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Abstract

This paper introduces kernels on attributed pointsets, which are sets of vectors em-
bedded in an euclidean space. The embedding gives the notionof neighborhood,
which is used to define positive semidefinite kernels on pointsets. Two novel ker-
nels on neighborhoods are proposed, one evaluating the attribute similarity and
the other evaluating shape similarity. Shape similarity function is motivated from
spectral graph matching techniques. The kernels are testedon three real life ap-
plications: face recognition, photo album tagging, and shot annotation in video
sequences, with encouraging results.

1 Introduction

In recent times, one of the major challenges in kernel methods has been design of kernels on struc-
tured data e.g. sets [9, 17, 15], graphs [8, 3], strings, automata, etc. In this paper, we propose kernels
on a type of structured objects calledattributed pointsets [18]. Attributed pointsets are points em-
bedded in a euclidean space with a vector of attributes attached to each point. The embedding of
points in the euclidean space yields a notion ofneighborhood of each point which is exploited in
designing new kernels. Also, we describe the notion of similarity between pointsets which model
many real life scenarios and incorporate it in the proposed kernels.

The main contribution of this paper is definition of two different kernels on neighborhoods. These
neighborhood kernels are then used to define kernels on the entire pointsets. The first kernel treats the
neighborhoods as sets of vectors for calculating the similarity. Second kernel calculates similarity
in shape of the two neighborhoods. It is motivated using spectral graph matching techniques [16].

We demonstrate practical applications of the kernels on thewell known task of face recognition [20],
and two other novel tasks of tagging photo albums and annotation of shots in video sequences. For
the face recognition task, we test our kernels on benchmark datasets and compare their performance
with state-of-the-art algorithms. Our kernels outperformthe existing methods in many cases. The
kernels also perform according to expectation on the two novel applications. Section 2 defines
attributed pointsets and contrasts it with related notions. Section 3 proposes two kernels and section
4 describes experimental results.

2 Definition and related work

An attributed pointset [18, 1] (a.k.a. point pattern)X is sets of points inRu with attributes or labels
(real vectors in this case) attached to each point. Thus,X = {(xi,di)|i = 1 . . . n}, wherexi ∈ R

u

anddi ∈ R
v, v being the dimension of the attribute vector. The number of points in a pointset,

n, is variable. Also, for practical purposes pointsets withu = 2, 3 are of interest. The construct
of pointsets are richer than sets of vectors [17] because of the structure formed by embedding of
the points in a euclidean space. However, they are less general than attributed graphs because all
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Figure 1: Correspondences implicitly found by sum and neighborhood kernels

attributed graphs cannot be embedded onto a euclidean space. Pointsets are useful in several domains
including computer vision [18], computational biology [5], etc.

The notion of similarity between pointsets is also different from those between sets of vectors,
or graphs. The main aspect of similarity is that there shouldbe correspondences (1-1 mappings)
between the points of a pointset such that the relative positions of corresponding point are same.
Also the attribute vectors of the matching points should be similar. In case of sets of vectors, the
kernel function captures the similarity between aggregateproperties of the two sets, such as the
principle angles between spanned subspaces [17], or distance between the distributions generating
the vectors [9]. Kernels on graphs try to capture similarityin the graph topology by comparing the
number of similar paths [3], or comparing steady state distributions of linear systems on graphs [8].

For example, consider recognizing faces using local descriptors calculated at some descriptor points
(corner points in this case) on the face. It is necessary thatsubsets of descriptor points found in two
images of the same face should be approximately superimposable (slight changes may be due to
change of expression) and that the descriptor values for thecorresponding points should be roughly
same to ensure similar local features. Thus, a face can be modeled as an attributed pointsetX =
{(xi,di)|i = 1 . . . n}, wherexi ∈ R

2 is the coordinate ofith descriptor point anddi ∈ R
v is the

local descriptor vector at theith descriptor point. Similar arguments can be provided for anyobject
recognition task.

A local descriptor based kernel was proposed for object recognition in similar setting in [12]. Sup-
poseXA = {(xA

i ,dA
i )|i = 1 . . . nA} andXB = {(xB

i ,dB
i )|i = 1 . . . nB} are two pointsets. The

normalized sum kernel [12] was defined asKNS(XA,XB) = 1
nAnB

∑nA

i=1

∑nB

j=1(K(dA
i ,dB

j ))p,
whereK(dA

i ,dB
j ) is some kernel function on the descriptors. It was argued in [12] that raising

the kernel to a high powerp approximately calculates similarity between matched pairs of vectors.

Using the RBF kernelKRBF (x, y) = e−
‖x−y‖2

σ2 , and adjusting the parameterp in σ, we get the
normalized sum kernels as:

KNS(XA,XB) =
1

nAnB

nA
∑

i=1

nB
∑

j=1

KRBF (dA
i ,dB

j ) (1)

Observe that this kernel doesn’t use the in formation inxi anywhere, and thus is actually a kernel
on a set of vectors. In fact, this kernel can be derived as a special case of the set kernel proposed

in [15]. The kernelK(A,B) = trace
(

∑

r(A
T ĜrB)F̂r

)

becomesK(A,B) =
∑

ij k(ai,bj)fij

for Ĝr = I andF =
∑

r Fr (whose entries arefij) should be positive semidefinite [15]. Thus,
choosingF = 11

T (all entries 1) and multiplying the kernel by 1
n2

A
n2

B

and usingKRBF as the
kernel on vectors, we get back the kernel defined in (1). The normalized sum kernel is used as the
basic kernel for development and validation of the new kernels proposed here. In the next section,
we incorporate positionxi of the points using the concept of neighborhood.
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3 Kernels

3.1 Neighborhood kernels

The key idea in this section is to use spatially co-occurringpoints of a point to improve the similarity
values given by the kernel function. In other words, we hypothesize that similar points from two
pointsets should also have neighboring points which are similar. Thus, for each point we define a
neighborhood of the point and weight the similarity between each pair of points with the similarity
between their neighborhoods.

Thek-neighborhoodNi of a point(xi,di) in a pointsetX is defined as the set of points (including
itself) that are closest to it in the embedding euclidean space. So,Ni = {(xj ,dj) ∈ X|‖xi −xj‖ ≤
‖xi − xl‖∀(xl,dl) 6∈ Ni and|Ni| = k}. The neighborhood kernel between two points(xA

i ,dA
i )

and(xB
j ,dB

j ) is defined as:

KN ((xA
i ,dA

i ), (xB
j ,dB

j )) = KRBF (dA
i ,dB

j )×
1

|NA
i ||NB

j |

∑

(xA
s ,dA

s )∈NA
i

∑

(xB
t ,dB

t )∈NB
j

KRBF (dA
s ,dB

t )

(2)
The neighborhood kernel (NK) between two pointsetsXA andXB is thus defined as:

KNK(XA,XB) =
1

nAnB

×
nA
∑

i=1

nB
∑

j=1

KN ((xA
i ,dA

i ), (xB
j ,dB

j )) (3)

It is easy to see thatKNK is a positive semidefinite kernel function. Even thoughKNK is a straight-
forward extension, it considerably improves accuracy ofKNS . Figure 1 shows values ofKNS and
KNK for 4 pairs of point from two pointsets modeling faces. Dark blue lines indicate best matches
given byKNS while bright blue lines indicate best matches by theKNK . In both cases,KNK gives
the correct match while theKNS fails. Computational complexity ofKNK is O(k2n2), k being
neighborhood size andn number of points. The next section proposes a kernel which uses positions
of points (xi) in a neighborhood more strongly to calculate similarity inshape.

3.2 Spectral Neighborhood Kernel

The kernel defined in the previous section still uses a set of vectors kernel for finding similarity
between the neighborhoods. Here, we are interested in a kernel function which evaluates the simi-
larity in relative position of the corresponding points. Since the neighborhoods being compared are
of fixed size, we assume that all points in a neighborhood havea corresponding point in the other.
Thus, the correspondences are given by a permutation of points in one of the neighborhoods. This
problem can be formulated as the weighted graph matching problem [16], for which spectral method
is one of the popular heuristics. We use the features given byspectral decomposition of adjacency
matrix of the neighborhood to define a kernel function.

Given a neighborhood Ni we define its adjacency matrixAi as Ai(s, t) =

e−
‖xs−xt‖

α , ∀s, t|(xs,ds), (xt,dt) ∈ Ni, whereα is a parameter. Given two neighborhoods
NA

i andNB
j , we are thus interested in a permutationπ of the basis of adjacency matrix of one of

the neighborhoods (sayNB
j ), such that‖AA

i − π(AB
j )‖F is minimized,‖.‖F being the frobenius

norm of a matrix.

It is well known that a matrix can be fully reconstructed fromits spectral decomposition. Also, in the
case that fewer eigenvectors are used, the equation‖A −

∑k

i=1 λiζiζ
T
i ‖2

F =
∑n

j=k+1 λ2
j , suggests

that eigenvectors corresponding to the higher eigenvalueswill give better reconstruction. We use one
eigenvector corresponding to largest eigenvalue. Thus, the approximate adjacency matrix becomes
Â = λ1ζ1ζ

T
1 .

Let π∗ be the optimal permutation that minimizes‖ÂA
i − π(ÂB

j )‖F . Note that hereπ applied on a
matrix implies permutation of the basis. It is easy to see that same permutation is induced on basis
of the eigenvectorsζB

j (1). Call fA
i = |ζA

i (1)| andf
B
j = |ζB

j (1)|, the spectral projection vectors
corresponding to neighborhoodsNA

i andNB
j . HereζA

i (1), ζB
j (1) are eigenvectors corresponding
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to largest eigenvalue of̂AA
i , ÂB

j , and|ζ(1)| is the vector of absolute values of components ofζ(1).
f(s) can be thought of as projection of thesth point in the corresponding neighborhood onR

1. It is
equivalent to seek a permutationπ∗ which minimizes‖fA

i − π(fB
j )‖, for comparing neighborhoods

NA
i andNB

j . The resulting similarity score is:

S(NA
i ,NB

j ) = max
π∈Π

T − ‖fA
i − π(fB

j )‖2
2 (4)

where,T is a threshold for converting the distance measure to similarity, and Π is the set of all
permutations. However, this similarity function is not necessarily positive semidefinite.

To construct a positive semidefinite kernel giving similarity between the vectorsfA
i and f

B
j ,

we use the convolution kernel technique [7] on discrete structures. Let x ∈ X be a
composite object formed using parts fromX1, . . . ,Xm. Let R be a relation overX1 ×
· · · × Xm × X such thatR(x1, . . . , xm, x) is true if x is composed ofx1, . . . , xm. Let
R−1(x) = (x1, . . . , xm) ∈ X1 × · · · × Xm|R(x1, . . . , xm, x) = true andK1, . . . ,Km be kernels
onX1, . . . ,Xm, respectively. The convolution kernelK overX is defined as:

K(x, y) =
∑

(x1,...,xm)∈R−1(x),(y1,...,ym)∈R−1(y)

m
∏

i=1

Ki(xi, yi) (5)

Haussler [7] showed that ifK1, . . . ,Km are symmetric and positive semidefinite, so isK.

For us, letX be the set of all neighborhoods andX1, . . . ,Xm be the sets of spectral projections
of all points from all the neighborhoods. Here, note that even if the same point appears in dif-
ferent neighborhoods, the appearances will be considered to be different because the projections
are relative to the neighborhoods. Since, each neighborhood has sizek, in our casem = k. The
relationR is defined asR(f(1), . . . , f(k),NA

i ) is true iff the vector(f(1), . . . , f(k)) = π(fA
i )

for some permutationπ. In other words,R(f(1), . . . , f(k),NA
i ) is true iff f(1), . . . , f(k) are

spectral projections the points of neighborhoodNA
i ). Also, letKi, i = 1 . . . k all be RBF ker-

nels with the same parameterβ. Thus, from the above equation, the convolution kernel becomes

K(NA
i , NB

j ) = k!
∑

π∈Π e
−1
β

Pk
l=1(f

A
i (l)−fB

j (π(l)))2 = k!
∑

π∈Π e
−‖fA

i −π(fB
j )‖2

β . Dividing by the
constant(k!)2, we get kernelKSN as:

KSN (NA
i ,NB

j ) =
1

k!

∑

π∈Π

e
−‖fA

i −π(fB
j )‖2

β (6)

The spectral kernel (SK)KSK between two pointsetsXA andXB is thus defined as:

KSK(XA,XB) =
1

nAnB

nA
∑

i=1

nB
∑

j=1

KRBF (dA
i ,dB

j )KSN (NA
i ,NB

j ) (7)

Following theorem relatesKSN (NA
i ,NB

j ) to S(NA
i ,NB

j ) (eqn 4).

Theorem 3.1 Let Ni and Nj be two sub-structures with spectral projection vectors f i and f j . For
large enough value of T such that all points are matched.

lim
β→0

KSN (Ni, Nj))
β =

e−T

k!
eS(Ni,Nj)

Proof: Letπ∗ be the permutation that gives the optimal scoreS(Ni, Nj). By definition,eS(Ni,Nj) =

eT e−‖fi−π∗(fj)‖2

.

limβ→0(KSN (Ni, Nj))
β = limβ→0(

1
k!

∑

π∈Π(l) e
−‖fi−π(fj)‖2

β )β

= 1
k!e

−‖fi−π∗(fj)‖2

limβ→0(1 +
∑

π∈Π\{π∗} e
−1
β

(‖fi−π(fj)‖2−‖fi−π∗(fj)‖2))β

= −1
k! e−‖fi−π∗(fj)‖2

�

Computational complexity of this kernel isO(k!n2), wherek is neighborhood size andn is no.
of descriptor points. However, since in practice only smallneighborhood sizes are considered, the
computation time doesn’t become prohibitive.
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Table 1: Recognition accuracy on AR face dataset (section 4.1)
Smile Angry Scream Glasses Scarf Left-Light Right-Light

1-NN 96.3% 88.9% 57.0% 48.1% 3.0% 22.2% 17.8%
PCA 94.1% 79.3% 44.4% 32.9% 2.2% 7.4% 7.4%
LEM 78.6% 92.9% 31.3% 74.8% 47.4% 92.9% 91.1%
AMM 96.0% 96.0% 56.0% 80.0% 82.0% NA NA
Face-ARG 97.8% 96.3% 66.7% 80.7% 85.2% 98.5% 96.3%
Sum(eq (1)) 96.19% 95.23% 83.80% 89.52% 60.00% 86.66% 80.95%
NK (eq (3)) 98.09% 98.09% 85.71% 94.28% 65.71% 92.38% 86.66%
SK (eq (7)) 99.04% 99.04% 86.66% 93.33% 65.71% 90.47% 84.76%

4 Experimental Results

In order to study the effectiveness of proposed kernels for practical visual tasks, we applied them
on three problems. Firstly, the kernels were applied to the well known problem of face recognition
[20], and results on two benchmark datasets (AR and ORL) werecompared to existing state-of-the-
art methods. Next we used the spectral kernel to tag images inpersonal photo albums using faces
of people present in them. Finally, the spectral kernel was used for annotation of video sequences
using faces of people present.

Attribute For face recognition, faces were modeled as attributed pointsets using local gabor descrip-
tors [10] calculated at the corner points using Harris corner point detector [6]. At each point, gabor
despite for three different scales and four different orientations were calculated. Descriptors for 5
points (4 pixel neighbors and itself) were used for each of the 12 combinations, making a total of
60 descriptors per point. For image tagging and video annotation, faces were modeled as attributed
pointsets using SIFT local descriptors [11], having 128 descriptors per point.

The kernels were implemented in GNU C/C++. LAPACK [2] was used for calculation of eigen-
vectors and GNU GSL for calculation of permutations. LIBSVM[4] was used as the SVM based
classifier for classifying pointsets. The face detector provided in OpenCV was used for detecting
faces in album images and video frames.

DatasetThe AR dataset [13] is composed of color images of 135 people (75 men and 60 women).
The DB includes frontal view images with different facial expressions, illumination conditions, and
occlusion by sunglasses and scarf as shown in figure 2-a. After removing persons with corrupted
images or missing any of the 8 types of required images, a total of 105 persons (56 men and 49
women) were selected. All the images were converted to greyscale and rescaled to154 × 115
pixels. The ORL dataset is composed of 10 images for each of the 40 persons. The images have
minor variations in pose, illumination and scale. All the 400, 112 × 92 pixel images were used for
experiments. Figure 2-b gives representative images from the ORL dataset.

a b

Figure 2: Representative images from AR and ORL datasets

4.1 Face Recognition in AR face DB

The kernels proposed in this paper, were tested pointsets derived from images in AR face DB.
Face recognition was posed as a multiclass classification problem, and SVMs were along with the
proposed kernels. The AR face DB is a standard benchmark dataset, on which a recent comparison
of state of the art methods for face recognition has been given in [14]. In table 1, we have restated
the results provided in [14] along with the results of our kernels. All the results reported in table
1 have been obtained using one normal (no occlusion or changeof expression) face image as the
training set.
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Table 2: Recognition accuracy on ORL dataset (section 4.2)

# of training images→ 1 3 5
Sum (eq (1)) 70.83% 92.50% 98.00%
NK (eq (3)) 71.38% 93.57% 98.00%
SK (eq (7)) 71.94% 93.92% 98.00%

It can be seen that for all the images showing change of expression (Smile, Angry and Scream),
the pointset kernels outperform existing methods. Also, incase of occlusion of face by glasses, the
pointset kernels give better results than existing methods. However, in case of occlusion by scarf,
the kernel based method do not perform as well as the Face-ARGor AMM. This failure is due to
introduction of a large number of points in the scarf themselves. It was observed that about 50% of
the descriptor points in the faces having scarfs were in the scarf region of the image. Summing the
similarities over such a large number of extra points makes the overall kernel value noisy.

The proposed approach doesn’t perform better than existingmethods on images taken under extreme
variation in lighting conditions. This is due to the fact that values of the local descriptors change
drastically with illumination. Also, some of the corner points disappear under different lighting
condition. However, performance of the kernels is comparable to the existing methods, thus demon-
strating the effectiveness of modeling faces as attributedpointsets.

4.2 Recognition performance on ORL Dataset

Real life problems in face recognition also show minor variations in pose, which are addressed by
testing the kernels on images in the ORL dataset. The problemwas posed as a multiclass classi-
fication problem and SVM was used along with the kernels for classification. Table 2 reports the
recognition accuracies of all the three kernels for two different values of parameters, and for 1, 3
and 5 training images.

It can be seen that even with images showing minor variationsin pose, the proposed kernels perform
reasonably well. Also, due to change in pose the relative position of points in the pointsets change.
This is reflected in the fact that improvement due to additionof position information in kernels
is minor as compared to those shown in AR dataset. For higher number of training images, the
performance of all the kernels saturate at 98%.

4.3 Tagging images in personal albums based on faces

The problem of tagging images in personal albums with names of people present in them, is a prob-
lem of high practical relevance [19]. The spectral kernels were used solve this problem. Images
from publicly available sources likehttp://www.flickr.com 1 were used for experimenta-
tion. Five personal albums having 20 - 55 images each were downloaded and many images had upto
6 people. Face detector from openCV library was used to automatically detect faces in images. De-
tected faces are cropped and resized to100 × 100 px resolution. 47 - 265 such faces detected from
each album. To the best of our knowledge, there are no openly available techniques to benchmark
our method against.

Due to non-availability of training data, the problem of image tagging was posed as a clustering
problem. Faces detected from the images were represented asattributed pointsets using SIFT local
descriptors, and spectral kernel was evaluated on them. A threshold based clustering scheme was
used on the distance metric induced by the kernel (d(x, y) =

√

K(x, x) + K(y, y) − 2 ∗ k(x, y)).
Ideally, each cluster thus obtained should represent a person and images containing faces from a
given cluster should be tagged with the name of that person.

Table 3 reports results from tagging experiments for five albums. No. of people identified reports
the number clusters having more than one faces, as singletoncluster will always be correct for that
person. Thus, people appearing only once in the entire albumare not reported, which reduce the
no. of identified people. % identified and % false +ve are averaged over all clusters detected in the

1We intend to make the dataset publicly available if no copyrights are violated
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Table 3: Face based album tagging

Album no. No. of people % Identified % False +ve
(Actual) (Identified)

1 - 2 90% 0%
2 14 6 84% 10.52%
3 8 4 66.66% 8.33%
4 4 2 83.33% 19.44%
5 3 2 80.00% 14.70%

Figure 3: Representative cluster from tagging of album

album, and are calculated for each cluster as:% identified = No. of correct faces in the cluster
Total no. of faces of the person

and

% false + ve = false +ves in the cluster
Total no. of faces in the cluster

. It can be seen that the kernel performs reasonably
well on the dataset. Figure 3 shows a representative clusterwith the first 8 images as true +ves and
rest as false +ves.

4.4 Video annotation based on faces

The kernels were also used to perform video shot annotation based faces detected in video se-
quences. Experimentation was performed on videos from “News and Public affair” section of
www.archive.org and music videos fromwww.youtube.com. Video was sampled at 1 frame
per second and experimental methodology was similar section 4.3 was used on the frames.

Figure 4 shows two representative shots from correspondingto two candidates from “Election 2004,
presidential debate part 2”, and one from “Westlife- Seasons in the Sun” video. The faces annotating
the shots are shown in the left as thumbnails. It may be noted that for videos, high pose variation did
not reduce accuracy of recognition due to gradual changing of pose. The results on detecting shots
were highly encouraging, thus demonstrating the varied applicability of proposed attributed pointset
kernels.

5 Conclusion

In this article, we propose kernels on attributed pointsets. We define the notion of neighborhood
in an attributed pointset and propose two new kernels. The first kernel evaluates attribute similari-

Figure 4: Keyframes of a few shots detected with annotation
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ties between the neighborhoods and uses the co-occurrence information to improve the performance
of kernels on sets of vectors. The second kernel uses the position information more strongly and
matches the shapes of neighborhoods. This kernel function is motivated from spectral graph match-
ing techniques.

The proposed kernels were validated on the well known task onface recognition on two popular
benchmark datasets. Results show that the current kernels perform competitively with the state-of-
the-art techniques for face recognition. The spectral kernel was also used to perform two real life
tasks of tagging images in personal photo albums and annotating shots in videos. The results were
encouraging in both cases.
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