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Abstract. This paper proposes a novel approach to solve the ordinal
regression problem using Gaussian processes. The proposed approach,
probabilistic least squares ordinal regression (PLSOR), obtains the prob-
ability distribution over ordinal labels using a particular likelihood func-
tion. It performs model selection (hyperparameter optimization) using
the leave-one-out cross-validation (LOO-CV) technique. PLSOR has con-
ceptual simplicity and ease of implementation of least squares approach.
Unlike the existing Gaussian process ordinal regression (GPOR) ap-
proaches, PLSOR does not use any approximation techniques for in-
ference. We compare the proposed approach with the state-of-the-art
GPOR approaches on some synthetic and benchmark data sets. Experi-
mental results show the competitiveness of the proposed approach.

Keywords: Gaussian processes, ordinal regression, probabilistic least
squares, cross-validation.

1 Introduction

Most of the works in machine learning have focused on the standard problems
of classification and regression. Classification problems aim to label examples
from a discrete unordered set, while regression problems aim to label examples
from a real valued set. Recently some new classes of learning problems started
emerging and the prominent among them is the ordinal regression problem [1].
This problem aims to provide labels to the examples from a discrete but ordered
set. It differs from a multi-class classification problem in that the labels are
ordered, and from a regression problem in that the labels are discrete. The
problem arises in social sciences and information retrieval, where humans rate
an item on an ordinal scale. In information retrieval, a user may grade the
retrieved documents as highly relevant, relevant, irrelevant or highly irrelevant.

Formally, we define the ordinal regression problem as follows. We are given a
sample of n labeled independent training examples, D = {(xi, yi)}ni=1, where xi

is an element of a d dimensional input space X (X ⊆ Rd) and yi is an element of
output space Y . The output space Y = {r1, r2, . . . , rq} is a discrete set with an
order among its elements, say r1 < r2 < . . . < rq . Our goal is to learn a decision
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function h : X → Y , such that it generalizes well. We consider an ordinal regres-
sion problem with r ordered categories and without loss of generality, we denote
them by r consecutive integers {1, 2, . . . , r}. Ordinal regression problems have
the property that the penalty for an incorrect prediction should be proportional
to the deviation of the predicted label from the true label.

Most of the works on ordinal regression problems are based on the large mar-
gin framework [1,2,3]. A distribution independent learning approach based on a
loss function between pairs of examples was used in [1] to perform ordinal regres-
sion. Fixed margin and sums of margin approaches [2] used the support vector
machine framework to solve the ordinal regression problem. They learn r − 1
thresholds that divide the real line into r consecutive intervals for r ordered
categories. However the thresholds learnt with this approach need not be or-
dered. Support vector ordinal regression [3] approach corrected this problem by
explicitly specifying the ordering constraint on the thresholds. It also proposed
a new formulation which implicitly takes into account the ordering constraint on
the thresholds. Kernel discriminant ordinal regression [4] extended the Kernel
discriminant learning for classification to the ordinal regression setting. In sparse
Bayesian ordinal regression [5], the proportional odds model [6] for ordinal re-
gression is extended using kernel methods, and a sparse solution is obtained by
imposing a zero-mean Gaussian prior distribution over the weight vector.

Gaussian processes (GP) are non parametric Bayesian models which provide
a probabilistic approach to learning in a kernel based framework [7]. The exist-
ing Gaussian process approaches for ordinal regression [8] use a non Gaussian
likelihood function for modeling the ordinal labels. The use of non Gaussian
likelihood forces it to use approximation methods like Laplace approximation
[7] or expectation propagation [9] to obtain an approximate Gaussian posterior.
The approach performs model selection by maximizing the marginal likelihood
using either a maximum a posteriori approach (MAP-GPOR) or expectation
propagation approach (EP-GPOR). MAP-GPOR and EP-GPOR are among the
state-of-the-art approaches for ordinal regression.

In this work, we propose a simple approach, probabilistic least squares ordinal
regression (PLSOR), to perform ordinal regression using Gaussian processes. In
PLSOR, the predictive distribution of the latent functions is learnt as a Gaus-
sian process regression (GPR) on ordinal variables. This results in a Gaussian
distributed posterior which avoids the use of any approximation methods. The
predictive distribution of ordinal targets is obtained by using a likelihood func-
tion which takes care of the regression nature of the latent function. In PLSOR,
the model parameters are estimated using leave-one-out cross-validation (LOO-
CV) [7]. The experiments on synthetic and benchmark data sets showed that the
performance of the PLSOR approach is comparable with that of the MAP-GPOR
and EP-GPOR approaches. This is also validated using a statistical significance
test.

The rest of the paper is organized as follows. In Section 2, we discuss Gaus-
sian process regression. The MAP-GPOR and EP-GPOR approaches are sum-
marized in Section 3. Section 4 discusses the proposed approach, probabilistic



Probabilistic Least Squares Ordinal Regression 685

least squares ordinal regression (PLSOR), in detail. Comparison of PLSOR with
the MAP-GPOR and EP-GPOR approaches on synthetic and benchmark data
sets is presented in Section 5. Finally, some conclusions are drawn in Section 6.

2 Gaussian Process Regression

A Gaussian process (GP) is a collection of random variables with the property
that the joint distribution of any finite subset of which is a Gaussian [7]. It gen-
eralizes Gaussian distribution to infinitely many random variables. The GP is
completely specified by a mean function and a covariance function. The covari-
ance function is defined over function values of a pair of input and is evaluated
using the Mercer kernel function over the pair of inputs. The covariance func-
tion expresses some general properties of functions such as their smoothness,
and length-scale. A commonly used covariance function is squared exponential
(SE) or Gaussian kernel

cov
(
f(xi), f(xj)

)
= K(xi, xj) = σ2

f exp(−
κ

2
||xi − xj ||2). (1)

Here f(xi) and f(xj) are function values associated with the inputs xi and xj

respectively. σ2
f and κ > 0 are hyperparameters associated with the covariance

function.
In a regression problem the output space Y is real valued, i.e. Y ⊆ R. We as-

sume a noisy Gaussian process regression (GPR) approach in which the outputs
lie around a latent function f(x) with an additive, independently and identi-
cally distributed (i.i.d.) Gaussian noise ε with mean 0 and variance σ2

n, i.e.
y = f(x) + ε. The likelihood function for the noisy GPR approach follows a
Gaussian distribution

p(y|f(x)) = N (f(x), σ2
n). (2)

Let D be the set consisting of n training data points X, the corresponding out-
puts y and n∗ test data points X∗. Let K = K(X,X), K∗ = K(X,X∗) and
K∗∗ = K(X∗,X∗). Here K(X,X∗) is an n× n∗ matrix of covariances evaluated
at all pairs of training and test input data. The matrices K(X,X), K(X∗,X)
and K(X∗,X∗) are also defined similarly. The GPR approach imposes a zero
mean GP prior over the training latent functions f and test latent functions f∗.
The predictive distribution for the test latent functions, p(f∗|D), is obtained by
integrating the conditional distribution p(f∗|f ,D) over the posterior distribution
p(f |D), i.e. p(f∗|D) =

∫
p(f∗|f ,D)p(f |D)df . In GPR, both the conditional dis-

tribution and the posterior distribution are multivariate Gaussians. Hence the
predictive distribution of the test latent functions is a multivariate Gaussian
with mean (4) and covariance (5),

p(f∗|D) = N (̄f∗, cov(f∗)),where (3)

f̄∗ = K�
∗ (K+ σ2

nI)
−1y, (4)

cov(f∗) = K∗∗ −K�
∗ (K+ σ2

nI)
−1K∗. (5)
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The predictive distribution of the test outputs y∗ is obtained by averaging the
likelihood (2) over predictive distribution of f∗, p(y∗|D) =

∫
p(y∗|f∗)p(f∗|D)df∗.

It is also a multivariate Gaussian with the mean same as that of f∗ while the
covariance is obtained by adding σ2

nI to the variance of f∗. Model selection
(hyperparameter optimization) is done using either Bayesian techniques or cross-
validation techniques [7].

Performing ordinal regression using GPR is simple and straightforward. It
treats the ordinal outputs as real numbers and perform regression on the ordinal
outputs. However, such an approach does not provide a valid probability distribu-
tion over the ordinal outputs. The Gaussian process ordinal regression (GPOR)
approaches [8], maximum a posteriori GPOR (MAP-GPOR) and expectation
propagation GPOR (EP-GPOR), provide a valid probability distribution over
the ordinal outputs. The following section briefly summarizes the MAP-GPOR
and EP-GPOR approaches.

3 Gaussian Process Ordinal Regression Approaches

MAP-GPOR and EP-GPOR use a zero mean Gaussian process prior. Under
noisy observations, for an input x and the latent function f , the likelihood func-
tion for an ordinal output y is defined as [8]

p(y|f) = Φ

(
by − f

σ

)
− Φ

(
by−1 − f

σ

)
(6)

where σ is the standard deviation of the Gaussian noise and Φ is the Gaussian
cumulative distribution function i.e. Φ(z) =

∫ z

−∞ N (δ; 0, 1)dδ. The thresholds
b0, b1, . . . , br ∈ R (b0 ≤ b1 ≤ . . . ≤ br where b0 = −∞ and br = ∞) are fixed so
that the likelihood function represents a valid probability distribution over the
ordinal outputs. The thresholds b1 ≤ b2 ≤ . . . ≤ br−1 divide a real line into r
contiguous intervals. A real latent function value is mapped to a discrete ordinal
output based on the interval in which it lies. The likelihood (6) is not a Gaussian
and therefore the posterior, p(f |D), is also not a Gaussian. MAP-GPORworks by
approximating the posterior as a Gaussian distribution using Laplace approxima-
tion while EP-GPOR uses expectation propagation (EP) [9]. The MAP-GPOR
and EP-GPOR approaches perform model selection by maximizing the evidence
p(D|θ), where θ is the model parameter vector which includes the kernel pa-
rameter κ in the covariance function1, the threshold parameters(b1, b2, . . . , br−1)
and the noise parameter σ in the likelihood function. In MAP-GPOR, model
selection is done using maximum a posteriori approach with Laplace approxi-
mation while in EP-GPOR, it is done using expectation propagation approach
with variational methods. Both MAP-GPOR and EP-GPOR take O(n3) time
for model selection as the optimization method requires inversion of an n × n
matrix.
1 GPOR approach uses a squared exponential covariance function with a single hy-
perparameter κ. cov(f(xi), f(xj)) = K(xi, xj) = exp(−κ

2
||xi − xj ||2), where f(xi)

and f(xj) are function values associated with the inputs xi and xj respectively.
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Performing ordinal regression using MAP-GPOR and EP-GPOR is compli-
cated since they use a non Gaussian likelihood. They have to use approxima-
tion methods like Laplace approximation or expectation propagation to obtain
a Gaussian posterior. We propose a new approach, probabilistic least squares
ordinal regression (PLSOR), which provides a simple and exact way to perform
ordinal regression using Gaussian processes.

4 Probabilistic Least Squares Ordinal Regression

PLSOR extends probabilistic least squares approach for classification [7] to the
ordinal regression setting. In PLSOR, the predictive distribution of test latent
functions is learnt using Gaussian process regression on ordinal outputs. The
predictive distribution of the test outputs is learnt by squashing a linear function
of test latent function predictive probability through a sigmoid. Since the test
latent function f∗ is learnt using GPR on ordinal outputs it takes real values
ranging from 1 to r (number of ordinal categories). We map f∗ to a real line

by using a linear map (α̂f∗ + β̂), where α̂, β̂ ∈ R. The real line is divided
into r contiguous segments using thresholds b1 ≤ b2 ≤ . . . ≤ br−1. The segment
(by∗−1, by∗) is associated with the ordinal category y∗ and maps the scaled latent
function value to that category. In PLSOR, the following likelihood function is
used to estimate the probability of an ordinal category y∗ for the test data x∗ :

p(y∗|f∗) = Φ(by∗ − (α̂f∗ + β̂))− Φ(by∗−1 − (α̂f∗ + β̂)). (7)

Here y∗ ∈ {1, 2, . . . , r}, b0, . . . , br ∈ R such that b0 ≤ b1 . . . ≤ br and Φ denotes
the Gaussian cumulative distribution function i.e. Φ(z) =

∫ z

−∞ N (δ; 0, 1)dδ. We
fix b0 = −∞ and br = ∞, so that the likelihood function is a valid probability
distribution. The predictive distribution of the test latent function f∗ is Gaussian
with mean μ∗ and variance σ2

∗ given by (4) and (5) respectively. The predictive
distribution of the test ordinal category y∗ is obtained by averaging the likelihood
(7) over the test latent function predictive distribution:

p(y∗|x∗,X,y, θ) =

∫
Φ(by∗ − (α̂f∗ + β̂))N (f∗|μ∗, σ2

∗)df∗

−
∫

Φ(by∗−1 − (α̂f∗ + β̂))N (f∗|μ∗, σ2
∗)df∗

= Φ

(
by∗ − (α̂μ∗ + β̂)
√
1 + α̂2σ2∗

)
− Φ

(
by∗−1 − (α̂μ∗ + β̂)

√
1 + α̂2σ2∗

)
. (8)

The predictive distribution (8) is redefined as

p(y∗|x∗,X,y, θ) = Φ

(
αμ∗ + βy∗√
1 + α2σ2∗

)
− Φ

(
αμ∗ + βy∗−1√

1 + α2σ2∗

)
(9)

where α ∈ R, β0 = −∞, βr = ∞, β1, β2, . . . , βr−1 ∈ R such that β1 ≤ β2 ≤
. . . ≤ βr−1. Here we have redefined the variables as α = −α̂ and βi = bi − β̂. θ
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is a vector of model parameters which include α, thresholds (β1, β2, . . . , βr−1),
kernel parameters (σ2

f and κ), and noise parameter (σ2
n). The parameters σ2

f ,

κ, and σ2
n appear in (9) through the expressions for mean (μ∗) and variance

(σ2
∗). Estimating the optimal model parameters (θ∗) (model selection) can be

done using the leave-one-out cross-validation (LOO-CV) technique which we will
discuss in Section 4.1. The prediction is made by selecting the ordinal category
with highest probability, i.e. argmax

1≤k≤r
p(y∗ = k|x∗,X,y, θ∗).

4.1 Model Selection Using Leave-One-Out Cross-Validation

Model selection for the PLSOR approach is done using the leave-one-out cross-
validation (LOO-CV) [7] technique. The log predictive probability of the ith

training example xi, when learnt using the remaining training examples, is

log p(yi|X,y−i, θ) = log

(

Φ

(
αμ−i + βyi√
1 + α2σ2

−i

)
− Φ

(
αμ−i + βyi−1√

1 + α2σ2
−i

))

(10)

where yi ∈ {1, 2, . . . , r} is the output of ith training example xi and y−i is the
output vector of the remaining training examples. The predictive distribution
mean μ−i and variance σ2

−i for the training example xi are obtained by per-
forming a Gaussian process regression on all training examples except xi and
are given by (4) and (5) respectively. Model parameters (θ) are estimated by
optimizing the sum of the log leave-one-out (LOO) predictive probability (10)
over all the training examples. The optimization problem is defined as follows

(θ∗) = argmin
θ

L(θ) = argmin
θ

−
n∑

i=1

log p(yi|X,y−i, θ) =

argmin
α,β1,Δ2,...,Δr−1,κ,σ2

f ,σ
2
n

−
n∑

i=1

log

(

Φ

(
αμ−i + βyi√
1 + α2σ2

−i

)
− Φ

(
αμ−i + βyi−1√

1 + α2σ2
−i

))

subject to β1 ∈ R,

βj = β1 +

j∑

l=2

Δl ∀j = 2, . . . , r − 1 , Δl ≥ 0 ∀l = 2, . . . , r − 1. (11)

This problem minimizes the negative log predictive probability (NLP) measure
over all the training examples. Note that the constraint, β1 ≤ β2 ≤ . . . ≤ βr−1,
is imposed by redefining the threshold variables as βj = β1 +

∑j
l=2 Δl using

positive padding variables Δl. The optimal model parameter values are obtained
by solving the optimization problem (11). The optimal model parameter values
are used to make prediction using (9).

The proposed approach requires the computation of predictive mean and vari-
ance for n training examples. Computation of the predictive mean and variance
for each training example involves inversion of an (n − 1) × (n − 1) covariance
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matrix which requires O(n3) time. Therefore the complete LOO-CV procedure
takes O(n4) time which makes the method computationally expensive. But we
get around this problem by noting that we need to perform inversion of only
one covariance matrix, covariance matrix K, formed by all training examples.
It is then used to compute the predictive mean μ−i and variance σ2

−i for each
leave-one-out case as [10]

μ−i = yi −
[
K−1y

]
i
/
[
K−1

]
ii

(12)

σ2
−i = 1/

[
K−1

]
ii
. (13)

To evaluate the expressions for μ−i and σ2
−i, we need to perform inversion of the

covariance matrixK and it takesO(n3) time. Once we haveK−1, we precompute
K−1y and the computation of μ−i and σ2

−i for the leave-one-out case i is done in
constant time using (12) and (13) respectively. The computational complexity of
the entire LOO-CV procedure is dominated by the covariance matrix inversion
and it is O(n3).

The proposed approach, PLSOR, provides a simple and straightforward way
to perform ordinal regression using Gaussian processes. In PLSOR, the model
parameters are learnt using LOO-CV technique which is easier to implement
than the Bayesian techniques employed in MAP-GPOR or EP-GPOR. The entire
LOO-CV procedure takes O(n3) time, and hence the computational complexity
of PLSOR is the same as that of MAP-GPOR or EP-GPOR. In PLSOR, the
predictive distribution of test latent functions is learnt using GPR, which in turn
uses the likelihood (2) for the training outputs, while the predictive distribution
of the test outputs is learnt using the likelihood (7). We call the former likelihood
as the training likelihood and the latter as the test likelihood. PLSOR differs
from MAP-GPOR or EP-GPOR in using distinct training and test likelihoods.
Further PLSOR does not use any approximations unlike MAP-GPOR or EP-
GPOR. A summary of the Gaussian process approaches to ordinal regression,
MAP-GPOR, EP-GPOR and PLSOR, is given in Table 1.

Table 1. A Summary of the properties of the Gaussian process approaches to ordinal
regression, MAP-GPOR, EP-GPOR and PLSOR

Property MAP-GPOR EP-GPOR PLSOR

Training
likelihood

Φ

(
by−f

σ

)
− Φ

(
by−1−f

σ

)
Φ

(
by−f

σ

)
− Φ

(
by−1−f

σ

)
N (f, σ2

n)

Test
likelihood

Φ

(
by−f

σ

)
− Φ

(
by−1−f

σ

)
Φ

(
by−f

σ

)
− Φ

(
by−1−f

σ

)
Φ(by − (αf + β))−
Φ(by−1 − (αf + β))

Inference Laplace approximation Expectation propagation
approximation

Exact, no approximation

Model
selection

Evidence maximization Evidence maximization NLP minimization

Computational
complexity

O(n3) O(n3) O(n3)
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5 Experimental Results

We perform the experiments on synthetic and benchmark data sets to compare
the performance of the proposed PLSOR approach with MAP-GPOR and EP-
GPOR approaches. First, we conduct experiments on the synthetic data set to
visualize the behavior of the approaches and then, we study their generalization
performance on several benchmark data sets.

5.1 Synthetic Data

We conduct experiments on a 1-dimensional synthetic data set with five ordinal
categories. The training data set contains 20 points (marked by pluses in Fig.1)
with two training data points in the interval [2, 4] belonging to category 1, three
in the interval [4, 6] belonging to category 2, ten in the interval [8, 14] belonging
to category 3, five in the interval [14, 18] belonging to category 4, and one in the
interval [18, 20] belonging to category 5. The test data consists of 200 points in
the interval [0, 20], each separated by a distance of 0.1. Fig.1(a) shows the mean
and the confidence bound of the output predictive distribution for EP-GPOR
on the synthetic data set. Similar plot for PLSOR is depicted in Fig.1(b). From
Fig.1, we observe that the performance of both the approaches is similar.

5.2 Benchmark Data

We report the experimental results of our approach on 9 benchmark data sets
[8]. Properties of these benchmark data sets are summarized in Table 2. These
are regression data sets. The continuous target values are discretized into ordinal
values using equal frequency binning. Here, we divide the range of target values
into intervals of the same length. Target values are then relabeled according to
the interval in which they fall. The ordinal target values thus obtained range
from 1 to r, where r denotes the number of intervals. For each data set, we
generate two versions, 5 bins and 10 bins, obtained by discretizing the target
values in the original data set into 5 and 10 intervals respectively. We conduct
experiments on both the versions of the data sets. Each data set is randomly

Table 2. Benchmark data sets and their properties

Data set AttributesTraining InstancesTest Instances

Diabetes 2 30 13

Pyrimidine 27 50 24

Triazines 60 100 86

Wisconsin 32 130 64

Machine 6 150 59

AutoMPG 7 200 192

Boston 13 300 206

Stocks 9 600 350

Abalone 8 1000 3177
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(a) EP-GPOR

(b) PLSOR

Fig. 1. The mean value and the confidence bound of the output predictive distribution
for EP-GPOR and PLSOR on an 1-dimensional synthetic data set
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Table 3. Comparison of the results of PLSOR with MAP-GPOR and EP-GPOR
on benchmark data sets for the 5 bins version. Mean zero-one errors are reported in
percentage. Mean absolute errors are rounded off to 2 decimal places. Values in bold
letters denote the lowest mean value among the three approaches.

Mean zero-one error(%) Mean absolute error

Data MAP-GPOR EP-GPOR PLSOR MAP-GPOR EP- GPOR PLSOR

Diabetes 54.23±13.78 54.23±13.78 48.46±11.2 0.66±0.14 0.67±0.14 0.62±0.16

Pyrimidine 39.79±7.21 36.46±6.47 39.37±9.41 0.43±0.09 0.39±0.07 0.46±0.19

Triazines 52.91±2.15 52.62±2.66 54.42±3.43 0.69±0.02 0.69±0.03 0.74±0.063

Wisconsin 65.00±4.71 65.16±4.65 65.70±3.23 1.01±0.09 1.01±0.09 1.24±0.10

Machine 16.53±3.56 16.78±3.88 18.39±3.45 0.19±0.04 0.19±0.04 0.21±0.05

AutoMPG 23.78±1.85 23.75±1.74 25.76±2.19 0.24±0.02 0.24±0.02 0.26±0.02

Boston 24.88±2.02 24.49±1.85 24.59±2.57 0.26±0.02 0.26±0.02 0.26±0.02

Stocks 11.99±2.34 12.00±2.06 10.70±1.66 0.12±0.02 0.12±0.02 0.11±0.02

Abalone 21.50±0.22 21.56±0.36 22.05±0.30 0.23±0.00 0.23±0.00 0.24±0.00

partitioned into training and test data sets and 20 such training and test data
set instances are generated by repeated independent partitioning. We use the
Gaussian kernel (1) in all our experiments.

The model parameter values are obtained by solving the optimization problem
(11). The optimization is run with random as well as fixed1 initialization of
optimization variables; we report the result for which the objective function
value is the least.

We compare the generalization performance of PLSOR with MAP-GPOR
and EP-GPOR on the benchmark datasets. We use two evaluation metrics to
compare the performance, zero-one error and absolute error [8]. Let the actual
test outputs be {y1, . . . , yn∗} and the predicted test outputs be {ŷ1, . . . , ˆyn∗}.
Then the zero-one error and absolute error are defined as follows.

zero-one error. gives the fraction of incorrect predictions on test data i.e.
1
n∗

∑n∗
i=1 I(ŷi 	= yi), where I(·) is an indicator function which gives 1 when

the argument is true and 0 otherwise.
absolute error. gives the average deviation of predicted test outputs from the

actual test outputs i.e. 1
n∗

∑n∗
i=1 |ŷi − yi|.

For each data set, zero-one and absolute errors for the proposed approach is
obtained on all the 20 instances of training and test data sets. The mean of the
zero-one and absolute errors, along with their standard deviation, are used to
compare the performance of various approaches. We prefer methods with low
mean zero-one and mean absolute errors. Tables 3 and 4 compare PLSOR with
MAP-GPOR and EP-GPOR for the 5 bins and 10 bins cases respectively.

We observe from Tables 3 and 4 that the results obtained with the PLSOR ap-
proach are comparable with those obtained with the MAP-GPOR and

1 Fixed initialization is done as given in [8] where we choose σ2
f = 1, κ = 1/d, d

being the dimension of the data set, β1 = −1, Δl = 2/r, r being number of ordinal
categories.
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Table 4. Comparison of the results of PLSOR with MAP-GPOR and EP-GPOR on
benchmark data sets for the 10 bins version. Mean zero-one errors are reported in
percentage. Mean absolute errors are rounded off to 2 decimal places. Values in bold
letters denote the lowest mean value among the three approaches.

Mean zero-one error(%) Mean absolute error

Data MAP-GPOR EP-GPOR PLSOR MAP-GPOR EP-GPOR PLSOR

Diabetes 83.46±5.73 83.08±5.91 76.92±9.98 2.14±0.33 2.14±0.33 1.50±0.37

Pyrimidine 55.42±8.01 54.38±7.70 55.63±8.47 0.88±0.18 0.83±0.13 0.89±0.18

Triazines 63.72±4.34 64.01±3.78 69.88±4.97 1.20±0.07 1.20±0.07 1.37±0.20

Wisconsin 78.52±3.58 78.52±3.51 75.94±1.86 2.14±0.18 2.14±0.18 2.94±0.13

Machine 33.81±3.91 33.73±3.64 35.17±3.64 0.48±0.07 0.47±0.08 0.53±0.08

Auto MPG 43.96±2.81 43.88±2.60 46.35±2.48 0.50±0.03 0.50±0.03 0.56±0.04

Boston 41.53±2.77 41.26±2.86 41.99±2.82 0.49±0.03 0.49±0.03 0.51±0.04

Stocks 19.90±1.72 19.44±1.91 18.17±1.79 0.20±0.02 0.20±0.02 0.19±0.02

Abalone 42.60±0.91 42.27±0.46 44.24±0.68 0.51±0.01 0.51±0.01 0.55±0.01

Table 5. Average rank of each of the ordinal regression approaches, MAP-GPOR,
EP-GPOR and PLSOR, over all the data sets and the Friedman statistic computed
over all the approaches

5 bins 10 bins

zero-one absolute zero-one absolute

MAP-GPOR 1.944 1.778 2.167 1.833

EP-GPOR 1.722 1.778 1.500 1.611

PLSOR 2.333 2.444 2.333 2.556

FF 0.8266 1.3880 1.8449 2.5841

EP-GPOR approaches. PLSOR is found to perform better than MAP-GPOR
and EP-GPOR on two data sets, Diabetes and Stocks. On other data sets, the
PLSOR results are close to the MAP-GPOR and EP-GPOR results.

We use the Friedman test [11] to check if the performance of the proposed
approach differs significantly from the existing GPOR approaches. Here we com-
pare 3 approaches on 9 data sets. Therefore, the F distribution has 2 and 16
degrees of freedom2. For the level of significance α = 0.05, the critical F value
is 3.63. Table 5 reports the average rank of the ordinal regression approaches,
MAP-GPOR, EP-GPOR and PLSOR, over all the data sets. It also reports
the Friedman statistic FF [11] computed over all approaches for 5 bins and 10
bins cases with respect to zero-one and absolute errors. In all the cases, the
computed FF values are less than the critical F value (due to the ranks being
similar). Hence there does not exist any significance differences between various
approaches. Thus, the proposed PLSOR approach is simple, easy to implement
and gives competitive performance compared to the existing state-of-the-art GP
based approaches for ordinal regression.

2 For K approaches and N data sets, F distribution has K − 1 and (K − 1)(N − 1)
degrees of freedom.
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6 Conclusion

In this work, we proposed a novel approach to solve the ordinal regression prob-
lem using Gaussian processes. The proposed approach, probabilistic least squares
ordinal regression (PLSOR), provided an easy and exact way to perform ordinal
regression using Gaussian processes. Here model selection is performed using
leave-one-out cross-validation technique. Experiments on synthetic and bench-
mark data sets showed that the proposed approach is competitive with the state-
of-the-art GPOR approach. In future, we would like to develop sparse models
for the Gaussian process ordinal regression approaches so that the training time
and inference time could be reduced considerably.
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