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Abstract

This paper introduces kernels on attributed pointsetschvaie sets of vectors em-
bedded in an euclidean space. The embedding gives the mftiwighborhood,
which is used to define positive semidefinite kernels on getst Two novel ker-
nels on neighborhoods are proposed, one evaluating thieudttrsimilarity and
the other evaluating shape similarity. Shape similarityction is motivated from
spectral graph matching techniques. The kernels are testdaree real life ap-
plications: face recognition, photo album tagging, andt sthmotation in video
sequences, with encouraging results.

1 Introduction

In recent times, one of the major challenges in kernel mettnad been design of kernels on struc-
tured data e.g. sets [9, 17, 15], graphs [8, 3], strings,maata, etc. In this paper, we propose kernels
on a type of structured objects callattributed pointsets [18]. Attributed pointsets are points em-
bedded in a euclidean space with a vector of attributeshsthto each point. The embedding of
points in the euclidean space yields a notiomefyhborhood of each point which is exploited in
designing new kernels. Also, we describe the notion of sirityl between pointsets which model
many real life scenarios and incorporate it in the proposrdéds.

The main contribution of this paper is definition of two diff@t kernels on neighborhoods. These
neighborhood kernels are then used to define kernels on tine paintsets. The first kernel treats the
neighborhoods as sets of vectors for calculating the siityilaSecond kernel calculates similarity

in shape of the two neighborhoods. It is motivated using sakgraph matching techniques [16].

We demonstrate practical applications of the kernels omeieknown task of face recognition [20],
and two other novel tasks of tagging photo albums and ariootaf shots in video sequences. For
the face recognition task, we test our kernels on benchnetdsdts and compare their performance
with state-of-the-art algorithms. Our kernels outperfdhma existing methods in many cases. The
kernels also perform according to expectation on the twoehapplications. Section 2 defines
attributed pointsets and contrasts it with related noti@ection 3 proposes two kernels and section
4 describes experimental results.

2 Definition and related work

An attributed pointset [18, 1] (a.k.a. point pattei)is sets of points iR with attributes or labels
(real vectors in this case) attached to each point. TRus; {(x;,d;)|i = 1...n}, wherex; € R*
andd; € RY, v being the dimension of the attribute vector. The number afifgdn a pointset,
n, is variable. Also, for practical purposes pointsets with= 2,3 are of interest. The construct
of pointsets are richer than sets of vectors [17] becaushektructure formed by embedding of
the points in a euclidean space. However, they are less glethan attributed graphs because all
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Figure 1: Correspondences implicitly found by sum and neighood kernels

attributed graphs cannot be embedded onto a euclidean dpaicésets are useful in several domains
including computer vision [18], computational biology [Elc.

The notion of similarity between pointsets is also diffarélom those between sets of vectors,
or graphs. The main aspect of similarity is that there shdaédcorrespondences (1-1 mappings)
between the points of a pointset such that the relative ipasitof corresponding point are same.
Also the attribute vectors of the matching points shouldib@lar. In case of sets of vectors, the
kernel function captures the similarity between aggregatmerties of the two sets, such as the
principle angles between spanned subspaces [17], or déstaetween the distributions generating
the vectors [9]. Kernels on graphs try to capture similairityhe graph topology by comparing the
number of similar paths [3], or comparing steady state ithstions of linear systems on graphs [8].

For example, consider recognizing faces using local detsrs calculated at some descriptor points
(corner points in this case) on the face. It is necessarystitagets of descriptor points found in two
images of the same face should be approximately superirbfséslight changes may be due to
change of expression) and that the descriptor values fardtresponding points should be roughly
same to ensure similar local features. Thus, a face can belptbds an attributed points&t =
{(x;,d;)|i = 1...n}, wherex; € R? is the coordinate of'" descriptor point andl; € R" is the
local descriptor vector at th&" descriptor point. Similar arguments can be provided for alojgct
recognition task.

A local descrlptor based kernel was proposed for objectgmition in similar setting in [12]. Sup-
poseX4 = {(x,dM)ji =1...na}andX? = {(xB,dP)|i = 1 ..np} are two pointsets. The
normalized sum kernel [12] was defmedléﬁ;s(XA XB) = A Y (K, dP))P,

where C(d#, dB) is some kernel function on the descriptors. It was arguedLj fhat raising
the kernel to a hlgh power approximately calculates similarity between matchedspairvectors.

Using the RBF kermeKgpr(z,y) = e~ — =2 = , and adjusting the parameterin o, we get the

normalized sum kernels as:

na np

> > Krpr(d,d?) 1)

=1 j=1

Kns(X4, XB) =
nanpg

Observe that this kernel doesn’t use the in formatiosjmnywhere, and thus is actually a kernel
on a set of vectors. In fact, this kernel can be derived as aapzase of the set kernel proposed

in [15]. The kernellC(A4, B) = trace (E (ATG,B)F, ) becomesC(A, B) = >, k(a;, b;) i
for G, = [ andF = >, F» (whose entries ar¢;;) should be positive semidefinite [15]. Thus,
choosingF = 117 (all entries 1) and multiplying the kernel b;yﬁ and usingKrpr as the

kernel on vectors, we get back the kernel defined in (1). Thenabzed sum kernel is used as the
basic kernel for development and validation of the new Kerpeoposed here. In the next section,
we incorporate positios; of the points using the concept of neighborhood.



3 Kernels

3.1 Neighborhood kernels

The key idea in this section is to use spatially co-occurgaits of a point to improve the similarity
values given by the kernel function. In other words, we hippsize that similar points from two
pointsets should also have neighboring points which ardainirhus, for each point we define a
neighborhood of the point and weight the similarity between each pair dhfsowith the similarity
between their neighborhoods.

The k-neighborhoodV; of a point(x;, d;) in a pointsetX is defined as the set of points (including
itself) that are closest to it in the embedding euclidearep8oNV; = {(x;,d;) € X|||x; —x;|| <
llxi — x;||V(x;,d;) € N; and|\;| = k}. The neighborhood kernel between two poifits', d)
and(x%?,d?) is defined as:

J’ J
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The neighborhood kernel (NK) between two pointsgts and X Z is thus defined as:
naA npg
Kng(X4, XB) = T xS T Kn((x,dY), (xF,d7)) (3)
i=1 j=1

Itis easy to see thdt v i is a positive semidefinite kernel function. Even thod@kk is a straight-
forward extension, it considerably improves accuracyCafs. Figure 1 shows values & s and
Kk for 4 pairs of point from two pointsets modeling faces. Daltkelines indicate best matches
given by/C s while bright blue lines indicate best matches by khex . In both casesCy x gives
the correct match while th& s fails. Computational complexity of x x is O(k?n?), k being
neighborhood size andnumber of points. The next section proposes a kernel whieb pssitions
of points (x;) in a neighborhood more strongly to calculate similarithape.

3.2 Spectral Neighborhood Kernel

The kernel defined in the previous section still uses a seeofors kernel for finding similarity
between the neighborhoods. Here, we are interested in &Ikieimction which evaluates the simi-
larity in relative position of the corresponding pointsn& the neighborhoods being compared are
of fixed size, we assume that all points in a neighborhood haz@responding point in the other.
Thus, the correspondences are given by a permutation ofspioione of the neighborhoods. This
problem can be formulated as the weighted graph matchirtggmo[16], for which spectral method

is one of the popular heuristics. We use the features givespbgtral decomposition of adjacency
matrix of the neighborhood to define a kernel function.

Given a neighborhood N; we define its adjacency matrix4; as A;(s,t) =
— el Vs, t|(xs,ds), (x¢,ds) € N;, wherea is a parameter. Given two neighborhoods
N A and/\/ 5 we are thus interested in a permutationf the basis of adjacency matrix of one of

the nelghborhoods (say’”), such that|A;* — w(AP)||r is minimized,||.|| » being the frobenius
norm of a matrix.

Itis well known that a matrix can be fully reconstructed framspectral decomposition Also, in the
case that fewer eigenvectors are used, the equitibr Zle NiGiCH|% = Zg ft1 J, suggests

that eigenvectors corresponding to the higher eigenvalilegive better reconstruction. We use one
eigenvector corresponding to largest eigenvalue. Thesagproximate adjacency matrix becomes

A= ¢l
Let 7* be the optimal permutation that minimizﬁsiA — 7(AP)||r. Note that herer applied on a

matrix implies permutation of the basis. It is easy to seeséwne permutation is induced on basis
of the eigenvectorg”(1). Callf/* = |¢/*(1)] andf = |¢(1)|, the spectral projection vectors

corresponding to neighborhooﬂéA and/\/jB. Hereg{‘(l), CjB(l) are eigenvectors corresponding



to largest eigenvalue of#, AB and|¢(1)| is the vector of absolute values of componentg(@f).

f(s) can be thought of as prOJection of te® point in the corresponding neighborhood&h. It is
equivalent to seek a permutatiafi which minimizes||f/* — w(ij)H, for comparing neighborhoods

N and V7. The resulting similarity score is:
A B\ __ A B\ |12
SNLN )—ljrlg%T*Hfi = 7(£7)2 (4)

where, T is a threshold for converting the distance measure to siityilaand IT is the set of all
permutations. However, this similarity function is not aesarily positive semidefinite.

To construct a positive semidefinite kernel giving simtiarbetween the vector§ and ij,
we use the convolution kernel technique [7] on discretectines. Letx € X be a

composite object formed using parts froii;,..., X,,. Let R be a relation overX; x
-+ x X, x X such thatR(zq,...,z,, ) is true if x is composed ofzq,...,z,,. Let
R Yz) = (w1,...,2m) € X1 X -+ X Xpu|R(21,...,7m, ) = true andKt, ... K™ be kernels
on Xy, ..., X,,, respectively. The convolution kern&l over X is defined as:

K(z,y) = > [T @i v (5)

(@1, m) ERTH(2), (Y1, ym ) ERT 1 (y) i=1

Haussler [7] showed that k€', ..., K™ are symmetric and positive semidefinite, s&Cis
For us, letX be the set of all neighborhoods and, ..., X,,, be the sets of spectral projections

of all points from all the neighborhoods. Here, note thatreifehe same point appears in dif-
ferent neighborhoods, the appearances will be considerdée wifferent because the projections
are relative to the neighborhoods. Since, each neighbdrhas size:, in our casen = k. The
relation R is defined ask(f(1),..., f(k),N/) is true iff the vector(f(1),..., f(k)) = =(f{)
for some permutationr. In other words,R(f(1),..., f(k),N/) is true iff f(1),..., f(k) are
spectral projections the points of neighborhob@'). Also, letK?, i = 1...k all be RBF ker-
nels with the same paramet8r Thus, from the above equation, trle convolution kernel bexo
—IfA —r(£By2
K(NANEB) = BIY, cpe? ZiaUiO=f7 @O = prsn e——5"_ Dividing by the
constantk!)?, we get kernelCs y as:

—HfA—w(fB)HZ
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The spectral kernel (SK s x between two pointset¥ 4 and X Z is thus defined as:
naA Np
A B B A B
Ko (X, XF) = ——— ;;’CRBF (d7, d7)Con (N N ()

Following theorem relates v (N;*, NP) to S(VA, NP) (eqn 4).

Theorem 3.1 Let N; and N; be two sub-structures with spectral projection vectors f* and f7. For
large enough value of T" such that all points are matched.

-T
; . W8 _ & _S(NiNy)
éliI%JICSN(NZ,N])) =7 ¢
Proof: Let7* be the permutation that gives the optimal sc8(&/;, N;). By definition,eS (Vi Vi) —
T o=l =m(f)I?

limgo(Ksn(Ni, N;j))? =limgo(35 Xrengye » )
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Computational complexity of this kernel @(k!n?), wherek is neighborhood size and is no.
of descriptor points. However, since in practice only smaighborhood sizes are considered, the
computation time doesn’t become prohibitive.



Table 1: Recognition accuracy on AR face dataset (sectibn 4.
Smile | Angry | Scream| Glasses| Scarf | Left-Light | Right-Light

1-NN 96.3% | 88.9% | 57.0% | 48.1% | 3.0% 22.2% 17.8%
PCA 94.1% | 79.3% | 44.4% | 32.9% | 2.2% 7.4% 7.4%
LEM 78.6% | 92.9% | 31.3% | 74.8% | 47.4% 92.9% 91.1%
AMM 96.0% | 96.0% | 56.0% | 80.0% | 82.0% NA NA

Face-ARG | 97.8% | 96.3% | 66.7% | 80.7% | 85.2% 98.5% 96.3%

Sum(eq (1))| 96.19% | 95.23% | 83.80% | 89.52%| 60.00%| 86.66% | 80.95%
NK (eq (3)) | 98.09% | 98.09% | 85.71% | 94.28%| 65.71%| 92.38% | 86.66%
SK (eq (7)) | 99.04% | 99.04% | 86.66% | 93.33%| 65.71%| 90.47% | 84.76%

4 Experimental Results

In order to study the effectiveness of proposed kernels factral visual tasks, we applied them
on three problems. Firstly, the kernels were applied to te# known problem of face recognition
[20], and results on two benchmark datasets (AR and ORL) w@mgpared to existing state-of-the-
art methods. Next we used the spectral kernel to tag imagpesrsonal photo albums using faces
of people present in them. Finally, the spectral kernel wsaesdufor annotation of video sequences
using faces of people present.

Attribute For face recognition, faces were modeled as attributedgeisiusing local gabor descrip-
tors [10] calculated at the corner points using Harris copunt detector [6]. At each point, gabor
despite for three different scales and four different dia¢ions were calculated. Descriptors for 5
points (4 pixel neighbors and itself) were used for each ef B combinations, making a total of
60 descriptors per point. For image tagging and video atiootefaces were modeled as attributed
pointsets using SIFT local descriptors [11], having 12&dp#ors per point.

The kernels were implemented in GNU C/C++. LAPACK [2] wasdi$er calculation of eigen-
vectors and GNU GSL for calculation of permutations. LIBSYM was used as the SVM based
classifier for classifying pointsets. The face detectorjoled in OpenCV was used for detecting
faces in album images and video frames.

DatasetThe AR dataset [13] is composed of color images of 135 pedfiar(en and 60 women).
The DB includes frontal view images with different faciapegssions, illumination conditions, and
occlusion by sunglasses and scarf as shown in figure 2-ar éfiteoving persons with corrupted
images or missing any of the 8 types of required images, & ¢6th05 persons (56 men and 49
women) were selected. All the images were converted to gedgsand rescaled tb54 x 115
pixels. The ORL dataset is composed of 10 images for eacheof®hpersons. The images have
minor variations in pose, illumination and scale. All thed4012 x 92 pixel images were used for
experiments. Figure 2-b gives representative images fhen©RL dataset.
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Figure 2: Representative images from AR and ORL datasets

4.1 Face Recognition in AR face DB

The kernels proposed in this paper, were tested pointsetgedefrom images in AR face DB.
Face recognition was posed as a multiclass classificatianlgmn, and SVMs were along with the
proposed kernels. The AR face DB is a standard benchmarketata which a recent comparison
of state of the art methods for face recognition has beemgiv§l4]. In table 1, we have restated
the results provided in [14] along with the results of ourreds. All the results reported in table
1 have been obtained using one normal (no occlusion or chaihgepression) face image as the
training set.



Table 2: Recognition accuracy on ORL dataset (section 4.2)

# of training images— 1 3 5

Sum (eq (1)) 70.83%| 92.50% | 98.00%
NK (eq (3)) 71.38%| 93.57% | 98.00%
SK (eq (7)) 71.94%| 93.92% | 98.00%

It can be seen that for all the images showing change of esipre¢Smile, Angry and Scream),
the pointset kernels outperform existing methods. Alsaase of occlusion of face by glasses, the
pointset kernels give better results than existing methétisvever, in case of occlusion by scarf,
the kernel based method do not perform as well as the Face-#R®IM. This failure is due to
introduction of a large number of points in the scarf thewesel It was observed that about 50% of
the descriptor points in the faces having scarfs were in ¢thef segion of the image. Summing the
similarities over such a large number of extra points makesterall kernel value noisy.

The proposed approach doesn’t perform better than existgthods on images taken under extreme
variation in lighting conditions. This is due to the fact thvalues of the local descriptors change
drastically with illumination. Also, some of the corner pts disappear under different lighting
condition. However, performance of the kernels is comparabthe existing methods, thus demon-
strating the effectiveness of modeling faces as attribptedtsets.

4.2 Recognition performance on ORL Dataset

Real life problems in face recognition also show minor véizs in pose, which are addressed by
testing the kernels on images in the ORL dataset. The prollasnposed as a multiclass classi-
fication problem and SVM was used along with the kernels fassification. Table 2 reports the

recognition accuracies of all the three kernels for twoed#ht values of parameters, and for 1, 3
and 5 training images.

It can be seen that even with images showing minor variatiopsse, the proposed kernels perform
reasonably well. Also, due to change in pose the relativétipnf points in the pointsets change.
This is reflected in the fact that improvement due to additbmosition information in kernels
is minor as compared to those shown in AR dataset. For higheber of training images, the
performance of all the kernels saturate at 98%.

4.3 Tagging images in personal albums based on faces

The problem of tagging images in personal albums with narhpsaple present in them, is a prob-
lem of high practical relevance [19]. The spectral kerneégawsed solve this problem. Images
from publicly available sources liket t p: / / www. f | i ckr. com? were used for experimenta-
tion. Five personal albums having 20 - 55 images each weraldaged and many images had upto
6 people. Face detector from openCV library was used to aatioally detect faces in images. De-
tected faces are cropped and resized® x 100 px resolution. 47 - 265 such faces detected from
each album. To the best of our knowledge, there are no op&aliable techniques to benchmark
our method against.

Due to non-availability of training data, the problem of igeatagging was posed as a clustering
problem. Faces detected from the images were representdttibated pointsets using SIFT local
descriptors, and spectral kernel was evaluated on them.reshbld based clustering scheme was
used on the distance metric induced by the kerdet(y) = /K (z,z) + K(y,y) — 2 * k(z,9)).
Ideally, each cluster thus obtained should represent apesd images containing faces from a
given cluster should be tagged with the name of that person.

Table 3 reports results from tagging experiments for fivaiadb. No. of people identified reports
the number clusters having more than one faces, as singtktster will always be correct for that
person. Thus, people appearing only once in the entire alimenmot reported, which reduce the
no. of identified people. % identified and % false +ve are ayexlaover all clusters detected in the

We intend to make the dataset publicly available if no copyrights are violated



Table 3: Face based album tagging

Album no. No. of people % ldentified | % False +ve
(Actual) | (Identified)

1 - 2 90% 0%

2 14 6 84% 10.52%

3 8 4 66.66% 8.33%

4 4 2 83.33% 19.44%

5 3 2 80.00% 14.70%

= e =] ® )i
g W LN e g = !
[ W i E '

Figure 3: Representative cluster from tagging of album

album, and are calculated for each cluster’@sdenti fied = ~o-of correct faces in the cluster g

Total no. of faces of the person

% false +ve = ——Lalse fvesin the cluster __ |y can he seen that the kernel performs reasonably

Total no. of faces in the cluster’ . - . .
well on the dataset. Figure 3 shows a representative clugtiethe first 8 images as true +ves and
rest as false +ves.

4.4 Video annotation based on faces

The kernels were also used to perform video shot annotatémed faces detected in video se-
guences. Experimentation was performed on videos from ‘Nend Public affair” section of
www. ar chi ve. or g and music videos frommw. yout ube. com Video was sampled at 1 frame
per second and experimental methodology was similar sedt®was used on the frames.

Figure 4 shows two representative shots from corresportdibhgo candidates from “Election 2004,
presidential debate part 2”, and one from “Westlife- Seasothe Sun” video. The faces annotating
the shots are shown in the left as thumbnails. It may be nbigdar videos, high pose variation did
not reduce accuracy of recognition due to gradual chandipgse. The results on detecting shots
were highly encouraging, thus demonstrating the variediegdglity of proposed attributed pointset
kernels.

5 Conclusion

In this article, we propose kernels on attributed pointsét®e define the notion of neighborhood
in an attributed pointset and propose two new kernels. TkeKarnel evaluates attribute similari-

Figure 4: Keyframes of a few shots detected with annotation



ties between the neighborhoods and uses the co-occurrgoceation to improve the performance
of kernels on sets of vectors. The second kernel uses thdéquosiformation more strongly and
matches the shapes of neighborhoods. This kernel functiomtivated from spectral graph match-
ing techniques.

The proposed kernels were validated on the well known tastaoa recognition on two popular

benchmark datasets. Results show that the current keradtem competitively with the state-of-

the-art techniques for face recognition. The spectral &emwas also used to perform two real life
tasks of tagging images in personal photo albums and ammgttiots in videos. The results were
encouraging in both cases.
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