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Abstract. This paper proposes a sparse modeling approach to solve or-
dinal regression problems using Gaussian processes (GP). Designing a
sparse GP model is important from training time and inference time
viewpoints. We first propose a variant of the Gaussian process ordi-
nal regression (GPOR) approach, leave-one-out GPOR (LOO-GPOR). It
performs model selection using the leave-one-out cross-validation (LOO-
CV) technique. We then provide an approach to design a sparse model
for GPOR. The sparse GPOR model reduces computational time and
storage requirements. Further, it provides faster inference. We compare
the proposed approaches with the state-of-the-art GPOR approach on
some benchmark data sets. Experimental results show that the proposed
approaches are competitive.
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1 Introduction

In ordinal regression problems, examples are labeled from a discrete and or-
dered set. We consider an ordinal regression problem with r ordered categories
denoted by r consecutive integers Y = {1, 2, . . . , r}. Given a sample of n labeled
independent training examples, D = {(xi, yi)}ni=1, where xi is an element of a d
dimensional input space X (X ⊆ Rd) and yi ∈ Y , the goal is to learn a decision
function h : X → Y , which generalizes well.

Ordinal regression problems have recently received a lot of interest from the
machine learning community. Herbrich et al. [5] proposed a distribution inde-
pendent learning approach based on a loss function between pairs of examples.
Shashua and Levin [8] proposed fixed margin and sums of margin approaches
to solve the ordinal regression problem using the support vector machine frame-
work. However the thresholds learnt to perform ordinal regression with this
approach need not be ordered. Chu and Keerthi [3] proposed a new formula-
tion which performs implicit ordering of the thresholds for ordinal variables.
Recently, Sun et al. [10] extended Kernel discriminant learning for classifica-
tion to the ordinal regression setting. The sparse Bayesian ordinal regression [1]
approach used the proportional odds model and obtained a sparse solution by
imposing a zero-mean Gaussian prior distribution over the weight vector.
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Gaussian process ordinal regression (GPOR) [2] uses a new non Gaussian
likelihood function for modeling the ordinal labels. It performs model selection
by maximizing the marginal likelihood. The GPOR approach is among the state-
of-the-art algorithms for ordinal regression. However it is not directly applicable
to large data sets since it uses all the training set examples to make predictions,
thereby resulting in high training time and slow inference.

In this work, we propose a new approach for ordinal regression using Gaus-
sian processes. The proposed approach, leave-one-out GPOR (LOO-GPOR), em-
ploys the leave-one-out cross-validation (LOO-CV)[7] technique for model selec-
tion. This technique is easier to implement than the Bayesian techniques employed
by the GPOR [2] approach. We also propose a sparse GPOR modeling approach,
which makes use of a fewer number (user specified) of training set examples. This
reduces the training time and storage requirements needed by the full model. It
also improves inference speed. On eight real world benchmark datasets the perfor-
mance of the proposed LOO-GPOR and sparse GPOR models were comparable
with that of the GPOR [2] model. Further, the sparse GPOR model achieved the
performance using only 20% of training examples as the basis vectors.

The rest of the paper is organized as follows. Section 2 describes the Gaussian
process ordinal regression (GPOR)[2] approach. Section 3 discusses the LOO-CV
based model selection approach for GPOR (LOO-GPOR). Section 4 describes
an approach to develop sparse models for GPOR. Section 5 presents the exper-
imental results of running the proposed approaches on some benchmark data
sets.

2 Gaussian Process Ordinal Regression

Gaussian process ordinal regression (GPOR)[2] uses a new likelihood function
for the ordinal outputs. Under noisy observations, for an input x and the latent
function f , the GPOR likelihood for an ordinal output y is p(y|f) = Φ

( by−f
σ

)−
Φ
( by−1−f

σ

)
, where σ is the standard deviation of the Gaussian noise and Φ is

the Gaussian cumulative distribution function i.e. Φ(z) =
∫ z

−∞ N (δ; 0, 1)dδ. The
thresholds b0, b1, . . . , br ∈ R are such that b0 ≤ b1 ≤ . . . ≤ br. We fix b0 = −∞
and br = ∞ so that the likelihood function represents a valid probability distri-
bution over the ordinal outputs. The thresholds b1, b2, . . . , br−1 divide a real line
into r contiguous intervals. A real latent function value is mapped to a discrete
ordinal output based on the interval it lies. The GPOR approach uses a zero mean
Gaussian process prior. However, the GPOR likelihood is not a Gaussian and
hence, the posterior p(f |D) is also not a Gaussian. The GPOR approach works
by approximating the posterior as a Gaussian distribution using the Laplace ap-
proximation [7] or the expectation propagation (EP) [6] techniques. In GPOR,
model selection is performed by maximizing the evidence p(D|θ), where θ is the
model parameter vector which includes the parameter κ in the covariance func-
tion1, the threshold parameters b1, b2, . . . , br−1 and the noise parameter σ in the

1 GPOR uses a squared exponential covariance function, K(xi, xj) = exp(−κ
2
||xi −

xj ||2).



Validation Based Sparse Gaussian Processes for Ordinal Regression 411

likelihood function. It uses two approaches for model selection, the maximum a
posteriori approach (MAP-GPOR) with Laplace approximation and the expec-
tation propagation approach (EP-GPOR) with variational methods . In GPOR,
model selection takes O(n3) time since it employs a gradient based optimization
method which requires inversion of an n× n matrix.

3 Leave-One-Out Gaussian Process Ordinal Regression

The leave-one-out Gaussian process ordinal regression (LOO-GPOR) approach
is based on the GPOR model but uses the leave-one-out cross-validation (LOO-
CV)[7] technique for model selection. In the LOO-GPOR approach, the model
parameters are estimated by minimizing the sum of the leave-one-out negative
log predictive (NLP)[7] measure over all the training examples. The LOO-GPOR
approach uses the GPOR likelihood which results in a non-Gaussian posterior
distribution. It obtains a Gaussian approximation of the posterior distribution
by using the expectation propagation (EP) [6] technique.

The expectation propagation (EP) [6] technique is used to approximate com-
plex distributions which factorizes into a product of terms. It is used to ap-
proximate the non Gaussian posterior p(f |X, y) =

∏n
i=1 p(yi|f(xi))p(f |X) as a

Gaussian distribution q(f) =
∏n

i=1 t̃i(f(xi)|Z̃i, μ̃i, σ̃
2
i ) p(f |X), by approximat-

ing each non-Gaussian likelihood term p(yi|f(xi)) as an unnormalized Gaus-
sian t̃i(f(xi)|Z̃i, μ̃i, σ̃

2
i ) = Z̃iN (f(xi)|μ̃i, σ̃

2
i ). The parameters of each likelihood

approximation are found iteratively by minimizing the Kullback-Leibler diver-
gence [6] between the posterior using the exact likelihood term and the approx-
imated likelihood term. An iteration i of the EP approach consists of finding
the marginal cavity distribution of the ith training example, q−i(f(xi)). It is
obtained by leaving out the ith likelihood term and marginalizing over the re-

maining variables, i.e. q−i(f(xi)) ∝ ∫
p(f |X)

∏
j �=i t̃j(f(xj)|Z̃j , μ̃j , σ̃2

j )dfj . It is

also obtained by dividing the approximate posterior q(f) by the ith local likeli-
hood approximation t̃i(f(xi)). The Gaussian approximation of the posterior has
covariance Σ = (K−1 + Σ̃−1)−1, where K is the covariance matrix formed by
all training examples and Σ̃ = diag(σ̃2

1 , σ̃
2
2 , . . . σ̃

2
n). The mean of the posterior is

µ = ΣΣ̃−1µ̃, where µ̃ is a vector of μ̃i. Then the marginal cavity distribution
for the ith training example is Gaussian with mean μ−i and variance σ2

−i, where

σ2
−i =

Σii

1− σ̃−2
i Σii

, μ−i = µi + σ2
−iσ̃

−2
i (µi − μ̃i). (1)

The negative log predictive (NLP) measure of the ith training example xi, when
learnt using remaining training examples is defined as -log p(yi|X,y−i, θ) =

− log
(
Φ
( byi−μ−i√

σ2+σ2
−i

)−Φ
( byi−1−μ−i√

σ2+σ2
−i

))
, where y−i is the output vector of the train-

ing examples except i. Here μ−i and σ2
−i are the leave-one-out predictive mean

and variance of the ith training example, when learnt using the remaining train-
ing examples. It is same as the mean and variance of the marginal cavity distribu-
tion obtained by leaving out the ith likelihood term. Therefore the leave-one-out



412 P.K. Srijith, S. Shevade, and S. Sundararajan

predictive mean and variance are given by (1). The LOO-GPOR approach mini-
mizes the sum of the NLP measure over all the training examples, to obtain the
optimal model parameters. The optimization problem is defined as follows.

(θ∗) = argmin
θ

L(θ) = argmin
θ

−
n∑

i=1

log p(yi|X,y−i, θ) =

argmin
b1,Δ2,...,Δr−1,κ,σ2

−
n∑

i=1

log

(

Φ

(
byi − μ−i√
σ2 + σ2

−i

)
− Φ

(
byi−1 − μ−i√

σ2 + σ2
−i

))

s.t. bj = b1 +

j∑

l=2

Δl ∀j = 2, . . . , r − 1, Δl ≥ 0 ∀l = 2, . . . , r − 1. (2)

Here the constraint, b1 ≤ b2 ≤ . . . ≤ br−1, is imposed by using positive padding
variables Δl. Predictions are made by selecting the ordinal category with the
highest probability, using the optimal model parameters [2].

The computational time of the LOO-GPOR approach is same as that of the
GPOR approach. EP approximation takes O(n3) time. Once we have the Gaus-
sian approximation of the posterior, calculation of the NLP measure over all
training samples take O(n) time. The optimization routine takes O(n3) time.
Hence the total time taken by the LOO-GPOR approach is O(n3).

4 Sparse Gaussian Process Ordinal Regression

The ordinal regression models using the Gaussian processes discussed in sections
2 and 3 require O(n3) training time and O(n2) storage space. It is computation-
ally expensive to use them on large data sets. The sparse modeling approaches
use a representative data set (basis vector set) of size s smaller than the training
data set to make predictions. It reduces the training time and storage require-
ments to O(ns2) and O(ns) respectively. We provide an approach to develop a
sparse approximation to the GPOR model. The approach is based on the valida-
tion based sparse approximation for the Gaussian process classification[9]. The
advantage of the proposed sparse model over sparse Bayesian ordinal regression
[1] is that the basis vector set size can be fixed by a user defined parameter.

The proposed algorithm uses a two loop approach: 1) basis vector selection,
and 2) hyper-parameter adaptation. The basis vector selection loop incremen-
tally selects a set of basis vectors from the training data set. Hyper-parameter
adaptation loop performs model selection using the selected basis vectors. The
details are presented in Algorithm 1. An advantage of this algorithm is that
both the loops make use of the same measure, NLP (negative log predictive),
which takes into account moderated probability score, easy to calculate for a GP
model.

Let the training data in the basis vector set be denoted by u, the remaining
training data be denoted by uc, the size of u be denoted by |u| and the size of
uc be denoted by |uc|. Let the maximum size of the basis vector set be a user
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Algorithm 1. sparse GPOR algorithm

Input: Basis vector size s
Output: Basis vector u, hyper parameter vector θ = (b1, b2, . . . , br−1, κ, σ

2)
Initialize: Hyper parameter vector θ = (b1, b2, . . . , br−1, κ, σ

2).

1. Initialize A = K, u = Φ, uc = {1, 2, . . . , n}, f̂i = pi = mi = 0 ∀i ∈ uc.
2. Form a working set J from uc.
3. For each j ∈ J

(a) Obtain the site parameters mj and pj using (5), update ūj = u ∪ {j}.
(b) Update posterior mean f̂ and covariance A.

(c) Calculate NLP (ūj , θ) = − 1
|ūc

j|
∑

k∈ūc
j
log

(
Φ
(

byk−f̂k√
σ2+Akk

)
− Φ

(
byk−1−f̂k√

σ2+Akk

))

4. Choose i = argminj∈J NLP (ūj , θ)

5. Set u = u ∪ {i}, uc = uc − {i}, and update posterior mean f̂ and covariance A to
reflect the inclusion of chosen point in the basis set.

6. If |u| < s, go to step 2
7. Estimate the hyper parameters by minimizing NLP (u, θ).
8. Terminate if stopping criterion is satisfied. Otherwise go to step 1.

supplied parameter s (s � n). In sparse GPOR, the NLP measure with respect
to the set u is defined as

NLP (u, θ) = − 1

|uc|
∑

i∈uc

log

(

Φ

(
byi − μi√
σ2 + σ2

i

)
− Φ

(
byi−1 − μi√

σ2 + σ2
i

))

. (3)

Here the NLP measure is calculated on the training examples present in uc.
μi and σ2

i denote the predictive mean and variance respectively of a data i in
uc. The predictive mean and variance are obtained from the mean and covari-
ance of the posterior distribution for the training latent functions, p(f |D, θ) ∝
N (f |0,K)

∏n
i=1 p(yi|fi). The non Gaussian posterior p(f |D, θ) is approximated

incrementally as a Gaussian posterior q(f |D, θ) using the assumed density filter-
ing (ADF) [6] technique.

p(f |D, θ) ≈ q(f |D, θ) ∝ N (f |0,K)

n∏

i=1

exp
{
−pi

2
(fi −mi)

2
}
= N (f |̂f ,A) (4)

where A = (K−1 +Π)−1, f̂ = AΠm, m = (m1, . . . ,mn), and Π = diag
(p1, . . . , pn). The variables mi and pi are called the site parameters correspond-
ing to the Gaussian approximation of the likelihood p(yi|fi) of the ith training
example. The site parameters of the training examples not belonging to the basis
vector are set to zero. The predictive mean (μi) and variance (σ2

i ) of a training

example i are given by f̂i and Aii respectively. Upon inclusion of the training
example i to the basis vector set we have to update the site parameters corre-
sponding to it as well as posterior mean f̂ and covariance A. Site parameters mi

and pi are updated as follows [2].
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Table 1. Properties of benchmark
data sets

Dataset Attributes Training
Instances

Test
Instances

Diabetes 2 30 13
Triazines 60 100 86
Wisconsin 32 130 64
Machine 6 150 59
AutoMPG 7 200 192
Boston 13 300 206
Stocks 9 600 350
Abalone 8 1000 3177

Table 2. Average rank and the Friedman
statistic for different approaches

5 bins 10 bins
Approach zero-one absolute zero-one absolute

MAP-GPOR 2.1875 1.875 2.875 2.125

EP-GPOR 2.4375 2 1.875 2

LOO-GPOR 2.25 2.625 2.125 2.625

sparse GPOR 3.125 3.5 3.125 3.25

FF 0.8735 3.4672 1.8889 1.6823

z̃i1 =
byi − μi√
σ2 + σ2

i

; z̃i2 =
byi−1 − μi√

σ2 + σ2
i

; Zi = Φ(z̃i1)− Φ(z̃i2)

γi =
∂ logZi

∂μi
=

−1
√
σ2 + σ2

i

(N (z̃i1; 0, 1)−N (z̃i2; 0, 1)

Φ(z̃i1)− Φ(z̃i2)

)

βi =
∂ logZi

∂σ2
i

=
−1

2(σ2 + σ2
i )

(
z̃i1N (z̃i1; 0, 1)− z̃i2N (z̃i2; 0, 1)

Φ(z̃i1)− Φ(z̃i2)

)

νi = γ2
i − 2βi ; pi =

νi
1− σ2

i νi
; mi = μi +

γi
νi
. (5)

The posterior covariance A is updated by maintaining the decomposition men-
tioned in [9] which takes only O(n|u|) time. Such a decomposition avoids expen-
sive matrix inverse operation required on every basis addition. If all the training
examples in uc are tested for possible inclusion in the basis vector set, computa-
tional effort needed to select a single basis vector is O(n2|u|). Instead we select a
basis vector from a working set J of size k, where J ⊆ uc. Working set consists
of randomly chosen k elements from uc. Then the computational time to select
a single basis vector reduces to O(n|u|k). If we fix the maximum size of the basis
vector set to s, then the basis vector selection loop takes O(ns2k) time. Once the
basis vectors are selected hyper-parameters adaptation takes O(s3) time. Hence
the time complexity of the sparse GPOR approach is O(ns2k).

5 Experimental Results

We report the experimental results of our approach on 8 benchmark data sets
[2]. Properties of these benchmark data sets are summarized in Table 1. These
are metric regression data sets. The continuous target values in these data sets
are transformed into ordinal values as discussed in [2]. We conduct experiments
on two versions of the data sets, 5 bins and 10 bins. In the former, the number
of ordinal categories is 5 while in latter, it is 10. Each data set is randomly
partitioned into 20 training and test data set instances.

The optimummodel parameter values are obtained by solving the optimization
problems (2) and (3). They are solved using a gradient based unconstrained opti-
mization technique. The optimization is runwith randomaswell as fixed [2] initial-
ization of the optimization variables; we report the result for which the objective
function value is the least. For the sparse model design experiments, active set size
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Table 3. Comparison of results of LOO-GPOR and sparse GPOR with MAP-GPOR
and EP-GPOR on benchmark data sets for 5 bins version

Mean zero-one error(%) Mean absolute error

Data MAP-
GPOR

EP-
GPOR

LOO-
GPOR

sparse
GPOR

MAP-
GPOR

EP-
GPOR

LOO-
GPOR

sparse
GPOR

Diabetes 54.23±13.78 54.23±13.78 49.62±13.3 52.69±12.30 0.66±0.14 0.67±0.14 0.65±0.18 0.72±0.23

Triazines 52.91±2.15 52.62±2.66 54.36±1.50 56.74±4.09 0.69±0.02 0.69±0.03 0.70±0.02 0.75±0.05

Wisconsin 65.00±4.71 65.16±4.65 64.06±2.53 64.06±4.67 1.01±0.09 1.01±0.09 1.12±0.07 1.10±0.12

Machine 16.53±3.56 16.78±3.88 16.61±4.25 16.61±4.06 0.19±0.04 0.19±0.04 0.19±0.05 0.19±0.06

AutoMPG 23.78±1.85 23.75±1.74 25.78±2.65 25.44±2.13 0.24±0.02 0.24±0.02 0.27±0.03 0.26±0.02

Boston 24.88±2.02 24.49±1.85 24.85±2.90 26.75±3.04 0.26±0.02 0.26±0.02 0.26±0.03 0.29±0.03

Stocks 11.99±2.34 12.00±2.06 10.60±1.69 13.69±1.67 0.12±0.02 0.12±0.02 0.11±0.02 0.14±0.02

Abalone 21.50±0.22 21.56±0.36 21.85±0.29 22.41±0.42 0.23±0.00 0.23±0.01 0.24±0.00 0.24±0.01

Table 4. Comparison of results of LOO-GPOR and sparse GPOR with MAP-GPOR
and EP-GPOR on benchmark data sets for 10 bins version

Mean zero-one error(%) Mean absolute error

Data MAP-
GPOR

EP-
GPOR

LOO-
GPOR

sparse
GPOR

MAP-
GPOR

EP-
GPOR

LOO-
GPOR

sparse
GPOR

Diabetes 83.46±5.73 83.08±5.91 71.54±10.9 74.23±14.18 2.14±0.33 2.14±0.33 1.20±0.31 1.57±0.92

Triazines 63.72±4.34 64.01±3.78 72.21±1.55 71.63±3.17 1.20±0.07 1.20±0.07 1.35±0.04 1.38±0.12

Wisconsin 78.52±3.58 78.52±3.51 75.94±2.45 76.80±3.73 2.14±0.18 2.14±0.18 2.74±0.14 2.58±0.21

Machine 33.81±3.91 33.73±3.64 34.24±3.19 33.73±5.84 0.48±0.07 0.47±0.08 0.50±0.07 0.46±0.07

AutoMPG 43.96±2.81 43.88±2.60 44.30±2.26 46.67±2.26 0.50±0.04 0.50±0.03 0.50±0.03 0.58±0.04

Boston 41.53±2.77 41.26±2.86 41.04±2.25 42.48±3.29 0.49±0.03 0.49±0.04 0.50±0.04 0.55±0.05

Stocks 19.90±1.72 19.44±1.91 18.74±2.38 22.46±1.97 0.20±0.02 0.20±0.02 0.19±0.02 0.23±0.02

Abalone 42.60±0.91 42.27±0.46 42.80±0.49 43.91±0.81 0.51±0.01 0.51±0.01 0.53±0.01 0.54±0.01

is taken to be .2n. Also we fix the working set size k as k = min(|uc|, 59)[9]. We
use the Gaussian kernelK(xi, xj) = exp

(−κ
2 ||xi − xj ||2

)
in all our experiments.

We compare the generalization performance of the proposed approaches, LOO-
GPOR and sparse GPOR, with MAP-GPOR and EP-GPOR results reported in
[2].We use two evaluationmetrics to compare the performance, zero-one error and
absolute error [2]. The former gives the fraction of incorrect predictions on test data
while the latter gives the average deviation of the predicted test outputs from the
actual test outputs. The mean of the zero-one and absolute errors over all the 20
instances are used to compare the performance of the approaches. The mean zero-
one errors are reported in percentage and the mean absolute errors are rounded off
to 2 decimal places.We prefer methods with lowmean zero-one andmean absolute
errors. Tables 3 and 4 compare the results of LOO-GPOR and sparse GPOR with
MAP-GPOR and EP-GPOR for 5 bins and 10 bins cases respectively.

We observe from Tables 3 and 4 that the results obtained with the proposed
approaches are comparable with the existing approaches, MAP-GPOR and EP-
GPOR. LOO-GPOR is found to perform better than the existing approaches on
three data sets, Diabetes, Wisconsin and Stocks. Sparse GPOR also performs
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satisfactory on all the data sets. It performs better than the existing approaches
on Diabetes and Wisconsin data sets.

Note that the sparse GPOR approach used only 20% of the total examples
(s = .2n) as the basis vectors for model design and prediction. This is much less
than the number (n) used by each of the other three (full model) approaches.
As mentioned earlier, the model selection (Step 7 in Algorithm 1) for a given
basis vector set is done using training set examples not in the basis vector set.
Thus, increase in the number of basis vectors used by the sparse GPOR approach
further, will affect model selection and hence, the generalization performance.We
observed this in our experiments and therefore restricted s to .2n. This number
of basis vectors may not be sufficient for some data sets, e.g. Stocks data set. In
such cases, it may be a good idea to use full model ordinal regression.

We check whether the performance of the proposed approaches differ signifi-
cantly from the existing GPOR approaches using the Friedman test [4]. Here we
compare 4 approaches on 8 data sets and hence the F distribution has 3 and 21
degrees of freedom. For the level of significance α = 0.05, critical F value is 3.07.
Table 2 reports the average ranks of the Gaussian process ordinal regression ap-
proaches over all the data sets and the Friedman statistic FF [4] computed over
all the approaches. FF is greater than the critical F value only for the 5 bins case
with respect to absolute error. In all other cases it is below the critical F value
(due to the ranks being similar) and hence there does not exist any significant
differences among the approaches. Thus the proposed sparse GPOR approach is
competitive.
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