid Sa \mid aSb \mid \epsilon$$

- 2. A regular grammar (or a strongly right-linear grammar) is a grammar in which all rules are of the form $X \to aY$ or $X \to \epsilon$ where a is a termninal and X and Y are non-terminals. Prove that the class of languages definable by regular grammars is precisely the class of regular languages.
- 3. Give context-free grammars for the following languages
 - (a) $L_1 = \{a^i b^j c^k \mid i = j\}$
 - (b) $L_2 = a^*b^*c^* \{a^nb^nc^n \mid n > 0\}.$
- 4. Give an equivalent grammar in Chomsky Normal Form for the following CFG:

$$\begin{array}{ccc} S & \rightarrow & aSbb \mid T, \\ T & \rightarrow & bTaa \mid S \mid \epsilon. \end{array}$$

- 5. Give a context-free grammar for the following language. Prove that your grammar is correct: "Equal a's and b's" i.e. $\{x \in \{a,b\}^* \mid \#_a(x) = \#_b(x)\}$. (Hint: give a grammar similar to the one for balanced parenthesis).
- 6. Prove that the intersection of a CFL and a regular language is a CFL.
- 7. Prove or disprove: CFL's are closed under the asterate (*) operator.
- 8. Show that $L = \{a^i b^j \mid i = j^2\}$ is not a CFL.
- 9. Let $\Sigma = \{a, b, c\}$. Exactly one of the statements below is true. Give a proof for the correct one and counter examples for the other three:
 - (a) For any $L \subseteq \Sigma^*$, if L is regular then so is $\{xx \mid x \in L\}$.
 - (b) For any $L \subseteq \Sigma^*$, if L is regular then so is $\{x \mid xx \in L\}$.
 - (c) For any $L \subseteq \Sigma^*$, if L is context-free, then so is $\{xx \mid x \in L\}$.
 - (d) For any $L \subseteq \Sigma^*$, if L is context-free then so is $\{x \mid xx \in L\}$.