

Decision Procedures for Constraint Temporal Logic

Subhasree M. subha@csa.iisc.ernet.in

Supervisor: Dr. Deepak D'Souza Computer Science and Automation Indian Institute of Science, Bangalore

▶ CLTL[♦]

▶ Expressiveness of CLTL[♦]

▶ Decidability of satisfiability problem for CLTL[♦]

Contents

- ▶ CLTL[♦]
- ▶ Expressiveness of CLTL[♦] and CLTL
- Decidability of CLTL over finite models
- ▶ Characterisation of CLTL[♦] frame graphs
- ▶ Decidability of CLTL[♦] over single variable monotonic models
- Conclusion and future work

- ▶ CLTL[♦]: CLTL with ♦ quantifier
- Constraint LTL, CLTL (DD02): Extension of LTL
- Linear-time Temporal Logic, LTL(P77): Tool used for Verification

Variables: Set of Propositions, P

 \blacktriangleright Model: Finite or infinite sequence of subsets of P

Examples of LTL formula

$$P = \{p, q, r\}$$

Example 1

 $\varphi \qquad \qquad : \quad \Box(p \lor r) \\ \sigma \qquad \qquad : \quad \{p,q\},\{p,r\},\{p,q\},\{p,r\}$

 $\tau : \{p,q\}, \{q\}, \{p,q\}, \{q\}$

 τ does not satisfy φ

Example 2

 φ : $(p \mathcal{U} r)$

 $\sigma \qquad \qquad : \quad \{p,q\}, \{p\}, \{p,r\}, \{p,q\}, \{p\}$

 $: \{p,q\}, \{q\}, \{p,r\}, \{p,q\}, \{q\}$

 τ does not satisfy φ

- \blacktriangleright Extension of LTL interpreted over a sequence of valuations of $\mathbb Z$
- CLTL permits to refer to a variable in the next instant, using O quantifier in the logic
- Ox refers to a variable x in the next instant
 - lacktriangle Variables : Elements of U
 - lacktriangle Model: Finite or infinite sequence of $\mathbb Z$ valuations

Atomic constraints of CLTL

$$O^n x < O^m y$$

$$O^n x = O^m y$$

where $x, y \in U$, $n, m \in \mathbb{N}$

Examples of CLTL formula

 $x, y, z \in U$

Example 1

 $\varphi : \Box (x < Oy)$

 σ :

 $y: 2 \ 4 \ 6 \ 8 \ 10$

x: 1 3 5 7 9

au :

 $y: 2 \ 4 \ 6 \ 8 \ 7$

x: 1 3 5 7 9

au does not satisfy arphi

Example 2

 $\varphi: (x < y) \mathcal{U} (x < O^2 z)$

 σ :

 $z: 2 \ 4 \ 0 \ 2 \ 6$

 $y: 2 \ 4 \ 5 \ 7 \ 9$

x: 1 3 5 7 9

au :

 $z: 2 \ 4 \ 0 \ 2 \ 6$

 $y: 1 \ 4 \ 6 \ 7 \ 9$

x: 1 3 5 7 9

au does not satisfy arphi

- ▶ CLTL with ♦ quantifier
- ▶ Permits ◊ quantifier also in the logic
- $\diamond x$ refers to variable x, some instant in future, including the current instant

- lacktriangle Variables : Elements of U
- lacktriangle Model : Sequence of $\mathbb Z$ valuations

Atomic constraints of CLTL^{\dightarrow}

- $ightharpoonup O^n x \sim O^m y$
- $ightharpoonup O^n x \sim \Diamond y$
- $\triangleright \Diamond x \sim O^n y$
- $\diamond x \sim \diamond y$

where $x, y \in U, n, m \in \mathbb{N}$ and $\sim \in \{<, =\}$

Examples of CLTL^{\dightarrow} formulas

$$x, y, z \in U$$

Example 1

$$\varphi: (x < \Diamond y)$$

 σ :

y: 0 1 2 3 6

x: 5 6 7 8 9

au :

y: 0 1 2 3 4

x: 5 6 7 8 9

au does not satisfy arphi

Example 2

 $\varphi: (x < \Diamond y) \mathcal{U} (x < O^2 z)$

 σ :

 $z: 2 \ 4 \ 0 \ 2 \ 9$

y: 0 0 2 0 0

x: 1 1 5 7 9

au :

 $z: 2 \ 4 \ 0 \ 2 \ 9$

y: 0 0 0 0 0

x: 1 3 5 7 9

au does not satisfy arphi

Atomic constraints of CLTL^{\displaystart}

- $ightharpoonup O^n x \sim O^m y$
- $ightharpoonup O^n x \sim \Diamond y$
- $\diamond x \sim O^n y$
- $\diamond x \sim \diamond y$

where $x, y \in U, n, m \in \mathbb{N}$ and $\sim \in \{<, =\}$

ightharpoonup c can be written as c'

$$c := (O^n x \sim \diamondsuit y)$$

$$c' := (O^n x \sim y) \lor (O^n x \sim Oy) \lor \dots$$

$$\lor (O^n x \sim O^{n-1} y) \lor O^n (x \sim \diamondsuit y)$$

Additional atomic constraints due to \diamond quantifier

$$(x \sim \Diamond y)$$

$$(\diamondsuit x \sim y)$$

where
$$x, y \in U$$
 and $\sim \in \{<, =\}$

Expressiveness of $\mathrm{CLTL}^{\diamondsuit}$ and CLTL

CLTL terminology

- Atomic Constraint, c $O^n x < O^m y \text{ and } O^n x = O^m y$ where $n, m \in \mathbb{N}$ and $x, y \in U$
- ▶ O-length k of an atomic constraint is the value i+1 where i is the largest j for which O^j occurs in the atomic constraint
 - c: x < Oy
 - O-length is 2
- \blacktriangleright ${\it O}\mbox{-length}$ of a formula is the largest ${\it O}\mbox{-length}$ of atomic constraints in φ

 - O-length is 4

Induced k-frame

 \blacktriangleright An example of $\mathbb Z$ valuation sequence :

$$y: 2 \ 4 \ 6 \ 8$$

$$x: 1 \ 3 \ 5 \ 7$$

- k-frame induced by a sequence of valuation σ :
 - k- frame $(\sigma) = \{c | \sigma \models c\}$

▶ 2-frame (σ) : $\{x = x\}$, (x < y), (x < Ox), (x < Oy), (y = y), (y < Ox), (y < Oy), (Ox = Ox), (Ox < Oy), $(Oy = Oy)\}$

Locally consistent k-frames

Locally consistent k-frames : the frame pair (r,r') is locally consistent, for all $n,m\geq 1$

$$(O^n x < O^m y) \in r \Longrightarrow (O^{n-1} x < O^{m-1} y) \in r'$$
 and $(O^n x = O^m y) \in r \Longrightarrow (O^{n-1}$

 \blacktriangleright A $\mathbb Z$ -valuation sequence σ is as follows:

$$y: 2 \ 4 \ 6 \ 2$$

$$x: 1 \ 3 \ 5 \ 1$$

Example of locally consistent frames

 \blacktriangleright 3-frame (σ) , r:

$$\{x = x\}, (x < y), (x < Ox), (x < Oy), (x < O^2x), (x < O^2y), (y = y), (y < Ox), (y < Oy), (y < O^2x), (y < O^2y), (Ox = Ox), (Ox < Oy), (Ox < O^2x), (Ox < O^2y), (Oy = Oy), (Oy < O^2x), (Oy < O^2x), (Oy < O^2y), (O^2x = O^2x), (O^2x < O^2y), (O^2y = O^2y)\}$$

- ▶ 3-frame (σ) r': $\{(x=x), (x < y), (x < Ox), (x < Oy), (y = y), (y < Ox), (y < Oy), (Ox = Ox), (Ox < Oy), (Oy = Oy), (O^2x = O^2x)(O^2x < x), (O^2x < Ox), (O^2x < Oy), (O^2x < O^2y), (O^2y = O^2y), (O^2y < x), (O^2y < y), (O^2y = Ox), (O^2y = Oy)\}$
- (r,r') is locally consistent

k-frame sequence induced by a valuation sequence

• k-frame sequence ρ : Sequences of k frames, denoted by $\rho(0)\rho(1)\dots$

• k-fs (σ) : a locally consistent k-frame sequence induced by σ

Example of 3-frame sequence induced by a valuation sequence

ightharpoonup A $\mathbb Z$ -valuation sequence σ is as follows:

$$y: 2 \quad 4 \quad 6 \quad 2$$

 $x: 1 \quad 3 \quad 5 \quad 1$

 $\begin{array}{l} \bullet \quad \text{3-fs } (\sigma): \\ \{(x=x), (x < y), (x < Ox), (x < Oy), (x < O^2x), (x < O^2y) \\ (y=y), (y < Ox), (y < Oy), (y < O^2x), (y < O^2y), (Ox = Ox), \\ (Ox < Oy), (Ox < O^2x), (Ox < O^2y), (Oy = Oy), (Oy < O^2x), \\ (Oy < O^2y), (O^2x = O^2x), (O^2x < O^2y), (O^2y = O^2y) \} \\ \{(x=x), (x < y), (x < Ox), (x < Oy), (y = y), \\ (y < Ox), (y < Oy), (Ox = Ox), (Ox < Oy), (Oy = Oy), \\ (O^2x = O^2x)(O^2x < x), (O^2x < Ox), (O^2x < Oy), (O^2x < O^2y), (O^2x < O^$

▶ Frame graph G_{ρ} : Locally consistent frame sequence as a $\{<,=\}$ -labelled, directed graph

 $(O^2y = O^2y), (O^2y < x), (O^2y < y), (O^2y = Ox), (O^2y = Oy)$

Example of frame graph with k = 3

- $lackbox{ }G_{
 ho}$ satisfies the following conditions :
 - There is an edge between every pair of vertices
 - If there is `='-labelled edge from x to y then there is also one from y to x
 - There are no *strict cycles*-i.e. directed cycles containing a `<'-labelled edge

• $L(\varphi)$ is the set of models of a CLTL formula, φ

$$k\text{-}fs(L) = \{k\text{-}fs(\sigma) \mid \sigma \in L\}$$

Expressiveness of CLTL^{\dightarrow} and CLTL

- \blacktriangleright Two logics \mathcal{L}_1 and \mathcal{L}_2 are said to be equivalent if
 - ▶ $\{L(\varphi_1) : \varphi_1 \in \mathcal{L}_1\} = \{L(\varphi_2) : \varphi_2 \in \mathcal{L}_2\}$

▶ **Theorem 1** : CLTL[♦] is strictly more expressive than CLTL.

Outline of the proof of theorem 1

▶ CLTL[♦] formula $(x < \diamondsuit x)$ has no equivalent CLTL formula.

$$\sigma$$
 X : 2 0 0 3

$$\tau$$
 X: 2 0 0 1

- No CLTL formula can distinguish between σ and τ because the k-frame sequences induced by both of them are same
- lacktriangle CLTL $^{\diamondsuit}$ formula distinguishes between σ and au

Proof

- The proof is by contradiction
- **>** Suppose there exists a CLTL formula which distinguishes σ_i and τ_i
- ▶ Consider two families of models σ_i and τ_i for $i \geq 1$
- ▶ Length of σ_i and τ_i is (i+1).
- $ightharpoonup \sigma_i$ and au_i are as follows:

ullet Either both σ_i and au_i satisfy the CLTL formula or both do not satisfy the formula

Decidability of the satisfiability problem

Satisfiability problem

Satisfiability problem for a logic is: given a formula φ of the logic, does there exist a \mathbb{Z} -valuation sequence which satisfies φ ? In other words, is $L(\varphi) \neq \varphi$?

Decidability of the satisfiability problem for CLTL over *finite models*

Link between CLTL and LTL

- CLTL formula φ of O-length k can be viewed as a LTL formula by replacing the constraints with propositions
- Example

$$\varphi: \Box(x < Oy)$$

 σ :

▶ 2-frame (σ) : $\{x=x\}, (x < y), (x < Ox), (x < Oy), (y = y), (y < Ox), (y < Oy), (Ox = Ox), (Ox < Oy), (Oy = Oy)\}$

Link between CLTL and LTL

From Lemma 3.1(DD02)

- - $\blacktriangleright \varphi$: CLTL formula of O-length k
 - $ightharpoonup \sigma: \mathbb{Z}$ valuation sequence
 - ρ : Induced k frame sequence

From Lemma 3.1(DD02) we get a corollary which describes:

- lacktriangle A CLTL formula φ of O-length k is satisfiable
 - Iff there exist a k-frame sequence :
 - Locally consistent
 - lacksquare Satisfies arphi as a classical LTL formula
 - ightharpoonup Admits a \mathbb{Z} -valuation sequence

Automata theoretic approach for decidability of CLTL

Strict length of a path

• Slen(p): strict length of a path p in G_{ρ} i.e- number of '<'-labelled edges in p

- Slen(p) = 2
- igwedge Slen(u,v) is the maximum of slen(p) where p is the directed path from u to v

Slen(u,v) = 3

In Lemma 6.1 (DD02), ρ admits a \mathbb{Z} -valuation sequence iff for all $u,v\in G_{\rho},$ slen $(u,v)<\omega$

In finite models slen(u, v) is bounded

Lemma 6.1(DD02) applies for finite models also

Automata theoretic approach for decidability of CLTL over finite models

Characterisation of CLTL[†] frame graphs

Characterisation of $\mathrm{CLTL}^{\diamondsuit}$ frame graphs for *single variable models*

Annotated frame graph $G_{\rho'}$

- $(x < \Diamond x)$
 - lacktriangle represented as open forward arc on x in $G_{
 ho}$

- \triangleright ($\Diamond x < x$)
 - lacktriangle represented as open backward arc on x in $G_{
 ho}$

 \blacktriangleright ($x = \diamondsuit x$) and ($\diamondsuit x = x$) are always true

Example of an annotated 3-frame graph

Completion of an annotated frame graph

Annotated graph with matched and implied edges

- Matched edges
 - if open forward arc at (x,i), put a '<'-labelled edge from (x,i) to some (x,q), i < q
 - if open backward arc at (x,i), put a '<'-labelled edge from some (x,q) to (x,i), i < q
- Implied edges
 - if no open forward arc at (x,i), put a ' \leq '-labelled edge from (x,i) to (x,q), $\forall q,i < q$
 - if no open backward arc at (x,i), put a ' \leq '-labelled edge from (x,q) to (x,i), $\forall q,i < q$

Example of completion of an annotated frame graph

Edge respecting labelling: If the labels on the vertices connected by an edge (including the implied and matched edges) satisfy the edge relation

• An annotated locally consistent k-frame sequence ρ' admits a \mathbb{Z} -valuation sequence σ iff σ is an edge-respecting labelling. From Lemma 5.2 (DD02)

Characterisation of frame graphs which admit a \mathbb{Z} valuation sequence

Lemma 1 Let ρ' be an annotated locally consistent finite k-frame sequence. Then ρ' admits a \mathbb{Z} -valuation sequence iff there is no strict cycle in completion of $G_{\rho'}$.

Proof

- ρ' admits a \mathbb{Z} -valuation sequence \Longrightarrow edge respecting labelling l for $G_{o'}$
- Cycle in completion of $G_{\rho'} \Longrightarrow l(x,i) < l(x,i)$ leads to contradiction

- If there is no cycle in completion of $G_{\rho'}$, the procedure for labelling gives an edge respecting labelling
- **•** Edge respecting labelling $\Longrightarrow \rho'$ admits a \mathbb{Z} -valuation

Procedure for labelling $G_{\rho'}$

- 1. Label the vertices in order. Begin by labelling the first vertex (x,0), by $\bf 0$.
- 2. In general if X is the part of the graph which is already labelled, and u is the next vertex to be labelled:
 - (a) if there is a directed path from u to a vertex in X, set $l(u) = min \{l(v) sle^{n(u,v)} \mid v \in X \text{ and there exists a path from } u \text{ to } v\}$, else, (b)set $l(u) = max \{l(v) + sle^{n(v,u)} \mid v \in X \text{ and there exists a path from } v \text{ to } u\}$.

Characterisation of CLTL[†] frame graphs for single variable infinite models

Lemma 2 Let ρ' be an annotated locally consistent infinite k-frame sequence. Then ρ' admits a \mathbb{Z} -valuation sequence iff $G_{\rho'}$ satisfies the following conditions:

- There is no strict cycle in the completion of $G_{\rho'}$.
- For all the vertices u, v in the completion of $G_{\rho'}$, $slen(u, v) < \omega$.

Characterisation of CLTL[†] frame graphs for multiple variable models

Annotated frame graph

• $(x < \Diamond y)$ represented as open forward arc on x labelled y

 $\diamond x < y$) represented as open backward arc on x labelled y

• $(x = \Diamond y)$ represented as open equal to arc labelled y

Example of annotated 2-frame graph $G_{\rho'}$

Completion of annotated frame graphs

Annotated frame graph with matched and implied edges

- Matched edges
 - If open '=' arc at (x,i) labelled y, put a ='-labelled edge from (x,i) to some (y,q), $i \leq q$
- Implied edges
 - If no open '=' arc at (x,i) labelled y, put a 'i'-labelled edge from either (x,i) to (y,q) or (y,q) to $(x,i), \forall q,i \leq q$

Characterisation of frame graphs which admit a \mathbb{Z} valuation sequence

Lemma 3 Let ρ' be an annotated locally consistent finite k-frame sequence. Then ρ' admits a \mathbb{Z} -valuation sequence iff there is no strict cycle in completion of $G_{\rho'}$.

Decidability of CLTL^{\dightarrow} over single variable monotonic models

Reduction of satisfiability problem for CLTL⁵ to that for CLTL

- lacktriangleright c : atomic constraint of $\operatorname{CLTL}^{\diamondsuit}$
- ϕ' : CLTL formula equivalent to c defined as follows:

Case 1:

$$c := (x < \Diamond x)$$

$$\phi' := \neg \Box (x = Ox)$$

$\mathbf{Case}\,\mathbf{2}:$

$$c := (\lozenge x < x)$$

$$\phi'$$
 := \bot

In CLTL the constant \perp represents "false".

- $ightharpoonup \sigma \models c \text{ iff } \sigma \models \phi' \text{ where } \sigma \text{ is a monotonic model}$
- lacksquare $\sigma \models \phi$ iff $\sigma \models \phi'$ for any $CLTL^{\diamondsuit}$ formula ϕ
- CLTL formula is interpreted over non-monotonic models
- The monotonicity condition can be specified as a CLTL formula φ ,

$$\varphi := \Box(\neg(O\top) \lor (x < Ox) \lor (x = Ox))$$

- Append φ with each ϕ'
- The resultant CLTL formula ($\phi' \land \varphi$) is interpreted over non-monotonic models

Lemma 4 The satisfiability problem for CLTL^{\dightarrow} over single variable monotonic models is decidable.

Automata theoretic approach for single variable monotonic model

Annotated frame graph for single variable monotonic model

• Only open forward arcs in $G_{\rho'}$

- Conditions to be checked:
 - Local consistency of frames
 - lacktriangle Completion of $G_{\rho'}$ has no strict cycle
 - For all vertices u,v in the completion of $G_{\rho'},$ slen $(u,v)<\omega$

Automata theoretic approach for CLTL[†] monotonic finite models

Construction of $A_k^{\mathcal{Z}}$

- $lackbox{}{} A_k^{\mathcal{Z}}$ is a nondeterministic finite automaton
 - Guesses a vertex which has an open forward arc
 - When a strict forward edge is found, all the open forward arcs up to that vertex are matched
 - At the end of the model if there is no unmatched open forward arc, then the frame sequence is accepted

Overview of related work

- In TPTL (RT89) employs a novel quantifier construct to reference time: the *freeze quantifier* binds a variable to the time of the local temporal context
- CLTL[↓](D)(DRN05) denotes a logic where Constraint LTL is augmented with freeze operator

- ▶ CLTL[♦] is strictly more expressive than CLTL
- Satisfiability problem for CLTL over finite models is decidable
- ▶ Characterisation of CLTL[♦] frame graphs
- Satisfiability problem for CLTL[⋄] over single variable monotonic models is decidable

- Decidability of the logic or its sublogics
 - By push down automata?
- Undecidability of the logic
 - Reducing Post correspondence problem to satisfiability problem for the logic ?

References

- RT89 Rajeev Alur and Thomas A. Henzinger. A Really Temporal Logic. In *Proc. 30th IEEE Symposium on Foundations of Computer Science(FOCS 1989)*, pp.164-169, and in *Journal of the ACM* 41, pp.181-204, 1994.
- DD02 Stephane Demri and Deepak D'Souza. An automata Theoretic Approach to Constraint LTL. Technical Report LSV-03-11, LSV, 2003.40 pages, *Proceedings of FST & TCS'02,Kanpur,* volume 2256 of *Lecture notes in Computer Science*, pages 121-132 Springer, Berlin, 2002.
- DRN05 Stephane Demri, Ranko Lazic and David Nowak. On the freeze quantifier in Constraint LTL: decidability and complexity. In *Proc. 12th International Symposium on Temporal Representation and Reasoning'05*, Technical report LSV-05-03, LSV, 2005.
 - P77 Amir Pnueli. The temporal logic of programs. In *Proc. 18th IEEE*Symposium on Foundation of Computer Science, pages 46-57, 1977.
- VW86 M. Vardi and P. Wolper. An automata theoretic approach to automatic program verification. In *Logic in Computer Science*, pages 332-334. IEEE, 1986.

Constraint Temporal Logic - p.75/101

Thank You

LTL as verification tool

Example of a protocol which implements mutual exclusion

```
Process 1
 repeat forever{
 l_0:/^* do other jobs*/
 l_1:while (turn!=1){/*do nothing*/}
 l_2: enter CS;
 l_3:exit CS;
 l_4:turn=2;
Process 2
 repeat forever{
 l_0:/* do other jobs*/
 l_1:while (turn!=2){/*do nothing*/}
 l_2: enter CS;
 l_3:exit CS;
 l_4:turn=1;
```


- Execution of a program as a state labelled system
 - \blacktriangleright process 1 is at l_0 : p_0
 - ightharpoonup process 1 is at l_1 : p_1
 - \blacktriangleright process 1 is at l_2 : p_2
 - process 1 is at l_3 : p_3
 - \blacktriangleright process 1 is at l_4 : p_4
 - \rightarrow turn = 1: t_1
 - \blacktriangleright process 2 is at l_0 : q_0
 - \blacktriangleright process 2 is at l_1 : q_1
 - \blacktriangleright process 2 is at l_2 : q_2
 - \blacktriangleright process 2 is at l_3 : q_2
 - ightharpoonup process 2 is at l_4 : q_4
 - \rightarrow turn =2 : t_2
- Property of a program as a LTL formula
 - ▶ Safety condition : $\Box \neg (p_3 \land q_3)$
 - ▶ Starvation condition : \Box ($t_1 \Longrightarrow p_3$

State labelled transition system

Syntax and semantics of LTL formula

Syntax

$$\varphi :: p \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 \mid O\varphi \mid \varphi_1 \ \mathcal{U} \ \varphi_2$$

Semantics of the logic is inductively defined as follows:

$$\sigma, i \models \rho$$
 iff $\rho \in \sigma(i)$
 $\sigma, i \models \neg \varphi$ iff $\sigma, i \not\models \varphi.$
 $\sigma, i \models \varphi_1 \lor \varphi_2$ iff $\sigma, i \models \varphi_1 \text{ or } \sigma, i \models \varphi_2.$
 $\sigma, i \models O\varphi$ iff $\sigma, i + 1 \models \varphi.$
 $\sigma, i \models \varphi_1 \mathcal{U} \varphi_2$ iff $\exists k \geq i \text{ such that } \sigma, k \models \varphi_2.$

and $\forall j : i \leq j < k, \sigma, j \models \varphi_1.$

Semantics of CLTL^{\dightarrow} atomic constraints

- $\sigma[i,j] = O^n x \sim O^m y \quad \text{iff } (i+n), (i+m) \leq j \text{ and }$ $\sigma(i+n)(x) \sim \sigma(i+m)(y).$
- $\sigma[i,j] \models O^n x \sim \Diamond y$ iff there exists m such that $(i+n), (i+m) \leq j$ and $\sigma(i+n)(x) \sim \sigma(i+m)(y)$.
- $\sigma[i,j] \models \Diamond x \sim O^m y$ iff there exists n such that $(i+n), (i+m) \leq j$ and $\sigma(i+n)(x) \sim \sigma(i+m)(y)$.
- ▶ $\sigma[i,j] \models \Diamond x \sim \Diamond y$ iff there exists n and m such that (i+n) and $(i+m) \leq j$ and $\sigma(i+n)(x) \sim \sigma(i+m)(y)$.

Syntax of CLTL^{\dightarrow} formula

 $\varphi ::= c \mid \neg \varphi \mid (\varphi \lor \varphi) \mid O\varphi \mid (\varphi \cup \varphi)$, where c is an atomic constraint.

Semantics of CLTL^{\dightarrow} formula

Additional atomic constraints due to \Diamond quantifier

Case 1:

$$c := (O^n x \sim \Diamond y)$$

$$c' := (O^n x \sim y) \vee (O^n x \sim Oy) \vee \dots$$
$$\vee (O^n x \sim O^{n-1} y) \vee O^n (x \sim \Diamond y)$$

Case 2:

$$c := (\diamondsuit x \sim O^n y)$$

$$c' := (x \sim O^n y) \vee (Ox \sim O^n y) \vee \dots$$
$$\vee (O^{n-1} x \sim O^n y) \vee O^n (\diamondsuit x \sim y)$$

Case 3:

$$c := (\diamondsuit x \sim \diamondsuit y)$$
$$c' := \diamondsuit((x \sim \diamondsuit y) \lor (\diamondsuit x \sim y))$$

where c is the CLTL $^{\diamond}$ atomic constraint and c' is the atomic constraint equivalent to c parsed using $(x \sim \diamond y)$ and $(\diamond x \sim y)$

atc(k)

atc (k): The set of all atomic constraints over U of O-length at most k

 σ :

y: 2 4 6 8 10

 $X: 1 \ 3 \ 5 \ 7 \ 9$

atc (2) is as follows:

$$\{(x=x), (x=y), (x=Ox), (x=Oy), (x$$

Link between CLTL and LTL

- CLTL formula φ of O-length k can be viewed as a LTL formula over atc (k)
- Example

$$\varphi$$
: $\square(X < Oy)$ σ :

 $y: 2 \ 4 \ 6 \ 8 \ 10, \dots$

 $x: 1 \quad 3 \quad 5 \quad 7 \quad 9, \dots$

• Let O-length = 2

2-frame(
$$\sigma$$
): { ($x=x$), ($x), ($x), ($x), ($y=y$), ($y), ($y), ($Ox=Ox$), ($Ox), ($Oy=Oy$)}$$$$$$

 \blacktriangleright atc(2) is as follows:

$$\{(x=x), (x=y), (x=Ox), (x=Oy), (x$$

Each constraint can be replaced by propositions, $\{p_1, p_2, \dots, p_{3^2}\}$

CLTL formula can be written as LTL formula

- $ightharpoonup arphi_{
 m LTL}$: $\Box p_8$
- $\rho: \{p_1, p_6, p_7, p_8, p_{10}, p_{15}, p_{16}, p_{19}, p_{24}, p_{28}\}, \{p_1, p_6, p_7, p_8, p_{10}, p_{15}, p_{16}, p_{19}, p_{24}, p_{28}\}, \dots$
- $\rho \models_{LTL} \varphi$

▶ **Lemma 5** (from (DD02)): Let φ be a CLTL formula of O-length k. Let σ be a \mathbb{Z} valuation sequence and let ρ be the induced k frame sequence. Then $\sigma \models \varphi$ iff $\rho \models_{\mathrm{LTL}} \varphi$.

- ▶ Corollary 1 Let σ and τ be \mathbb{Z} -valuation sequences of same length. If frame sequence induced by σ is identical to the frame sequence induced by τ , then for any CLTL formula φ of O-length k, $\tau \models \varphi$ iff $\sigma \models \varphi$.
- Proof :

$$\sigma \in L(\varphi) \iff k\text{-fs}(\sigma) \in L(\varphi_{\mathrm{LTL}}) \quad \{ \ \, \because \text{Lemma 1} \} \\ \iff k\text{-fs}(\tau) \in L(\varphi_{\mathrm{LTL}}) \quad \{ \ \, \because \text{k-fs}(\tau) = \text{k-fs}(\sigma) \} \\ \iff \tau \in L(\varphi) \quad \quad \{ \ \, \because \text{Lemma 1} \}$$

Outline of the proof of theorem 1

▶ Claim :CLTL formula $(x < \diamondsuit x)$ has no equivalent CLTL formula.

$$\sigma$$
 X : 2 0 0 3

$$\tau$$
 X: 2 0 0 1

- No CLTL formula can distinguish between σ and τ because the k-frame sequences induced by both of them are same
- lacktriangle CLTL $^{\diamond}$ formula distinguishes between σ and au

Proof

- The proof is by contradiction
- Consider two families of models σ_i and τ_i for $i \geq 1$
- ▶ Length of σ_i and τ_i is i+1.
- $ightharpoonup \sigma_i$ and τ_i are as follows:

$$k$$
- $fs(\sigma) = k$ - $fs(\tau)$

{Observation 1}

For any $k \leq i$,

$$\sigma \models (X < \Diamond X) \text{ and } \tau \not\models (X < \Diamond X)$$

$$\implies \sigma \in L(x < \Diamond x) \text{ and } \tau \not\in L(x < \Diamond x) \quad \{\textit{Observation 2}\}\$$

Suppose there exists a formula, φ in CLTL such that $L(\varphi) = L(x < \Diamond x)$, k = O-length of φ

```
\sigma_k \in L(\varphi) { :: Definition}

k\text{-fs}(\sigma) \in L(\varphi_{\text{LTL}}) { :: Lemma 1}

k\text{-fs}(\tau) \in L(\varphi_{\text{LTL}}) { :: Observation 1 and Corollary 2}

\tau_k \in L(\varphi) { :: Lemma 1}

But \tau_k \notin L(x < \diamondsuit x) { :: Observation 2}

Contradiction
```


Validity of the labelling procedure

- suppose the labelling is not valid
- there is a first time when the procedure labels the vertex with a value which contradicts the strict length
- let this vertex be u, let the vertex at the other end of the offending path be v, $v \in X$ and the vertices labelled up to this point be X

three cases:

- p from u to v and slen (p) > l(v) l(u).
 - Step 2 (a) of the procedure is applicable, and $l(u) \le l(v) slen(p)$.
- p from v to u and slen (p) > l(u) l(v)
 - Two possibilities:
 - u was labelled by step 2 (a) of the procedure.
 - \blacktriangleright w in X with a path q from u to w, s.t l(u) = l(w) slen(q).
 - v and w are labelled consistently
 - $l(w) \ge l(v) + slen(p) + slen(q).$
 - $l(u) \ge l(v) + slen(p)$, leads to contradiction.
 - u was labelled by step 2(b) of the procedure and $l(u) \ge l(v) + slen(p)$.
- p is a strict path from u to u, leads to contradiction because there is no strict cycle in the graph.

- infinite backward path in completion of $G_{\rho'}$: a sequence $d: \mathbb{N} \to U \times \mathbb{N}$, U is the nonempty set of variables in the k-frame sequence, satisfying:
 - ▶ for all $i \in \mathbb{N}$, there is an edge from d(i+1) to d(i).
 - for all $i \in \mathbb{N}$, if d(i) is in level j, then d(i+1) is in a level greater than or equal to j+1. ("level" of a vertex (x,i) is i.
- ▶ a path d is strict if there exist infinitely many i for which there is a <'-labelled edge from d (i + 1) to d (i).

Lemma 6 Let ρ' be an annotated locally consistent infinite k-frame sequence. Then ρ' admits an \mathbb{N} -valuation sequence iff $G_{\rho'}$ satisfies the following conditions:

- lacktriangle There is no strict cycle in the completion of $G_{
 ho'}$.
- For all vertices u,v in the completion of $G_{\rho'}$, slen(u,v) < ω .
- There is no strict infinite backward path in the completion of $G_{\rho'}$.

Automata theoretic approach for CLTL^{\displaystart} monotonic infinite models

- Build an automaton $(A_{\varphi}^{\mathcal{Z}})$ which is an intersection of :
 - $A_{arphi}^{
 m LTL}$: Vardi Wolper Automaton construction for infinite models

$$A_{lc}^k = (Q, q_0, \longrightarrow, F)$$

- $lackbox{}{} A_k^{\mathcal{Z}}$ is nondeterministic Buchi automaton
- Check the resulting automaton for emptiness to decide the satisfiability of φ

Construction of automata

- $lackbox{A}_{arphi}^{
 m LTL}$: Vardi Wolper Automaton construction for finite models
 - A state is final iff there is no next state formula in that state

- $A_{lc}^k = (Q, q_0, \longrightarrow, F)$
 - \blacktriangleright Q is the set of k-frames along with a separate start state q_0
 - \longrightarrow is given by $q_0 \longrightarrow r$ on r and $r \longrightarrow r'$ on r' iff (r,r') is locally consistent
 - F = Q

Consistent relations from a vertex

- There can be both open forward and open backward arcs
- There can be either open forward or open backward arc
- Both arcs are absent

For finite models there is no open arc from the last vertex

- \blacktriangleright Build the formula automaton $A_{\varphi}^{\rm LTL}$: LTL version of the given formula $\varphi.$ If automata could be build that
 - filter out k-frame sequences that are not locally consistent and
 - filter out k-frame sequences that don't admit \mathbb{Z} -valuation sequences
- Intersect and check the resulting automaton for emptiness to decide the satisfiability of φ