
Multi-Task Learning Using Shared

and Task Specific Information

P.K. Srijith and Shirish Shevade�

Computer Science and Automation
Indian Institute of Science, Bangalore

{srijith,shirish}@csa.iisc.ernet.in

Abstract. Multi-task learning solves multiple related learning problems
simultaneously by sharing some common structure for improved gen-
eralization performance of each task. We propose a novel approach to
multi-task learning which captures task similarity through a shared basis
vector set. The variability across tasks is captured through task specific
basis vector set. We use sparse support vector machine (SVM) algorithm
to select the basis vector sets for the tasks. The approach results in a
sparse model where the prediction is done using very few examples. The
effectiveness of our approach is demonstrated through experiments on
synthetic and real multi-task datasets.
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1 Introduction

Multi-task learning (MTL) is used in situations where one has to solve several
related learning problems. Multi-task learning models each learning problem as
a separate task but instead of learning the tasks independently, learns them
together [1]. It is extremely effective when each learning problem is associated
with a limited dataset. It enables a task to be learnt using the data from multiple
related tasks. This results in a better predictive performance of the individual
tasks. It has been shown that multi-task learning performs better than learning
tasks independently [2,3,4]. Multi-task learning methods are successfully applied
to applications like user preference modeling [5] and conjoint analysis [6].

Multi-task learning (MTL) has recently created a lot of interest in the machine
learning community. Many approaches have been proposed to effectively learn
multiple related tasks. Task similarity could be captured by restricting different
task functions to be close to each other in some distance measure [4]. Bayesian
approaches [5] capture task similarity by sharing a common prior among dif-
ferent tasks. Other approaches capture task similarity by sharing a common
internal representation [2,3] across all the tasks. Most of the kernel based multi-
task learning approaches [4] use all the training examples to make a prediction,
resulting in higher computational and storage requirements. Also, they try to
capture only task similarity and not task variability.
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We propose a novel multi-task learning model in which task similarity is cap-
tured by sharing a common set of basis vectors across all tasks. In addition, it
has task specific basis vectors which capture the variability across different tasks.
It uses both the common set and the task specific set to make predictions for the
test data. The use of both the common set and the task specific set helps it to
capture the relatedness between tasks more effectively. The basis vector sets are
learnt by extending the sparse SVM algorithm [7] for single task learning to the
multi-task scenario. It results in a sparse model which requires very few train-
ing examples to make a prediction. This enables it to make predictions much
faster and is extremely useful when dataset size is large. Experimental results
on synthetic and real datasets show the usefulness of our approach.

We discuss some related work in section 2. Section 3 discusses the proposed
sparse multi-task learning approach in detail. Section 4 presents the experimen-
tal results of running the proposed approach on synthetic and real multi-task
datasets. Finally we conclude in section 5.

2 Related Work

We consider multi-task learning problems with T tasks. Each task t is associated
with a dataset Dt with mt examples, i.e. Dt = {xti, yti}mt

i=1. Let n =
∑T

t=1 mt

be the total number of examples from all the tasks. Each task specific dataset
Dt comes from the same input and output space X × Y where X ⊂ Rd and
Y = {+1,−1} for classification or Y ⊂ R for regression. We assume that task
specific datasets are associated with a different but related sampling distributions
Pt. The goal is to learn T functions f1, f2, . . . , fT for T tasks such that each task
specific function ft gives good generalization performance.

Regularized multi-task learning [8] captures similarity among tasks by as-
suming all the task specific functions to be close to each other. The parameters
of task specific functions are learnt using the modified SVM framework. The
approach uses almost the entire training examples to make a prediction. The
proposed sparse multi-task learning approach differs from it in using very few
training examples to make a prediction. Radial basis function network for multi-
task learning [9] captures similarity by sharing the basis functions across all the
tasks. The proposed approach differs from it in having a task specific basis func-
tion set in addition to the shared set. It enables the proposed approach to more
effectively capture the task relations.

3 Sparse Multi-Task Learning

Sparse multi-task learning approach captures the similarity between tasks by
restricting the task specific functions to share some common structure. It models
this by assuming the predictive function for a task to have a common part shared
by all the tasks and a task specific part particular to the task. It represents the
predictive function for a task t as ft(x) = wc.φ(x)+wt.φ(x), where φ is a feature
map which maps the examples from input space X to some reproducing kernel
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Hilbert space H with an associated kernel function K. The common part wc

captures the similarity among the tasks, while the task specific part wt captures
the variability across different tasks. We assume that the common part wc takes
the basis function expansion form wc =

∑N
c=1 αcφ(xc) where φ(xc) is the basis

associated with the example xc in the common basis vector set C of size N and
α is the parameter associated with the common set C. Examples in the common
basis vector set C could belong to any task. Similarly the task specific part wt

for a task t is represented as wt =
∑Mt

j=1 βtjφ(xtj), where φ(xtj) is the basis
associated with the example xtj in the task specific basis vector set Jt of size
Mt and βt is the parameter associated with the task specific set Jt. Examples
in the task specific basis vector set Jt belongs only to task t. Using the basis
function expansion form and kernels to represent the inner product between
basis functions, the predictive function ft for a task t could be written as

ft(x) = KxC .α
� +KxJt.β

�
t (1)

whereKxC = [K(x, x1), . . . ,K(x, xN )], α = [α1, . . . , αN ],KxJt = [K(x, xt1), . . . ,
K(x, xtMt)], βt = [βt1, . . . , βtMt ] and K(xi, xj) = φ(xi).φ(xj).

The selection of basis vector sets and the estimation of parameters for multi-
task classification problems are done by minimizing the objective function

argmin
α,β1,...,βT ,C,J1,...,JT

γ

2
αKCCα

� +
λ

2

T∑

t=1

βtKJtJtβ
�
t +

1

2

T∑

t=1

∑

i∈It

(1 − ytioti)
2 (2)

where γ and λ are regularization parameters, KCC is the kernel matrix formed
from examples in the common set C, KJtJt is the kernel matrix formed from
examples in the task set Jt, oti = KiCα

� + KiJtβ
�
t is the output of the ith

example belonging to task t, and It = {i : 1− ytioti > 0}.
The regularization parameter controls the common and task specific basis

vector sizes. A low value of γ relative to λ selects more common basis vectors
than task specific basis vectors. This is ideal for the situations in which tasks
are similar to each other. In the limit when γ

λ tends to 0, this is equivalent to
combined task learning in which a single classifier is learned by pooling together
data from all the tasks. But in situations where tasks are dissimilar it is ap-
propriate to choose a low value for λ relative to γ resulting in the selection of
more task specific basis vectors than common basis vectors. In the limit when
λ
γ tends to 0,this is equivalent to single task learning in which tasks are learnt
independently using their respective datasets.

The basis vector sets and the parameters are obtained by extending the sparse
SVM [7] approach for single task learning to the multi-task learning scenario. We
select the common basis vector set and task basis vector sets incrementally. After
each basis selection we re-estimate the common and task parameters. Section 3.1
discusses the procedure to estimate the parameters assuming we have selected
common basis vector set C and task basis vector sets Jt’s. Section 3.2 discusses
the procedure to select the common and task basis vector sets.
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3.1 Parameter Estimation

Sparse MTL approach needs to estimate T +1 parameters, one common param-
eter α and T task parameters βt. We use an alternative optimization approach
to estimate the parameters. The approach minimizes the objective function (2)
with respect to one of the parameter keeping others fixed. This is repeated for
each parameter and the entire procedure is continued until the relative decrease
in objective function value becomes small. Algorithm (1) describes the parameter
estimation procedure in detail.

Algorithm 1
Procedure Parameter Estimation
Input: C, J1, . . . , JT
Output: α, β1, . . . , βT

1. Set k = 0. Choose suitable starting vectors α(0), and βt
(0) for each task t.

repeat
2. For the current values of task parameters(βt

(k)), obtain α(k+1) by min-
imizing the objective function (2) with respect to α using Newton
method with line search.

3. for each task t
4. For the current value of common parameter(α(k+1)), obtain

βt
(k+1) by minimizing the objective function (2) with respect

to βt using Newton method with line search.
5. k ←k+1
6. until relative decrease in objective function value (2) is small.

The parameter estimation uses the Newton method and it requires the calcula-
tion of the gradients and the generalized Hessians of the objective function (2).
The gradients and the generalized Hessians of the objective function (2) with
respect to the parameters α and βt’s are

gα = γKCCα
� −∑T

t=1 KCIt [yIt − oIt ] Pα = γKCC +

T∑

t=1

KCItKItC

gβt = λKJtJtβ
�
t −KJtIt [yIt − oIt ] Pβt = λKJtJt +KJtItKItJt∀t (3)

Here g and P denote the gradient and the generalized Hessian respectively with
respect to the parameters denoted by the subscripts, yIt is the column vector of
labels from task t indexed by It, and oIt is the column vector of outputs from
task t indexed by It.

3.2 Basis Vector Selection

The basis vectors are selected greedily in an incremental mode. The selection
involves adding basis vectors to the common set and to T task specific sets. The
basis vectors for the common set are obtained from examples from all the tasks
while basis vectors for the task specific set are obtained from the task specific
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examples. Common basis vectors are selected first and task specific basis vectors
are selected later. The basis vectors are selected until the relative decrease in
the objective function value becomes small. Alternatively, one can predefine the
number of basis vectors to be selected. The basis vector selection procedure
results in a sparse model with very few elements in the common set and task
specific sets. Algorithm 2 describes the basis vector selection procedure in detail.

Algorithm 2
Procedure Basis Vector Selection
1. repeat
2. Select a basis vector from the complete training data.
3. Add the selected basis vector to the common set C.
4. Perform parameter estimation using Algorithm 1.
5. until relative decrease in objective function value is small
6. for each task t
7. repeat
8. Select a basis vector from the training dataset Dt.
9. Add the selected basis vector to the task specific set Jt.
10. Perform parameter estimation using Algorithm 1.
11. until relative decrease in objective function value is small

During basis vector addition, a basis vector is selected from the training set
which results in maximum decrease in objective function value on addition of
it to the basis set. Selecting a basis vector from the entire training set is time
consuming. Hence the basis vector is selected from a candidate set of size κ
containing κ examples selected randomly from the training set. During basis
selection, the objective function is optimized only with respect to the parameter
corresponding to the newly added basis vector. In this case the objective function
is a simple quadratic function in the variable of optimization. Therefore the
optimization variable and the decrease in the objective function value can be
calculated analytically. Let the newly added basis vector to the common set be
c and the parameter corresponding to it be αc. Then αc and the reduction in
the objective value is given by −gαc/Pαc and g2αc

/Pαc respectively, where

gαc = γKcCα−
T∑

t=1

∑

i∈It

KcIt(yIt − oIt) Pαc = γKcc +

T∑

t=1

KcItKItc (4)

We could obtain similar expressions for task specific basis vector selection also.
After each basis vector addition we obtain new values of the parameters by
following the parameter estimation procedure described in section 3.1.

Newton method and basis vector selection require modifications in the gener-
alized Hessian due to changes in the sets It, C and Jt. It could be done cheaply by
maintaining a Cholesky decomposition of the generalized Hessian [7] and using
efficient rank one updates [10]. Let the number of training examples in each task
specific dataset be m and total number of examples be n (n = Tm). Let current
number of elements in the common basis vector set be N and task specific basis
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vector set be M . On addition of a new common basis vector the cost incurred for
computing new elements of the generalized Hessian and maintaining its Cholesky
decomposition are O(TmN) and O(N2) respectively. Assuming N � n the cost
of a single common basis vector addition is O(κnN). Setting maximum num-
ber of common basis vectors to Nmax, common basis vector set selection takes
O(κnN2

max) time. Similarly the addition of a single task specific basis vector
takes O(κmM) time(assuming M < m). Setting maximum number of task spe-
cific basis vectors toMmax, task specific basis vector selection takesO(κmM2

max)
time. For all tasks it takes O(κTmM2

max) = O(κnM2
max) time.Hence the time

complexity of the proposed approach is O(κnN2
max) +O(κnM2

max).
Multi-task regression problems are solved in a similar way to the classifi-

cation problems. The difference comes in the objective function which uses a
least squares loss function instead of the squared hinge loss function used in the
multi-task classification problem (5). Multi-task regression problem minimizes
the following objective function.

argmin
α,β1,...,βt,C,J1,...,JT

γ

2
αKCCα

� +
λ

2

T∑

t=1

βtKJtJtβ
�
t +

1

2

T∑

t=1

mt∑

i=1

(yti − oti)
2 (5)

The calculation of gradients and generalized Hessians for the objective function
(5) is similar to (3) except that It contains the entire training examples from
task t.

4 Experiments

We conduct experiments for both multi-task classification and regression prob-
lems. Classification experiments are conducted on a synthetic dataset. Regres-
sion experiments are done on a real dataset. We compare the proposed sparse
multi-task learning model (sparseMTL) against regularized multi-task learn-
ing (regMTL) [4], combined task learning (sparseCTL) and single task learning
(sparseSTL). SparseCTL is learnt by pooling together data from all the tasks
and then learning a single model on the combined dataset using sparse SVM
[7]. The results reported for sparseCTL use the same number of basis vectors as
sparseMTL. In sparseSTL each task is learnt independently using sparse SVM
on the dataset corresponding to that task. The results reported for sparseSTL
use the entire training dataset corresponding to the task as the basis vector set.

All the experiments use the Gaussian kernel, K(xi, xj) = exp
(− ||xi−xj||2

2σ2
d

)
.

4.1 Multi-task Classification

Multi-task classification experiments are done on a synthetic dataset. The syn-
thetic data models the preferences of individuals while choosing products. The
dataset is simulated as described in [4]. The synthetic data consists of 30 tasks.
Every task is associated with 96 training examples and 96 test examples. In total



Multi-Task Learning Using Shared and Task Specific Information 131

Table 1. Mean misclassification error and mean number of basis vectors (given in
brackets) for regMTL, sparseMTL, sparseSTL and sparseCTL on the synthetic data.
Bolded column indicates the best result. We also report mean number of common basis
vectors and task basis vectors obtained for sparseMTL on the synthetic data.

Similarity RegMTL SparseMTL SparseCTL SparseSTL

High 8.16%(964) 7.22%(60) 15.59%(60) 10.49%(96)

Low 9.79%(1330) 9.40%(70) 29.06%(70) 10.44%(96)

Similarity Common Task

High 18 42

Low 12 58

there are 2880 training and 2880 test examples. We consider two kinds of syn-
thetic data, one in which tasks are less similar and the other in which tasks are
more similar. For both the cases we consider synthetic datasets with low noise.
Table 1 shows the mean misclassification error of different approaches over 5 in-
dependent runs on the dataset. It also reports the mean number of common and
task basis vectors obtained for sparseMTL. Each approach is run for different
hyper-parameter value settings and the best among those is reported.

We could observe from Table 1 that sparseMTL gives the best result for both
the high similarity and the low similarity dataset. In addition the sparseMTL
approach provides an advantage in terms of number of basis vectors needed for
prediction. SparseMTL requires an order of magnitude less number of basis vec-
tors than regMTL and performs better than regMTL. In the low similarity case
sparseMTL is found to select relatively less number of common basis vectors and
more number of task specific basis vectors in order to capture the dissimilarity
among tasks . In the high similarity case, it is found to select relatively more
number of common basis vectors and less number of task specific basis vectors.

4.2 Multi-task Regression

Multi-task regression experiments are done on school dataset[4]. The dataset
consists of examination records of 15362 students over 139 schools. Each student
record has 27 dimensions and the number of student records associated with
each school varies from 20-150. The goal is to predict exam scores of students
from each school. We used 75% of the examples from each task as the training
set and the remaining 25% as the test set. In total the training data contains
11472 examples and the test data contains 3890 examples. The performance
metric used is the explained variance[4] which is defined as 1− sum squared error

total variance .
Table 2 reports the mean explained variance and the mean number of basis
vectors required for regMTL, sparseMTL, sparseSTL, and sparseCTL over 10
independent runs on the school dataset. It also reports the mean number of
common and task basis vectors selected by sparseMTL.

We could observe from Table 2 that sparseMTL performance is marginally
better than regMTL. More importantly it could achieve this performance with
very less number of basis vectors. SparseMTL is found to select more number
of common basis vectors than task basis vectors capturing the high similarity
among the tasks in the school dataset.
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Table 2.Mean explained variance and mean number of basis vectors (given in brackets)
for regMTL, sparseMTL, sparseSTL and sparseCTL on the school data. Bolded column
indicates the best result among the different approaches. In sparseSTL every task uses
the entire training data corresponding to it as the basis vector set and its size varies
across tasks. We also report the mean number of common and task basis vectors selected
by sparseMTL on the school dataset.

RegMTL SparseMTL SparseCTL SparseSTL

0.3275(11330) 0.3282(75) 0.2833(75) 0.2710

Total Common Task

75 65 10

5 Conclusion

We proposed a novel approach to multi-task learning which captures the task
relationships through common and task specific basis vector sets. We also devel-
oped an approach to select the basis vector sets. It resulted in a sparse multi-task
model which uses very few training examples for predictions. The sparse model
can handle very large datasets and makes predictions faster. Experimental re-
sults showed that the proposed approach was able to achieve the generalization
performance close to that achieved by other multi-task approaches with very
few number of basis vectors. The proposed approach, however, is not directly
applicable to multi-label classification problems since the tasks share the dataset.
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