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ﬁ CLTL®

» CLTL® : CLTL with & quantifier
» Constraint LTL, CLTL (DDQ02) : Extension of LTL

» Linear-time Temporal Logic, LTL(P/7) : Tool used for
Verification
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ﬁ LTL

» Variables : Set of Propositions, P

» Model : Finite or infinite sequence of subsets of P
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Examples of LTL formula

» P={p,q,r}
» Example 1
0 . O(pVr)
o : {p,q}t, {p;r} AP, g}, {p, 7}
T : {p,q}, {4}, {p; ¢}, {q}
T does not satisty ¢
» Example 2
@ : (pUT)
o  Ap, gt {pk {p, T} {p, a}, {p}
T : Ap,a}, {a}:{p, 7}, {p, q}, {4}

T does not satisty ¢
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i. oL

» Extension of LIL inferpreted over a sequence of
valuations of Z

» CLIL permits to refer to a variable in the next instant,
using O quantifier in the logic

» Oz refers to a variable z in the next instant

» Variables : Elements of U
» Model : Finite or infinite sequence of Z valuations
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i Atomic constraints of CLTL

» Oz < O™y

» Oz = O™y

wherez,y e U, n,m € N
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Examples of CLTL formula

2

» z,y,z e U
» Example 1
@ O(x < Oy)
o
y: 2 4 6 8 10
x: 1 3 5 7 9
T

y: 2 4 6 8 7
x: 1 3 5 7 9

T does not safisfy ¢
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» Example 2
o:(z<y)U(z < O0?%*2)

o
z: 2 4 0 2 6
y: 2 4 5 7 9
z: 1 3 5 7 9
T .

T does not safisfy ¢
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ﬁ CLTL®

» CLIL with & quantifier
» Permits & quantifier also in the logic

» Ox refers to variable z, some instant in future,
Including the current instant

» Variables : Elements of U
» Model : Sequence of Z valuations
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i Atomic constraints of CLTL®

» O"x ~ O™y
» Oz ~ Oy
>y O~ Oy
P Ox ~ Oy

where z,y e U,n,m e Nand ~ € {<, =}
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Examples of CLTL® formulas

» x,y,z €U
» Example 1
p: (z < Qy)
o
y: 01 2 3 6
xr: 5 6 7 8 9
T

T does not safisfy ¢
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» Example 2
o :(x < OYy)U (z < 0%2)

o
z: 2 4 0 2 9
y: 0 0 2 0 O
x: 1 1 5 7 9
T .

T does not safisfy ¢
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i Atomic constraints of CLTL®

» O"x ~ O™y
» Oz ~ Oy
» O~ Oy
P Ox ~ Oy

where z,y e U,n,m e Nand ~ € {<, =}
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> ¢ can be written as ¢
c = (O"r ~ Oy)

¢ = (O"x~y)VO'z~0Oy)V...
V(O"z ~ O™ 1y) v O™z ~ Ov)
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quantifier

i Additional atomic constraints due o <

> (z ~ Cy)

> (Oz ~y)

where z,y € U and ~ € {<, =}
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Expressiveness of CLTL® and CLTL
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CLTL terminology

» Afomic Constraint, ¢
O"x < O™y and O™z = O™y
wheren,me Nand z,y € U

» O-length k£ of an afomic constraint is the value ¢ + 1 where i is
the largest j for which O7 occurs in the atomic constraint

» c:x < Oy
» O-lengthis 2

» O-length of a formula is the largest O-length of atomic
constraints in ¢

» o: (z < Oy)U (z < O32)
» O-lengthis 4
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Induced k-frame

» An example of Z valuation sequence ;

» k-frame induced by a sequence of valuation o:
» k- frame (o) = {c|o = ¢}

» 2-frame (o) : {z =z), (x < y), (z < Ox), (z < Oy),
(y =v),(y < Ox),(y < Oy), (Ox = Ox),
(0113 < Oy), (Oy = Oy)} Constraint Temporal Logic - p.20/101



Locally consistent k-frames

» Locally consistent k-frames : the frame pair (r,r') is
locally consistent, for all n,m > 1
(O"z < O™y) e r = (O™ lz < O™ ly) e ' and
(O"z = O™y) € r = (O™}

» A Z -valuation sequence o is as follows:

y: 2 4 6 2
z: 1 3 5 1
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Example of locally consistent frames

» 3-frame (o), r :
{z=12),(z <y),(z < O0x),(z < Oy), (z < O0%2),(z < O%y)
(y =), (y < Oz),(y < Oy), (y < O%z), (y < O%y), (Oz = Ox),
(Oz < Oy), (0z < O*z), (Ox < O?*y), (0y = Oy), (Oy < O*z),
(Oy < 0%),(0°z = 0%z), (0%z < O%y), (O%y = O%y)}

» 3-frame (o) r": {(z = z), (z < y), (xz < Ox), (z < Oy), (y = v),
(y < Ozx), (y < Oy), (Oz = Oz), (Oz < Oy), (Oy = Oy),
(O%*z = O*z)(0O*z < z), (0*z < Ox), (O’z < Oy), (0*z < O?y),
(0%y = 0%y), (0%y < z), (0% < y), (0%y = Oz), (0’y = Oy)}
(

, [ ]
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seguence

ﬁ k-frame sequence induced by a valuation

» k-frame sequence p : Sequences of k
frames, denoted by p(0)p(1) ...

» k-fs (o) . alocally consistent k-frame
seguence induced by o
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Example of 3-frame sequence induced
by a valuation sequence

» A Z -valuation seguence o is as follows:

» 3-fs (o) :
{(z=2),(z<y),(z <O0x),(z < O0y), (z < 0%), (z < O%)
(y =), (y < Ox),(y < Oy), (y < O%z), (y < O%y), (Ox = Ox),
(Ox < Oy), (Oz < O%z), (0z < O%y), (Oy = Oy), (Oy < O?x),
(Oy < 0%y), (0*z = O%z), (0%z < O%y), (0%*y = O%y)}
{(z =2),(z <y),(r <O0x),(z < 0y),(y =y),
(y < Ox), (y < Oy), (Oz = Ox), (Oz < Oy), (Oy = Oy),
(O%z = 0%2)(0?%z < ), (0% < Ox), (0%*z < Oy), (O*z < O%y),
(0%y = 0%y), (0%y < z),(0%y < y), (0%*y = Ox),(0%y = Oy)}

» Frame graph G, : Locally consistent frame sequence as a
{<,=}-labelled, directed graph
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Example of frame graph with k = 3

L
l Constraint Temporal Logic — p.25/101



» G, satisfies the following condifions :

» There is an edge between every pair of
vertices

» If there is "="-labelled edge from z 1o y Then
there is also one from y 1o x

» There are no sfrict cycles-i.e. directed cycles
containing a <’-labelled edge
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» L(p) is The set of models of a CLIL
formula, ¢

» k-fs(L) ={k-fs(o) |o € L}
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Expressiveness of CLTL® and CLTL

» Two logics £1 and £y are said to be equivalent if
» {L(p1) : o1 € L1} = {L(p2) : p2 € L2}

» Theorem 1 : CLTL? is strictly more expressive than
CLTL.

Constraint Temporal Logic — p.28/101



Outline of the proof of theorem 1

» CLTL® formula (z < ¢z) has no equivalent CLTL formula.

03 r: @@= | . Y

T3 r: @O= oO=-—>0 > @

» No CLIL formula can distinguish between o and + because the
k-frame segquences induced by both of them are same

» CLTL® formula distinguishes between ¢ and
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Proof

» The proofis by contradiction

» Suppose there exists a CLIL formula which distinguishes ¢; and 7;
» Consider two families of models o; and r; fori > 1

» Length of o; and 7; is (i + 1).

» o; and 7; are as follows:

or 2 0 3 m 2 0 1

o2 2 0 0 3 2 0 0 1

o3 2 0 0 0 3 s 2 0 0 0 1
o, 2 0 0 0 0 3 s 2 0 0 0 0 1

» Either both o; and r; satisfy the CLIL formula or both do not satisfy
the formula
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Decidability of the saftisfiability problem
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ﬁ Satisfiability problem

Safisfiability problem for a logic is : given a
formula ¢ of the logic, does there exist
Z -valuation sequence which satisfies ¢? In
other words, is L(y) # ¢7
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Decidability of the satisfiability problem for CLIL over
finife models
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Link between CLTL and LTL

» CLIL formula ¢ of O-length k£ can be viewed as a LIL
formula by replacing the consfraints with propositions

» Example

¢ : O(z < Oy)
o .

» 2-frame (o) : {zr =2x),(z < y), (x < Ox), (x < Oy),
(y =), (y < Oz),(y < Oy), (Oz = Oz), (Oz < Oy),

(Oy = Oy)}
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% Link between CLTL and LTL

» From Lemma 3.1(DD02)

» o =¢iff p =L @

» . CLIL formula of O-length &
» o 7 -valuafion seguence

» p: Induced k frame sequence
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From Lemma 3.1(DD02) we get a corollary
which describes :

» A CLIL formula ¢ of O-length & is safisfiable

» Iff there exist a k-frame sequence :

» Locdally consistent
» Satisfies ¢ as a classical LTL formula
» Admits a Z-valuation sequence
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CLIL

| Automata theoretic approach for decidability of

/AN
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Strict length of a path

» Slen(p): strict length of a path p in G, i.e- number of
‘<’-labelled edges in p

» Slen(p) =2

» Slen(u,v) is the maximum of slen(p) where p is the
directed path from u o v

() u

e Q= 0@0——> 0 =————0

» Slen(u,v) =3
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» In Lemma 6.1 (DD02), p admits @
Z -valuation sequence iff for all u,v € G,
slen(u,v) < w

» In finite models slen(u, v) is bounded

» Lemma 6.1(DD02) applies for finite
models also
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decidability of CLIL over finite models

% Automata ftheoretic approach for
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Characterisation of CLTL® frame graphs
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Characterisation of CLTL® frame graphs for single variable
models
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Annofafed frame graph G

P (z < Ox)

» represented as open forward arc on z in G,

» (O < x)

» represented as open backward arc on z in G,

» (z = Ox) and (Oz = x) are always true
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Example of an annotated 3-frame graph
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Complefion of an annofafed frame
graph

Annotated graph with maftched and implied edges

» Mafched edges
» if open forward arc at (z, ), put a "<'-labelled edge from
(x,7) tTosome (x,q).i < q
» if open backward arc at (x,7), put a <’-labelled edge
from some (z, q) 10 (x,1). 1 < q
» Implied edges
» if nO open forward arc at (z,4), put a "<’-labelled edge
from (z,4) tO (z,q). Vq,i < g
» if NO open backward arc af (z, ), put a "<’-labelled edge
from (x,q) to (x,7), Vq,7 < q
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Example of completion of an annotated
frame graph

x 7 10 5 8 6
(i
Gp/ T @ —Qa ® > @00

< < < <
/\\ W&
®o— > Q= o > 0 =0
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» Edge respecting labelling : If the labels on the vertices
connected by an edge (including the implied and
matched edges) satisfy the edge relation

3 5 2 3 4 3
T o —0=— 0 o—=0=—— 0

~_ ~_

» An annotated locally consistent k-frame sequence p’
admifs a Z-valuation sequence o iff o Is an
edge-respecting labelling. From Lemma 5.2 (DD02)
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admit a Z valuation sequence

ﬁ Characterisation of frame graphs which

Lemma 1 Lefp' be an annofafted locally
consistent finife k-frame sequence. Then p’
admits a Z-valuation sequence iff there is No
strict cycle in complefion of G ;.
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ﬁ Proof

» o/ admits a Z -valuation sequence — edge
respecting labelling [ for G

» Cycle in completion of G, = l(z,i) < I(z,1)
leads to confradiction

» If there is no cycle in completion of G, The
procedure for labelling gives an edge respecting
labelling

» Edge respecting labelling — p’ admits a
7, -valuation
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Procedure for labelling G

—_

1. Label the vertices in order. Begin by labelling the
first vertex (z,0), by 0.

2. In general if X is the part of the graph which is
adlready labelled, and w is the next vertex 1o be
labelled:

(a) if there is a directed path from «
to a vertexin X,
set I(u) = min {l(v) — slen(u; V) |
v € X and there exists a path
from u to v}, else,

(b)set I(u) = max {l(v) + slen(v, u) |
v € X and there exists a path
from v O u}.
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How does the labelling procedure work
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How does the labelling procedure work
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How does the labelling procedure work
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How does the labelling procedure work
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How does the labelling procedure work
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How does the labelling procedure work
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How does the labelling procedure work
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variable infinite models

4 Characterisation of CLTL® frame graphs for single
il

Lemma 2 [ef p’ be an annofafed locally
consistent infinite k-frame sequence. Then p’
admits a Z -valuation sequence iff G
saftisfies the following conditions:

» There is no strict cycle in the completion
of GG o -

» For all the vertfices u,v in the completion
of G, slen(u,v) < w.
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Characterisation of CLTL® frame graphs for multiole
variable models
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ﬁ Annotated frame graph

P (z < Oy) represented as open forward
arc on z labelled y

» (Cx < y) represented as open backwara
arc on z labelled y

» (x = Cy) represented as open equal to
arc labelled y
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Example of annofated 2-frame graph G,

Y 2 4 6 38
X
»'/\
A
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ﬁ Completion of annofated frame graphs

Annotated frame graph with matched and implied
edges

» Matched edges
» If open =" arc af (z,7) labelled y, put @
="-labelled edge from (z, i) to some (y,q). i < q
» Implied edges

» If nO open =" arc af (z,:) labelled y, put a
'i’-labelled edge from either (x,4) to (y, q) or

(y,q) to (x,7),Vq,i < q
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Z. valuation sequence

ﬁ Characterisation of frame graphs which admit @

Lemma 3 Lef p/ be an annofafted locally
consistent finife k-frame sequence. Then p’
admits a Z-valuation sequence iff there Is No
strict cycle in complefion of G ;.
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—_—

Decidability of CLTL® over single variable
monotonic models
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that for CLIL

% Reduction of satisfiability problem for CLTL® to

» ¢: atomic constraint of CLTL®

» ¢ CLIL formula equivalent to ¢ defined as follows:

Casel :
c = (x < Ox)
§ = -O( = Ox)
Case?2 :
c = (Or<ux)
¢ = 1

In CLTL the constant L represents “false”.
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» 0 = ciffe = ¢ where ¢ is a monofonic model
» 0 = ¢iff o = ¢ for any CLTL® formula ¢

» CLIL formula is interpreted over non-monotonic
models

» The monotfonicity condition can be specified as @
CLIL formula ¢,
@ :=0(—-(O0T)V(xr <Ozx)V (x =0x))

» Append ¢ with each ¢’

» The resultant CLIL formula (¢’ A o) is interpreted
over non-monotonic models
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Lemma 4 The satisfiability problem for CLTL®
over single variable monofonic models is
decidable.
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Automata theoretfic approach for single variable
nmonotonic model
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Annotated frame graph for single variable
monotonic model

» Only open forward arcs in G,

» Conditions 1o be checked:

» Local consistency of frames
» Completion of G, has no strict cycle

» For all vertices u, v in the completion of G,
slen(u,v) < w

Constraint Temporal Logic — p.69/101



monotonic finite models

e

% Automata theoretic approach for CLTL®
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# Construction of A?
ol

» AZ is a nondeterministic finite automaton

» Guesses a vertex which has an open forward
arc

» When a strict forward edge is found, all the
open forward arcs up to that vertex are
matched

» Af the end of the model if there is no
unmatched open forward arc, then the frame
seguence is accepted

Constraint Temporal Logic — p.71/101



ﬁ Overview of related work

» In TPTL (RT89) employs a novel quantifier construct
tfo reference time: the freeze quantifier binds a
variable to the tfime of the local temporal context

» CLTLY(D)(DRNO5) denotes a logic where
Constraint LTL is augmented with freeze operator
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4 Conclusion
il

» CLTL? is strictly more expressive than CLTL

» Safisfiability problem for CLIL over finite models is
decidable

» Characterisation of CLTL® frame graphs

» Satisfiability problem for CLTL® over single variable
monotonic models is decidable
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ﬁ Future work

» Decidability of the logic or its sublogics
» By push down automata ?

» Undecidability of the logic

» Reducing Post correspondence problem to
safisfiability problem for the logic ?
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Thank You
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LIL as verification tool

» Example of a profocol which implements mutual exclusion

» Process |
repeat forever{
lo:/™ do other jolbs™/
l1:while (turnl=1){/*do nothing*/ }
l2: enter CS;
I3:exit CS;
[4:turn=2;
}
» Process 2
repeat forever{
lo:/™ do other jolbbs™/
l1:while (turn!=2){/*do nothing*/ }
l2: enter CS;
I3:exit CS;
[4:turn=1;

}

Constraint Temporal Logic — p.78/101



» Executfion of a program as a stafe labelled system

»

v VvV VvV VvV Vv

>
»
>
>
>
>

» Property of a program as a LTL formula
» Safety condition : O = (p3 A g3)
» Starvation condition: O (t; = p3

process 1 is at lp:
process 1is afly:
process 1 is at lo:
process 1 is af l3:
process 1is af ly:
furn =1 ¢4

process 2 is at lyp:
process 2 is at ly:
process 2 is at lo:
process 2 is at I3:
process 2 is at ly:
turn =2 :to

Po
pP1
p2
pP3
p4

qo
q1
q2
q2
q4
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State labelled fransition system
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Syntax and semantics of LT L formula

» Syntax

@ = Plop|pi1Vea| Opl| o1 U e

» Semantics of the logic is inductively defined as follows:

o,
o,l
o,l
o,l

o,l

iff

p € o)

o, I~ .

0,1 = p1or 0, = .

o, [+ 1= .

dk > i such that o, Kk = @9
and Vj: i< j< Kk, o,jFE ¢1.
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Semantics of CLTL® atomic constraints

» oli,j=EO"x ~ O™y iff (i+mn),(i+m) <jand
o(i+n)(x) ~ o(i+m)(y).

» oli,j| E O™z ~ Oy iff there exists m such that
(i4+n),(i+m)<jando(i+n)(zx) ~a(i+m)(y).

» oli, j| E Oz ~ O™y iff there exists n such that
(i4+n),(i+m)<jando(i+n)(zx) ~o(i+m)(y).

» oli, j| E Oz ~ Oy iff there exists n and m such that
(t+n)and (i+m) <jando(i+ n)(xz) ~ o(i + m)(y).
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Syntax of CLTL® formula

> ou=c|p| (V)| Op| (pUyp), where cis an
atomic constraint.
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Semantics of CLTL® formula

oli,jl Ec
oli, j| |
0-7’7.7 — ©1 \/(,02

ift
ift

o

0

o

i, j]
¥

i, j]

— C.

AZ

:SO]-

OI‘O'[’I:,j] |: P2-
oli+1,5] = ¢
dk:1<k<jy

such that o[k, j] = ¢
andVi' : 3 <i <k,

O-[ilaj] |: ¥1-

Constraint Temporal Logic — p.84/101



Additional atomic constraints due fo ¢ quantifier

Casel :
c = (0"x ~ Oy)

¢ = (O"x ~y)V(O"x ~Oy) V...
V(O™ ~ O™ 'y) v O™ (z ~ Oy)
Case 2 :
c = (Czr~O0my)
¢ = (x ~O™y)V (Ox ~O™y) V...
V(O™ 'z ~ O™y) VO™ (O ~ 7))

Case 3 :
c = (Ox ~ Oy)

¢ = O~ Oy) Vv (Or ~y))

where ¢ is the CLTL® atomic constraint and ¢’ is the atomic constraint
equivalent fo ¢ parsed using (z ~ ¢y) and (Oz ~ y)
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ﬁ atc(k)

» afc (k): The set of all atomic constraints over U of
O-length at most k
g .
y: 2 4 6 8 10
xX: 1 3 5 7 9

» afc (2)is as follows:
{ x=x), (Xx=y), x=0x), Xx=0y), (x<Xx), (x<y), (Xx<OXx),
x<Oy), (y=x), (y=y). (y=0x) (y=0y),
(y<x).(y<y), (y<Ox).(y<Oy).(Ox=x) (Ox=Y),
(Ox=0x) ,(Ox=0y) ,(Ox<Xx), (Ox<y), (Ox<Ox),
(Ox<Oy) (Oy=x).(Oy=Yy), (Oy=0x) (Oy=0y),
(Oy<x).(Oy<y), (Oy<Ox) (Oy<Oy)}
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Link between CLTL and LTL

» CLIL formula ¢ of O-length k can be viewed as a LTL
formula over afc (k)

» Example
e O(x < Oy)
o .
yv: 2 4 6 8 10,...
x: 1 3 5 7 9,...
» Let O-length =2

2-frame(o) 1 { (x=x), (x<y), x<Ox), (x<Oy), (y=y).
(y<Ox), (y<Oy), (Ox=0x), (Ox<Oy), (Oy=0y)}
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» arfc(?2) is as follows:
{ (x=x), (x=y), x=0x), x=0y), (x<x), (xX<V),
X< Ox), (x<Qy), (y=x). (y =Yy). (y=0x), (y=0y),
(y<x), (y<y), (y<Ox), (y<Oy), (Ox=x), (Ox=Yy),
(Ox=0x), (Ox=0y), (Ox<x), (Ox<y), (Ox<Ox),
(Ox<Oy), (Oy=x), (Oy =y), (Oy=0x), (Oy=0y),
(Oy<x), (Oy<y), (Oy<Ox), (Oy<Oy)}

» Each constraint can e replaced by proposifions,
{p17p27 I 7p32}
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» CLIL formula can be written as LTL formula

» orrL ¢ O pg

» p: {p1.06.P7.08.P10.P15.016.D19. P24.P2s }
{D1.06.D7.D8 D10.D15 P16, D19,P24 P28 } - - -

» p ELTL @

» Lemma 5 (from (DD02)): Let ¢ be a CLIL formula
of O-lengfth k. Lef o be a Z valuation sequence
and lef p be the induced k frame sequence. Then

o = ¢ iff p FrL .
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» Corollary 1 Lef o and r be Z-valuation sequences
of same lengfth. If frame sequence induced by o is
identical to the frame sequence induced by r,
then for any CLTL formula ¢ of O-length k, v = ¢ iff

o= .

» Proof ;
cgel(p) < k-fs(c) € L(prr) { ."Lemma I}
<~ k-fs(t) e L(prrn) { . k-fs(1) = k-fs(o) }
— 7€ L(p) { --Lemma 1}
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Outline of the proof of theorem 1

» Claim :CLTL® formula (z < ¢z) has no equivalent CLTL formula.

03 r: @@= | . Y

T3 r: @O= oO=-—>0 > @

» No CLIL formula can distinguish between o and + because the
k-frame sequences induced by both of them are same

» CLTL® formula distinguishes between ¢ and
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Proof

» The proofis by contradiction

» Consider two families of models o; and r; fori > 1

» Length of o; and 7; is i + 1.

» o; and 7; are as follows:

01

02

03

04

K-fs(o) = k-fs(r)

Forany k < 1,

o E (X < OX)and7 £ (X < OX)
— 0 € L(x<Ox)andT € L(Xx < OX)

N NN

o o O O

o O O W

o O W

oS W

71

T2

73

T4

N NN

o O O O

o O O =

o O =
O =
et

{Observation 1}

{Observation 2}
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!

suppose there exists a formula, ¢ in CLIL such that
L(p)=LKX<OX), k=0-length of ¢

ox € L(p) { -.- Definition}

k-fs(o) € L(orr.) { - Lemma 1}

k-1s(1) € L(oyr) { - Observation 1and Corollary 2}
€ L(p) { --Lemma I}

Butmy € L(x< Ox) { .- Observation 2}

Contradiction
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ﬁ Validity of the labelling procedure

» suppose the labelling is not valid

» there is a first fime when the procedure labels the
vertex with a value which contradicts the strict
length

» let this vertex be u, let the vertex at the other end
of the offending path be v, v e X and the vertices
labelled up to this point be X
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I

\
* > three cases:

» pfrom uto vand slen ) > I(v) — I(u).
» Step 2 (a) of the procedure is applicable, and
l(u) <I(v) —slen ().
» pfrom vto uand slen(p) > I(u) — (V)
Two possibilities:
» Uwas labelled by step 2 (a) of the procedure.
» win X with a path g from uto w, s.t l(u) = I(w) — slen(q).
» vand w are |labelled consistently
» I(w) > (V) + slen(p) + slen(q.
» 1(U) > 1(v) + slen(p). leads to contradiction.
» Uwas labelled by step 2(b) of the procedure and
L(u) > I(v) + slen(p).
» pis astrict path from u to u, leads to contradiction because
there is no strict cycle in the graph.

N
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» infinite backward path in completfion of G, : @
sequence d:N — U x N, U is the nonempty set of
variables in the k-frame sequence, satisfying:

» foralli e N, there is an edge from d (i + 1) t0 d ().

» foralli e N, if d (i) isinlevel j,thend (i + 1) isin a level
greater than or equal to 5 + 1. ("level” of a vertex
(x,1) IS 1.

» apath dis strict if there exist infinitely many i for which
there is a <’-labelled edge from d (i + 1) o d (7).
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B

Lemma 6 Lef p’ be an annotated locally consistent
infinite k-frame sequence. Then p’ admits an
N-valuation sequence iff G, safisfies the following
conditions:

» There is no strict cycle in the completion of G .

» For all vertices u,v in the completion of
G, slen(u,v) < w.

» There is no strict infinife backward path in the
completion of G .
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Automata theoretic approach for CLTL®
nmonotonic infinitfe models

» Build an automaton (Af) which is an intersection
of :

» AZM: Vardi Wolper Automaton construction for
iInfinite models

4 Afc — (QaQOa_%aF)

» AZ is nondeterministic Buchi automaton

» Check the resulting automaton for emptiness to
decide the satisfiability of ¢
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ﬁ Construction of automata

» Azt Vardi Wolper Automaton construction for
finitfe models

» A state is final iff there is no next state formula in
that state

4 Afcc — (Q7QO7 _>7F)
» QIs The set of k-frames along with a separate
start state qq

» —isgiven by gg — ronrand r — r’ on ¢’ iff
(r,r") is locally consistent

» F=Q
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ﬁ Consistent relations from a vertex

» There can be both open forward and
open backward arcs

» There can be either open forward or
open backward arc

» Both arcs are absent

For finite models there is no open arc from the
last vertex
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» Build the formula automaton A{;TL . LTL version of
the given formula ¢.If automata could be build
that

» filter out k-frame sequences that are not locally
consistent and

» filter out k-frame sequences that don’t admit
Z-valuation sequences

» Intersect and check the resulting automaton for
emptiness 1o decide the safisfiability of ¢
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