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Abstract

Structural alignments are the most widely
used tools for comparing proteins with low
sequence similarity. The main contribution
of this paper is to derive various kernels on
proteins from structural alignments, which
do not use sequence information. Central
to the kernels is a novel alignment algorithm
which matches substructures of fixed size us-
ing spectral graph matching techniques. We
derive positive semi-definite kernels which
capture the notion of similarity between sub-
structures. Using these as base more sophis-
ticated kernels on protein structures are pro-
posed. To empirically evaluate the kernels we
used a 40% sequence non-redundant struc-
tures from 15 different SCOP superfamilies.
The kernels when used with SVMs show com-
petitive performance with CE, a state of the
art structure comparison program.

1. Introduction

Classification of proteins into different classes of inter-
est, is a problem of fundamental interest in computa-
tional biology. Powerful techniques exist for classify-
ing proteins having high sequence similarity. However,
these methods are not reliable when sequence similar-
ity falls in the twilight zone (Bourne & Shindyalov,
2003), i.e. is in the range 20 − 30%. Developing clas-
sification tools for such proteins is an important re-
search issue. Since sequence information is unreliable
it is interesting to think about classification tools based
on structures alone, and deliberately ignore the amino
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acid types. This view is taken by most structure align-
ment algorithms (Eidhammer et al., 2000), which are
the most widely accepted methods for protein struc-
ture comparison.

In this paper, we explore the idea of designing clas-
sifiers based on Support vector machines(SVMs) for
proteins having low sequence similarity. More explic-
itly our goal is to derive positive semi-definite ker-
nels motivated from structural alignments without us-
ing sequence information. The hypothesis is that any
structure classification technique should capture the
notion of similarity defined by structural alignment
algorithms. Though there is lot of work on design-
ing kernels on protein sequences (Jaakkola et al., 1999;
J.-P. Vert, 2004; Leslie & Kwang, 2004), to the best
of our knowledge, there is relatively less work on ker-
nels on protein structures. (Wang & Scott, 2005) is an
interesting first step, where both sequence and struc-
ture information are used, to define kernels on protein
structures.

First, we propose a novel protein structure alignment
algorithm by using a spectral projection based sim-
ilarity measure. We show that naive spectral graph
matching (Umeyama, 1988) based techniques fail to
produce the correct alignment in many cases due to
existence of unmatched residues, called indels, in many
similar structures. This drawback is remedied by con-
sidering pairs of substructures from each protein.

The main contribution of this paper is to propose ker-
nels on protein structures based on structural align-
ments. Following the idea of sub-structure matching,
we propose novel kernels on protein sub-structures us-
ing the spectral projection vector and pairwise dis-
tances, and show that a limiting case of the spec-
tral kernel relates to the alignment score on sub-
structures. Combining these kernels on sub-structures,
we define various kernels on protein structures. Using
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substructure kernels, we also define kernels on pro-
tein structures that take any pairwise structural align-
ment, explicitly into account. Benchmarking exper-
iments are conducted on a sequence non-redundant
SCOP dataset. We benchmark our results against
CE (Bourne & Shindyalov, 1998), a state of the art
structure comparison program on a dataset with low
sequence similarity. Extensive experiments show that
the results are promising.

The paper is organized as follows. Section 2 de-
scribes development of the structure alignment algo-
rithm. Section 3 develops the kernels for over sub-
structures and subsequently over protein structures.
Section 4 describes the experimental results.

2. Protein Structure Alignment

2.1. Background

The tertiary structure of a protein is represented by
the 3 dimensional coordinates of all atoms present
in a given protein chain, with respect to an arbi-
trary coordinate system. However, following common
practice, we consider only Cα atoms of each residue.
Thus, we represent protein structures as a set of points
corresponding to residues in 3 dimensions. So, a
protein P is represented as P = {p1, . . . , pn} where
pi ∈ R

3, 1 ≤ i ≤ n. A structural alignment between
two proteins PA and PB is a 1-1 mapping φ : {i|pA

i ∈
P̄A} → {j|pB

j ∈ P̄B}, where P̄A ⊆ PA and P̄B ⊆ PB .
The mapping φ defines a set of correspondences be-
tween the residues of the two proteins. |P̄A| = |P̄B |
is called the length of the alignment. Given a struc-
tural alignment φ between 2 structures PA and PB ,
and a transformation T of structure B onto A, a
popular measure of the goodness of superposition is
the root mean square deviation (RMSD), defined as

RMSD(φ) =
√

1
|P̄ A|

∑

pA
i ∈P̄ A(pA

i − T (pB
φ(i)))

2 Given

an alignment φ, the optimal transformation T , mini-
mizing RMSD, can be computed in closed form using
the method described in (Horn, 1987).

However, using RMSD as a measure for evaluat-
ing alignments has 2 problems: the optimal trans-
formation T needs to be computed for every align-
ment, and RMSD favors alignments of lower lengths
which may not capture the total similarity between
2 proteins in presence of noise. An alternate mea-
sure, called the distance RMSD avoids the calcu-
lation of optimal transformation. Distance RMSD
for an alignment φ is defined as RMSDD(φ) =
√

1
|P̄ A|2

∑

pA
i ,pA

j ∈P̄ A(dA
ij − dB

φ(i)φ(j))
2 where, dA

ij is the

distance between residues pA
i and pA

j . The matrix d is

also called the distance matrix of a protein structure.

The drawback of preferring smaller lengths was reme-
died in formulation proposed in DALI (Holm &
Sander, 1993). The score function used in DALI is

SDALI(φ) =
X

pA
i

,pA
j

∈P̄ A

 

0.2 −
|dA

ij − dB
φ(i)φ(j)|

d̄ij

!

exp

 

−

„

d̄lk

20

«2
!

where d̄ij = (dA
ij + dB

φ(i)φ(j))/2. DALI stochastically
searches over all alignments for the φ which maximizes
SDALI . Note that, residues which are spatially far do
not contribute much to the DALI score. This is due
to the exponentially decreasing function of the aver-
age distance used to weight each term. Following this
observation, we define the adjacency matrix of a pro-

tein as Aij = e
−dij

α , α > 0. This is an exponentially
decreasing function between 0 and 1, making the en-
tries corresponding to far away residues very close to
zero. The problem of finding optimal correspondences
can be viewed as an weighted graph matching prob-
lem (Umeyama, 1988) with weights given by the adja-
cency matrix values. In the next section, we propose
an alternate formulation using spectral graph theoretic
techniques.

2.2. Spectral Solution to Protein Structure

Alignment

Consider the ideal situation where both protein PA

and PB have equal number of residues, all of which
have a corresponding residue in the other structure.
In such a case, the problem of finding optimal align-
ment between the two proteins is same as finding the
optimal permutation of the residues of one of the pro-
teins. Let AA and AB be the adjacency matrices
corresponding to the two proteins. Consider their
eigenvalue decompositions AA =

∑n

i=1 λA
i ζA

i (ζA
i )T

and AB =
∑n

i=1 λB
i ζB

i (ζB
i )T , with terms on the RHS

sorted according to decreasing value of λ. It is easy to
see that the eigenvectors ζA

i and ζB
i will be related by

the same permutation as the residues of the original
proteins. Thus, the correct alignment can be retrieved
by calculating the permutation that best matches the
entries of ζA

i and ζB
i .

The adjacency matrix A of any protein can be ap-
proximated by k eigenvectors with an error η, given
by: ‖A −

∑k

i=1 λiζiζ
T
i ‖2

F =
∑n

j=k+1 λ2
j = η2‖A‖2

F .
For k = 1, η is minimized when the eigenvector cor-
responding to the largest eigenvalue, ζ1, is considered.
The jth component of the leading eigenvector, ζ1(j)
can be thought of as a projection of the corresponding
residue on to the real line. It was also observed that
spatially close residues have similar projected values;
i.e. if Ajl is high, then |ζ1(j)− ζ1(l)| is low. Hence, ζ1
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can be thought of as projections that preserve neigh-
borhood (Bhattacharya et al., 2006).

Let ζA
1 and ζB

1 be the eigenvectors corresponding to
the largest eigenvalues of the adjacency matrices of
proteins PA and PB. Define spectral projection vector
f , to be a vector of absolute values of components of
ζ. Thus, fA

i = |ζA
1 (i)| and fB

i = |ζB
1 (i)|. The absolute

values of the eigenvectors are taken because if ζ is an
eigenvector, so is −ζ. We define the similarity between
residue i of PA and residue j of PB as:

s(i, j) = T − (fA
i − fB

j )2 (1)

Here, T is a threshold on the minimum similarity be-
tween fA

i and fB
J for them to be included in an align-

ment. Putting T to be very high will match the en-
tire structures of two proteins. Using this similarity
function, we are interested in finding an alignment
φ : {i|pA

i ∈ P̄A} → {j|pB
j ∈ P̄B} that solves:

S(φ∗) = max
φ

∑

i:pA
i ∈P̄ A

s(i, φ(i)) (2)

This is an instance of the assignment problem, or
weighted bipartite graph matching problem, which can
be solved using linear programming (Bertsimas & Tsit-
siklis, 1997).

Unfortunately, in many cases, this technique fails to
detect the best alignment (see results). This is due to
the fact that many protein structures have a significant
number of residues which don’t have a correspond-
ing residue in other similar structure. These extra
residues, called indels, add extra rows and columns to
the adjacency matrix, thereby changing the eigenval-
ues and eigenvectors. This shortcoming of the spectral
method can be overcome in case of protein structures
by considering sub-structures instead of the whole
structures for alignment. The reason is that even
though there may be many indels between two sim-
ilar structures, the portions responsible for function of
the protein or for maintaining the protein fold remain
highly conserved. Thus, considering sub-structures of
equal size (in number of residues) around each residue
is likely to give many entirely matched pairs of sub-
structures in case of similar proteins, and vice versa.

A sub-structure NA
i of protein PA centered at residue

i is a set of l residues that are closest to residue i
in 3-D space, l being the size of sub-structures being
considered. Thus, NA

i = {pA
j ∈ PA|pA

k 6∈ NA
i ⇒ ‖pA

j −

pA
i ‖ ≤ ‖pA

k −pA
i ‖ and |NA

i | = l}. The robust algorithm
for comparing protein structuresPA and PB is:

1. Compute the sub-structures centered at each
residue for both proteins PA and PB.

2. For each pair of sub-structures, one from each
protein, compute the alignment between the sub-
structures by solving the problem described in
equations 1 and 2.

3. For each sub-structure alignment computed
above, compute the optimal transformation of the
sub-structure from PA onto the one from PB .
Transform the whole of PA onto PB using the
computed transformation, and compute the simi-
larity score between residues of PA and PB .

4. Compute the optimal alignment between PA and
PB by solving the assignment problem described
in equation 2 using similarity score computed
above.

5. Report the best alignment of all the alignments
computed in the above step as the optimal one.

The sub-structure based algorithm relies on the as-
sumption that the optimal structural alignment be-
tween two protein structures contains at least one pair
of optimally and fully aligned sub-structures, one from
each of the proteins. For each sub-structure alignment
computed in step 2 of the above algorithm, the op-
timal transformation superposing the corresponding
residues is calculated using the method described in
(Horn, 1987). The “best” alignment in mentioned in
step 5 is decided on the basis of both RMSD and the
length of alignment. A detailed description and bench-
marking of the method will be presented elsewhere.
Taking ideas from the algorithm designed in this sec-
tion, we propose kernels for proteins structures in the
next section.

3. Kernels for Protein Structure

Classification

3.1. Kernels for Sub-structures

The algorithm designed in the previous section mo-
tivates the notion of first proposing kernels on sub-
structures and then suitably combining them to derive
kernels on entire protein structures. To this end, we
propose a kernel over sub-structures in this section.
(Wang & Scott, 2005) also combine substructure ker-
nels to build kernels on protein structures. However,
their kernels use amino acid similarity inside substruc-
tures. Also, since a kernel function captures the simi-
larity between two objects, the algorithm gives us the
idea of using the spectral projection vectors for each
sub-structure to define the substructure kernels.

Let N1 and N2 be the sub-structures, each having l
residues. Let f1 and f2 be the spectral projection
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vectors for each sub-structure. We define the kernel
Kres between ith residue of N1 and jth residue of N2

as the decreasing function of the difference in spec-

tral projection: Kres(i, j) = e
−(f1

i −f2
j )2

β . Technically,
since a kernel should be defined over a set of objects,
we extend this definition to the union of the sets of
residues from the two sub-structures, though only the
cross terms appear in subsequent calculations. It is
easy to see that over the union set, this kernel is sym-
metric and positive semidefinite. Next we combine the
kernels over residues of the two sub-structures to de-
fine kernels over sub-structures using the convolution
kernel technique (Haussler, 1999).

Convolution kernels were proposed in (Haussler,
1999) as a general tool for building kernels on
complex objects formed by combining simple
objects, on which kernels are already known.
Let x ∈ X be a composite object formed using
parts from X1, . . . ,Xm. Let R be a relation over
X1 × · · · × Xm × X such that R(x1, . . . , xm, x) is
true if x is composed of x1, . . . , xm. Let R−1(x) =
(x1, . . . , xm) ∈ X1 × · · · × Xm|R(x1, . . . , xm, x) = true
and K1, . . . ,Km be kernels on X1, . . . ,Xm, respec-
tively. The convolution kernel K over X is defined
as:

K(x, y) =
∑

(x1,...,xm)∈R−1(x),(y1,...,ym)∈R−1(y)

m
∏

i=1

Ki(xi, yi)

(3)
As shown in (Haussler, 1999), if K1, . . . ,Km are sym-
metric and positive semidefinite, so is K.

Sub-structure Spectral Kernel. In our case, X
is the set of all sub-structures and X1, . . . ,Xm are all
sets of all the residues pi’s from all the sub-structures.
Here, note that even if the same residue appears in
different sub-structures, the appearances will be con-
sidered to be different. Since, each sub-structure has
a size of l, in our case m = l. The relation R is de-
fined as R(p1, . . . , pl, N) is true iff N = {p1, . . . , pl}.
Since, all the Xi’s have all the residues from N , the
cases for which R can hold true are the permutations
of residues of N . Since, this can happen for both N1

and N2, each combination of correspondences occurs l!
times. Thus, from the above equation, the kernel be-

comes: K(N1, N2) = l!
∑

π∈Π(l) e
1
β
−
Pl

k=1(f
1
k−f2

π(k))
2

=

l!
∑

π∈Π(l) e
−‖f1−π(f2)‖2

β where, f i is the spectral pro-

jection vector of Ni and Π(l) is the set of all possible
permutations of l numbers. Since l! is a constant, we
define the sub-structure spectral kernel as:

KSS(Ni, Nj) =
∑

π∈Π(l)

e
−‖fi−π(fj)‖2

β (4)

Pairwise distance substructure kernel. Using
the convolution kernel technique, we define another
kernel on substructures based on pairwise distances
between residues. In this case, X is the set of all
sub-structures and X1, . . . ,Xm are all sets of all pair-
wise distances dij , i < j between the residues from
all substructures. Thus, in this case m = l(l − 1)/2.
The relation R is defined as R(d12, . . . , d(l−1),l, N) is
true iff N = {p1, . . . , pl} and dij = ‖pi − pj‖. Thus,
R holds true for d = (d1, . . . , dm) and N , if d is
the pairwise distance vector of N for all permuta-
tions of indices of residues. So, with the notation that
(π(d))i,j = ‖pπ(i) − pπ(j)‖, the pairwise distances sub-
structure kernel is defined as:

KPDS(Ni, Nj) =
∑

π∈Π(l)

e
−‖di−π(dj)‖2

σ2 (5)

Using the result in (Haussler, 1999), KSS and KPDS

are positive semidefinite. Next, we prove a relation
between the score obtained by solving the assignment
problem in equation 2 and KSS .

Theorem 3.1 Let Ni and Nj be two sub-structures
with spectral projection vectors f i and f j. Let
S(Ni, Nj) be the score of alignment of Ni and Nj, ob-
tained by solving the assignment problem specified in
equation 2, for large enough value of T such that all
residues are matched.

elT lim
β→0

KSS(Ni, Nj))
β = eS(Ni,Nj)

Proof: Let π∗ be the permutation that gives the
optimal score S(Ni, Nj). By definition, eS(Ni,Nj) =

maxπ∈Π(l) e
Pl

k=1 T−(fi
k−f

j

π(k)
)2

= elT e−‖fi−π∗(fj)‖2

.

limβ→0(KSS(Ni, Nj))
β

= limβ→0(
∑

π∈Π(l) e
−‖fi−π(fj)‖2

β )β

= e−‖fi−π∗(fj)‖2

limβ→0(1 +
∑

π∈Π(l)\{π∗} T1)
β

= e−‖fi−π∗(fj)‖2

where, T1 = e
−1
β

(‖fi−π(fj)‖2−‖fi−π∗(fj)‖2).

A similar result holds for KPDS . However, in that case
optimizing the similarity measure is an NP-complete
problem (Pardalos et al., 1994). A similar result
was proved for the local alignment kernel defined on
strings in (J.-P. Vert, 2004). We define the limit-
ing case of KSS as a new kernel KLSS(N1, N2) =
limβ→0(KSS(N1, N2))

β .

Calculation of KSS and KPDS takes time exponential
in the substructure size. However, it is not a major
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hindrance as the substructure size is fixed to a small
number (6 in our experiments). KLSS can be com-
puted in time polynomial in substructure size. Un-
fortunately, KLSS is not necessarily positive semidefi-
nite. However, in the next section, we develop positive
semidefinite kernels on protein structures using KSS ,
KPDS and KLSS .

3.2. Kernels on Protein Structures

Viewing kernel values as a measure of similarity be-
tween the proteins, it is natural to consider the sum
of sub-structure kernels over all pairs of sub-structures
between the two proteins as a kernel between the pro-
teins. Thus, given proteins P i = {pi

1, . . . , p
i
ni
} and

P j = {pj
1, . . . , p

j
nj
}, we define the following two kernel

based on the two sub-structure kernels defined earlier:

K1(P
i, P j) =

ni
∑

a=1

nj
∑

b=1

KSS(N i
a, N j

b ) (6)

K2(P
i, P j) =

ni
∑

a=1

nj
∑

b=1

KPDS(N i
a, N j

b ) (7)

Here, N i
a is the sub-structure in protein P i centered at

residue pi
a. Both K1 and K2 are positive semidefinite

because they are sum of positive semidefinite kernels.

The kernels defined above add up the substructure ker-
nel values for all possible pairs of sub-structures. How-
ever, this is bad estimate of the similarity between the
proteins as most of the sub-structure pairs even for
similar proteins might not be similar. One possible
way of increasing the accuracy is to consider two sub-
structures from each protein and weight the substruc-
ture kernels with a decreasing function of the distance
between them. To maintain positive semi-definiteness
of the resulting function, it is necessary that the
weighting function be positive semidefinite. We use
the gaussian kernel, Knorm((N i

a, N i
b), (N

j
c , N j

d)) =

e
(‖pi

a−pi
b
‖−‖p

j
c−p

j
d
‖)

σ2 , as the weighting function. Note
that in this case the kernel is over all pairs of sub-
structures in each structure. Thus, we define two more
kernels as:

K3(P
i
, P

j) =

ni
X

a,b=1

nj
X

c,d=1

KSS(N i
a, N

i
b) ×KSS(N j

c , N
j

d) ×

Knorm((N i
a, N

i
b), (N

j
c , N

j

d)) (8)

K4(P
i
, P

j) =

ni
X

a,b=1

nj
X

c,d=1

KPDS(N i
a, N

i
b) ×KSS(N j

c , N
j

d) ×

Knorm((N i
a, N

i
b), (N

j
c , N

j

d)) (9)

It is easy to see that K3(P
i, P j) and K4(P

i, P j)
are both positive semidefinite. Even though these
kernels are more accurate than the previous two,
they computationally expensive. Computation time

of these kernels is O(n4) which is also more than that
of many structural alignment algorithms (Bourne &
Shindyalov, 1998; Bhattacharya et al., 2006).

Another interesting way of increasing accuracy of ker-
nels is by taking correspondences produced by a struc-
tural alignment algorithm into account while comput-
ing the kernel values. Thus, given an alignment φij

between proteins P i and P j we define the alignment
kernels as :

KAl
1 (P i, P j ;φij) =

∑

a|pi
a∈P̄ i

KSS(N i
a, N j

φij(a)) (10)

KAl
2 and KAl

3 are defined analogously by replacing KSS

by KLSS and KPDS in the above equation, respec-
tively. Unfortunately, these kernels are not necessarily
positive semidefinite. For such cases, a standard trick
is to compute the eigenvector decomposition of the ker-
nel matrix, force all the negative eigenvalues to be zero
and recompute the kernel matrix from the modified
eigenvector decomposition. In experiments, this trick
is used to make these kernels positive semidefinite.

However, this requires computation of the eigenvalues
of the kernel matrix. We propose another set of ker-
nel that while keeping the off-diagonal terms intact
and only modifying the diagonal terms, is always pos-
itive semidefinite. Thus, given a dataset of proteins
{P 1, . . . , PM}, and all possible pairwise alignments φij

between proteins P i and P j , we define the kernel K3
as:

K
Al
4 (P

i
, P

j
) =

8

>

>

>

>

<

>

>

>

>

:

X

a|pi
a∈P̄ i

KSS(N
i
a, N

j

φij(a)
) if i 6= j

M
X

b=1

X

a|pi
a∈dom(φib)

KSS(N
i
a, N

i
φib(a)) if i = j

(11)

where, dom(φib) is the domain of function φib, which
is the set of all residues participating in the alignment
φib from structure P i. KAl

5 and KAl
6 are defined anal-

ogously by replacing KSS with KLSS and KPDS , re-
spectively.

Theorem 3.2 KAl
4 is positive semidefinite if KSS is

positive valued.

Proof: Let Lmax be the maximum length of align-
ments between all pairs of proteins in the dataset.

Consider the M × (M(M+1)
2 Lmax) matrix H having

one row for each proteins in the dataset. Each row

has M(M+1)
2 block of length Lmax corresponding to

each pairwise alignment (including alignment of every
structure with itself). For rows corresponding to pro-
teins i and j, the kth element of the block for alignment

φij is equal to
√

KSS(N i
k, N j

φij(k)). The index k runs

over all the correspondences in the alignment. For
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alignments that have length smaller than Lmax, put
the remaining entries to be zero. It can be seen that
KAl

4 = HHT . As, each entry in KAl
4 is a dot product

between two vectors, KAl
4 is positive semidefinite.

Note that KSS needs to be positive valued and not
positive semidefinite. So, KAl

5 and KAl
6 are also pos-

itive semidefinite, even though KLSS is not. Com-
putational complexity of K1 and K2 is O(n1n2) and
that of K3 and K4 is O(n2

1n
2
2). The alignment kernels

have complexity of O(Nal), where Nal is the number of
aligned residues. In the next section, we report results
of experiments conducted for validating the structure
alignment algorithm and the kernels developed in this
section for protein structure classification.

4. Experimental Results

The algorithms and kernels developed above were im-
plemented and tested on real protein structures from
various structural classes obtained from PDB (Berman
et al., 2000). The alignment algorithms and ker-
nels were implemented in C using GCC/GNU Linux.
Eigenvalue computations were done using Lapack 1.
SVM classifications were done using Libsvm 2.

Alignment algorithms were validated against their
popularly used counterpart e.g. DALI (Holm &
Sander, 1993) and CE (Bourne & Shindyalov, 1998).
Due to lack of space, only indicative results are re-
ported here. Kernels were evaluated on the the task
of classifying protein structures. SCOP (Murzin et al.,
1995) was taken as the standard for protein structure
classification. Nearest neighbor classification using zs-
core given by CE (Bourne & Shindyalov, 1998) was
used as the standard method.

4.1. Structural Alignment Results from

Spectral Projection based Algorithms

In order to test the protein structure alignment al-
gorithms described in section 2.2, we used the algo-
rithms to compare a number of similar protein struc-
tures retrieved from the PDB. Two other popularly
used protein structure algorithms, e.g. DALI (Holm
& Sander, 1993) and CE (Bourne & Shindyalov, 1998)
were also used to compare the same proteins. Table
1 shows the RMSDs and lengths of alignment given
by the programs for a set of proteins from a variety of
classes. The results show that on similar proteins both
the spectral methods perform at par with the existing
techniques.

1Available at: http://www.netlib.org/clapack/
2Available at: http://www.csie.ntu.edu.tw/c̃jlin/libsvm

On the pair 2PEL - 5CNA the spectral algorithms give
much better alignments than the existing methods.
This is due to the fact that this pair of proteins is re-
lated by circular permutations. Also, in order to test
the performance of the algorithms on proteins showing
indels, we aligned the individual domains of the multi-
domain protein 2HCK with the individual domains (ta-
ble 1). It is clear that the algorithm calculating sim-
ilarity from spectral projections of the entire protein
structure doesn’t report the correct alignments even
when the sub-structures are highly similar (RMSD 0).
Thus, it is clear that the sub-structure based method is
more robust to indels than the naive spectral method.

4.2. Structure Classification using Kernels

In order to test the effectiveness of kernels proposed
in this article, we consider a difficult task of classify-
ing proteins with low sequence similarity, the SCOP
(Murzin et al., 1995). SCOP provides a 40% se-
quence non-redundant dataset (the lowest cutoff pro-
vided by SCOP), having about 4000 proteins. The en-
tire dataset was taken, and superfamilies having more
than 10 proteins were found (total 21 of them). Of
these 15 superfamilies were taken and 10 proteins from
each superfamily were chosen randomly.

Experiments were performed on this dataset, using a
protocol similar to that in (Wang & Scott, 2005). 15
binary classification problems were posed for identi-
fying each class, where the negative data contained
10 proteins (to keep the dataset balanced) randomly
chosen from all other classes. Leave one out cross val-
idation using SVM was performed on all 15 of such
classification problems, and positive and negative er-
ror rates are reported in table 2. The experiments were
repeated 10 times with different negative datasets, and
the average accuracy was reported. Alignments re-
quired for the alignment kernels were computed using
the method described in (Bhattacharya et al., 2006).
Also, the alignment kernels (KAl

4 − KAl
6 ), showed the

problem of diagonal dominance, which was remedied
using the method suggested in (Schölkopf et al., 2002).
Results reported for CE (Bourne & Shindyalov, 1998)
are same experiments, except that nearest neighbor
classifier was used taking zscore values as the similar-
ity measure.

Kernels K1 and K2 perform reasonably well in terms
of positive classification accuracy, though on an aver-
age, negative classification accuracy is lower. K3 and
K4 also show similar performance except on the last
class (SCOP superfamily a.39.1). Performance of K3

and K4 did not achieve the expected improvement due
to inadequate tuning of parameters. In general, the
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alignment kernels KAl
1 −KAl

6 , show better performance
than other kernels. Also, out of the alignment ker-
nels, the positive semidefinite kernels (KAl

4 −KAl
6 ) show

better performance than the non-positive semidefinite
ones (KAl

1 − KAl
3 ), as expected. Finally, the positive

semidefinite alignment kernels (KAl
4 −KAl

6 ) show bet-
ter overall classification accuracy than CE, a state of
the art structure comparison tool. Interestingly, CE
shows much lower negative classification accuracy than
many of the kernels. This can be attributed to better
generalization capabilities of SVMs over nearest neigh-
bor classifiers. Thus, it is clear from experiments that
kernels based alignment outperform, state of the art
structure classification tools in terms of accuracy.

Kernels K1, K2 take less than 5s, and K3, K4 take
less than 30s for proteins having around 200 residues
on an Athlon 2.2GHz based desktop computer. The
alignment kernels take less than 1s for 200 residue pro-
teins.

5. Conclusion

In this study, the main objective was to derive ker-
nels on protein structures, without using sequence in-
formation. Several kernels were derived from struc-
tural alignments, and were benchmarked against CE,
on the difficult task classifying proteins having low se-
quence similarity, with extremely encouraging results.
Though the kernels were designed on protein struc-
tures, it is interesting to explore it’s applications to
other 3D pointsets.

Acknowledgement: The authors are indebted to
MHRD, Govt. of India, for supporting this research
throught grant number F26-11/2004.

References

Berman, H. M., Westbrook, J., Feng, Z., Gilliland,
G., Bhat, T. N., Weissig, H., Shindyalov, I. N., &
Bourne, P. E. (2000). The protein data bank. Nu-
cleic Acids Research, 28, 235–242.

Bertsimas, D., & Tsitsiklis, J. (1997). Introduction to
linear optimization. Athena Scientific.

Bhattacharya, S., Bhattacharyya, C., & Chandra, N.
(2006). Projections for fast protein structure re-
trieval. BMC Bioinformatics, 7 suppl., 5:S5.

Bourne, P. E., & Shindyalov, I. N. (1998). Protein
structure alignment by incremental combinatorial
extension of optimal path. Protein Engineering, 11,
739–747.

Bourne, P. E., & Shindyalov, I. N. (2003). Pro-

tein structure comparison and alignment. In P. E.
Bourne and H. Weissig (Eds.), Structural bioinfor-
matics, 321–337. Wiley-Liss.

Eidhammer, I., Jonassen, I., & Taylor, W. R. (2000).
Structure comparison and structure patterns. Jour-
nal of Computational Biology, 7, 685–716.

Haussler, D. (1999). Convolution kernels on discrete
structures (Technical Report). University of Califor-
nia, Santa Cruz.

Holm, L., & Sander, C. (1993). Protein structure com-
parison by alignment of distance matrices. Journal
of Molecular Biology, 233, 123–138.

Horn, B. K. P. (1987). Closed form solution of absolute
orientation using unit quaternions. Journal of the
Optical Society of America, 4, 629–642.

J.-P. Vert, H. Saigo, T. A. (2004). Kernel methods in
computational biology, chapter Local alignment ker-
nels for biological sequences, 131–154. MIT Press.

Jaakkola, T., Diekhaus, M., & Haussler, D. (1999). Us-
ing the fisher kernel method to detect remote protein
homologies. 7th Intell. Sys. Mol. Biol., 149–158.

Leslie, C., & Kwang, R. (2004). Fast string kernels us-
ing inexact matching for protein sequences. Journal
of Machine Learning Research, 5, 1435 – 1455.

Murzin, A. G., Brenner, S. E., Hubbard, T., &
Chothia, C. (1995). Scop: a structural classifica-
tion of proteins database for the investigation of se-
quences and structures. Journal of Molecular Biol-
ogy, 247, 536–540.

Pardalos, P., Rendl, F., & Wolkowicz, H. (1994). The
quadratic assignment problem: a survey and recent
developments. In P. Pardalos and H. Wolkowicz
(Eds.), Quadratic assignment and related problems
(new brunswick, NJ, 1993), 1–42. Providence, RI:
Amer. Math. Soc.

Schölkopf, B., Weston, J., Eskin, E., Leslie, C. S., &
Noble, W. S. (2002). A kernel approach for learning
from almost orthogonal patterns. ECML (pp. 511–
528).

Umeyama, S. (1988). An eigendecomposition ap-
proach to weighted graph matching problems. IEEE
transactions on pattern analysis and machine intel-
ligence, 10, 695–703.

Wang, C., & Scott, S. D. (2005). New kernels for pro-
tein structural notif discovery and function classifi-
cation. International Conference on Machine Learn-
ing.



Alignment Kernels for Protein Structures

Protein1 Protein2 C.E. DALI Spectral (full prot.) Spectral (robust)
(length) (length) RMSD (N) RMSD (N) RMSD (N) RMSD (N)

1DWT:A (152) 2MM1 (153) 0.7 (152) 0.8 (152) 0.749 (152) 0.74 (152)
5CNA:A (237) 2PEL:A (232) 1.2 (115) 1.3 (117) 1.911 (223) 1.33 (221)
2ACT (218) 1PPN (212) 1.0 (211) 0.9 (210) 0.877 (210) 0.82 (211)

1HTI:A (248) 1TIM:A (247) 0.9 (246) 1.0 (247) 1.023 (247) 0.86 (245)
2HCK:A (437) d2hcka1 (63) - 0.0 (63) 2.81 (34) 0.0 (63)
2HCK:A (437) d2hcka2 (103) - 0.0 (103) 3.12 (58) 0.0 (103)
2HCK:A (437) d2hcka3 (271) - 0.0 (271) 0.00 (271) 0.0 (271)

Table 1. Comparison of results for pairwise protein structure comparison from different programs

SCOP K1 K2 K3 K4 KAl
1 KAl

2

Classfn TP % TN % TP % TN % TP % TN % TP % TN % TP % TN % TP % TN %
a.4.5 77.00 66.00 62.00 75.00 55.00 85.00 82.00 87.00 94.00 89.00 91.00 97.00
c.66.1 63.00 45.00 72.00 38.00 81.00 49.00 55.00 54.00 83.00 100.00 97.00 100.00
b.18.1 92.00 78.00 89.00 81.00 74.00 50.00 98.00 69.00 87.00 92.00 90.00 82.00
c.52.1 67.00 52.00 72.00 50.00 58.00 47.00 47.00 49.00 35.00 95.00 43.00 80.00
c.37.1 51.00 36.00 58.00 36.00 35.00 47.00 52.00 44.00 33.00 86.00 42.00 78.00
b.29.1 100.00 87.00 87.00 71.00 82.00 51.00 80.00 81.00 70.00 98.00 79.00 95.00
c.108.1 66.00 45.00 74.00 50.00 70.00 40.00 81.00 59.00 65.00 100.00 79.00 99.00
c.47.1 63.00 44.00 35.00 38.00 52.00 63.00 54.00 63.00 81.00 90.00 81.00 82.00
b.1.18 72.00 65.00 70.00 75.00 49.00 75.00 63.00 81.00 93.00 49.00 91.00 85.00
g.39.1 59.00 45.00 54.00 86.00 60.00 97.00 76.00 95.00 100.00 15.00 96.00 57.00
b.40.4 65.00 72.00 77.00 76.00 53.00 87.00 68.00 83.00 87.00 58.00 90.00 83.00
c.55.3 62.00 30.00 65.00 39.00 68.00 42.00 60.00 56.00 60.00 99.00 68.00 96.00
c.55.1 57.00 38.00 58.00 47.00 33.00 50.00 54.00 35.00 58.00 97.00 65.00 85.00
c.2.1 68.00 45.00 65.00 64.00 42.00 41.00 60.00 47.00 84.00 93.00 87.00 91.00
a.39.1 83.00 75.00 93.00 94.00 30.00 0.00 30.00 11.00 85.00 91.00 88.00 87.00

Contd...

SCOP KAl
3 KAl

4 KAl
5 KAl

6 CE
Classfn TP % TN % TP % TN % TP % TN % TP % TN % TP % TN %
a.4.5 93.00 93.00 83.00 91.00 82.00 90.00 90.00 92.00 93.00 60.00
c.66.1 81.00 100.00 99.00 86.00 90.00 85.00 100.00 90.00 99.00 45.00
b.18.1 94.00 78.00 80.00 88.00 82.00 87.00 98.00 84.00 100.00 77.00
c.52.1 31.00 82.00 60.00 62.00 65.00 64.00 76.00 65.00 86.00 54.00
c.37.1 27.00 89.00 70.00 50.00 66.00 53.00 76.00 67.00 93.00 41.00
b.29.1 66.00 96.00 84.00 66.00 86.00 69.00 97.00 82.00 97.00 74.00
c.108.1 69.00 100.00 81.00 69.00 84.00 66.00 92.00 80.00 100.00 69.00
c.47.1 68.00 89.00 64.00 71.00 61.00 68.00 72.00 71.00 98.00 58.00
b.1.18 96.00 45.00 81.00 80.00 84.00 81.00 85.00 82.00 99.00 78.00
g.39.1 100.00 37.00 90.00 91.00 84.00 89.00 94.00 86.00 85.00 85.00
b.40.4 92.00 61.00 75.00 78.00 67.00 78.00 80.00 78.00 98.00 70.00
c.55.3 59.00 98.00 89.00 66.00 80.00 67.00 98.00 84.00 100.00 56.00
c.55.1 57.00 91.00 89.00 69.00 91.00 69.00 85.00 72.00 99.00 52.00
c.2.1 92.00 98.00 100.00 89.00 95.00 87.00 95.00 78.00 100.00 57.00
a.39.1 83.00 83.00 88.00 83.00 93.00 88.00 90.00 92.00 100.00 74.00

Table 2. Positive and negative classification accuracies on 15 SCOP classes for various kernels and CE


