
Network Flow-Control using Asynchronous Stochastic Approximation

Mohammed Shahid Abdulla and Shalabh Bhatnagar

Department of Computer Science and Automation

Indian Institute of Science, Bangalore, INDIA

{shahid,shalabh@csa.iisc.ernet.in}

Abstract— We propose several stochastic approximation im-
plementations for related algorithms in flow-control of com-
munication networks. First, a discrete-time implementation
of Kelly’s primal flow-control algorithm is proposed. Con-
vergence with probability 1 is shown, even in the presence
of communication delays and stochastic effects seen in link
congestion indications. This ensues from an analysis of the
flow-control algorithm using the asynchronous stochastic ap-
proximation (ASA) framework. Two relevant enhancements are
then pursued: a) an implementation of the primal algorithm
using second-order information, and b) an implementation
where edge-routers rectify misbehaving flows. Next, discrete-
time implementations of Kelly’s dual algorithm and primal-
dual algorithm are proposed. Simulation results a) verifying the
proposed algorithms and, b) comparing the stability properties
are presented.

Keywords

Network flow-control, Kelly’s primal algorithm,
asynchronous stochastic approximation, SPSA, edge-
router based rectification.

I. INTRODUCTION

A. Problem Description
For a network with finite sets of sources R and links

L, the network utility-maximization problem is given by

maxxr

∑

r∈R

Ur(xr) s. t.
∑

s∈Rl

xs ≤ cl, ∀l ∈ L, (1)

where cl > 0 is the capacity of link l and xr is the rate
at which the source r sends traffic into the network. The
utility function Ur is positive-valued, strictly concave,
and differentiable, and is termed as ‘elastic’ utility due
to its concavity. The set Rl ⊂ R is the set of sources that
transmit over link l. An approximation to this problem
is the unconstrained maximization problem with the
following objective function:

V (x) =
∑

r∈R

Ur(xr) −
∑

l∈L

∫

∑

s∈Rl
xs

0

pl(y)dy, (2)

where pl are penalty functions that act as proxy
for the link capacity constraints in (1). Also, the
|R|−dimensional vector x above is (xr, r ∈ R)T .

Studied in [1] for a simpler case, the continuous-
time primal flow-control algorithm tunes the sending rate
xr(t) using the ODE:

ẋr(t) = κr(xr)(U
′
r(xr(t)) − qr(t)), ∀r ∈ R

qr(t)
∆
=

∑

l∈Lr

pl(
∑

s∈Rl

xs(t)) (3)

where κr(xr) > 0 is a suitable gain and Lr ⊂ L is the
set of links that carry the traffic of r. The contribution to

qr(t) from each link l ∈ Lr can be interpreted as a price
based on the aggregate flow of all sources s ∈ Rl being
carried over l, whilst U ′

r(xr(t)) above is the derivative
of Ur at xr(t). Also, qr(t) is not an explicit function
of t since it depends only on x(t). The algorithm (3) is
implemented in a distributed manner, since each source r
only knows prices charged by links l carrying its traffic.
Under intuitive conditions on pl and Ur , there exists a
globally asymptotically stable equilibrium point x∗

r of
the above ODE. Due to the penalty function method (2),
however, x∗

r is only an ‘approximately fair’ equilibrium.
Delays in link congestion indications are expe-

rienced due to network congestion or propagation
time. The price demanded of r by link l could be
pl(

∑

s∈Rl xs(t − ξl
r(t) − ψl

s(t))) and not the current
value pl(

∑

s∈Rl xs(t)), where ξl
r(t) (resp. ψl

s(t)) is the
R+−valued feedback (resp. feedforward) delay from
link l to source r (resp. from source s to link l). Since
propagation delays are assumed higher than queueing de-
lays in large-scale networks, ξl

r(t) and ψl
s(t) can be held

constant in t. Using this assumption, and for Ur(xr) =
wrlnxr and κr(xr) = κrxr where κr, wr > 0, the
impact of such delays is analyzed in [1] to guarantee
local stability alone of (3), and modifications for faster
convergence to equilibrium x∗

r may compromise this
stability. Past work does not distinguish between links l
either, and defines the delay as Tr

∆
= maxl∈Lr (ξl

r +ψl
r)

(which is the RTT seen by source r).
Whether (3) is stable despite delays Tr , and whether

this stability is achieved with only minimal restrictions
on any of the parameters involved, are questions of
enduring interest. Work in [2] assumes homogeneous
sources, i.e. Tr ≡ T and Ur ≡ U for all r ∈ R,
and a sufficient condition relating gain κ and T is
proposed. Heterogeneous users are considered in [3],
and a sufficient condition proposed where the product
κrTr is bounded by a constant and the stability assured
about x∗

r is local. This bound assumes a fixed RTT
Tr while [4] suggests that such an assumption is not
always reasonable. The work of [5] proposes a delay-
independent stability criterion provided certain relations
between pl and Ur hold. These results characterize
invariance, i.e. the continued evolution of (3) within a
region, and stability (convergence to x∗

r). In particular,
any family of pl and Ur that imply a stable market
equilibrium are also sufficient for global stability of the
system (3), when affected by delays Tr .

For the algorithm that we propose in §II, the basic
assumptions from [1], viz. a) Ur are positive, strictly
concave and differentiable, ∀r and b) link price functions
pl(y) are non-negative, continuous and increasing in y
are appended with

Assumption 1: Functions U ′
r and link costs pl are

Lipschitz continuous.

B. Proposed Implementation

The algorithm (3) can be implemented in discrete-
time, and three such implementations are identified in the
subsection Time Lags of [1]. Stability is also analysed
in such a framework, e.g. [2] investigates the stability
of delayed difference equations arising from one such
implementation. The implementations, however, are not
strictly asynchronous since a global clock tick t is
assumed to index all the recursions. Instead, we propose
a controller at source r that uses a private, local index
tr:

xr[tr + 1] := xr[tr] + κr[tr](U
′
r(xr[tr]) − qr[tr]),

followed by tr := tr + 1.
We explain the asynchronous nature of such a

scheme, which is captured in tr , where tr ∈ Z+.
Assume a counting process where for t ∈ R+, tr(t)
indicates the number of updates made at source r until
time t, the elapsed time between updates tr and tr + 1
being an estimate of RTT Tr . The quantity Tr can be
assumed fixed as in [3], [5] and [6] but we permit
Tr to be varying. Similar to tr(t), every link l is
seen as having made tl(t) measurements of the (time-
varying) aggregate flow

∑

s∈Rl xs(t) over it. These
link measurements could also be update schemes, for
example, exponential moving averages in RED. In §III-
B, we provide an example of a link update scheme.
Random variable ξl

r , which differs in interpretation from
its R+−valued analog in continuous-time, represents the
feedback delay. Abusing the notation for pl, the price
demanded of source r by link l is the (tr − ξl

r)−th
iterate pl[tr − ξl

r]. Thus, ξl
r takes values in the entire

integer set Z .
We also consider noise εlr as an additive stochas-

tic effect in the congestion indication scheme, making
pl[tr−ξ

l
r]+ε

l
r as the price demanded at the tr−th update

of r. For instance, in [6] pl[tr − ξl
r] + εlr is the number

of Explicit Congestion Notification (ECN) marks Mr[tr]
observed in the current epoch tr of source r. In [1],
a congestion notification scenario is considered where
links l send a Poisson number of indications to sources r
at the rate pl(·) and therefore Mr [tr]

Tr
is an RV with mean

pl[t − ξl
r]. TCP congestion controllers (in their more

general form as minimum potential delay controllers)
are modelled in [6] in like manner. If considered time-
invariant, κr[tr] ≡ κr plays a role in characterizing
stability about the equilibrium point x∗ (cf. [3] and [7,
§4]). Instead, in §II, we propose a κr[tr] that is an Ideal
Tapering Stepsize (ITS) of [8].

In §III, we pursue enhancements to the proposed
implementation of §II. Since (3) can be viewed as gra-
dient ascent along (2), §III-A proposes using the second-
order information via an efficient variant of the gradient-
descent algorithm Simultaneous Perturbation Stochastic
Approximation (SPSA) proposed in [9]. The algorithm
proposed in §III-B considers the problem in [10] where
a misbehaving flow r must be rectified by a router r̂
placed at the edge of the network using suitably rigged
costs q̂r . In both enhancements, the method of ASA is
retained and we outline a proof of convergence.

In §IV we propose similar discrete-time implementa-
tions of the dual and primal-dual algorithms (cf. [7, §2]).
In particular, the primal-dual algorithm is implemented
using a two-timescale ASA method adapted from the
constrained Markov Decision Process algorithm of [11].
A regime of step-sizes (known as the two-timescale

condition) at links and sources permits simultaneous
updates towards the respective optima.

In the numerical results of §V we perform two
experiments. First, we verify the convergence of all
the proposed algorithms in a single link-multiple nodes
setting with simulated packet arrivals and departures.
The rate allocations to which the proposed algorithms
converge are only negligibly away from x∗. We then
consider a system from [5] where the corresponding
delayed-differential equation model of the system was
shown to be unstable. But when flow-control is imple-
mented using the proposed algorithm, convergence w.p.
1 is assured.

II. PRIMAL ALGORITHM USING ASA
It is necessary to motivate the use of ASA for at least

the simple case of fixed, but heterogeneous, RTTs Tr .
The proposed algorithm can, however, handle restrictions
like varying RTTs Tr . Suppose that t ∈ R+ is the update
instant of source r (i.e. t = nrTr for some nr ∈ Z+).
Then, ts(t) 6= tr(t), in general, due to the differing Trs.
Moreover, the values of xs seen by the controller of
source r via pl, l ∈ Lr need not be xs[ts(t)] (i.e. the
most recent value of xs) and due to propagation delays,
could be some past value of xs. In terms of the local
indices of s, this iterate may be xs[tr −ξ

l
r −ψ

l
s,r] where

both ξl
r, ψ

l
s,r ∈ Z .

In the proposed algorithm, we require that ITS κr[tr]
be identical for all r (i.e. κr[tr] ≡ κ[tr]). Thus we have
the recursion:

xr[tr + 1] := xr[tr] + κ[tr](U
′
r(xr[tr]) − qr[tr]) (4)

qr[tr] :=
∑

l∈Lr

(

pl[tr − ξ
l
r] + ε

l
r[tr]

)

,

with index update tr := tr + 1. Here, the iterate
qr[tr] estimates the charge payable by source r with
stochastic effects εlr[tr] being noise in the estimate. The
ITS conditions on the stepsize κ, for all sources r, are:

κ[tr] > 0 ∀tr ,
∑

tr

κ[tr] = ∞,

∑

tr

κ
1+q[tr] <∞ for some q ∈ (0, 1). (5)

The proposed ITS nature of κ[tr] is an issue, since
conventional flow control algorithms assume stationary
behaviour independent of index tr and we have not yet
come across any algorithms using diminishing stepsizes.
However, [7, §2], for instance, assumes that κ is a
function of rate xr(t). The use of ITS is crucial to apply
the theory of ASA in the current setting.

We introduce a notational simplification in the form
of a global event-index n that denotes events: whether
these be measurements of aggregate flow by links l ∈ L
or rate updates by sources r ∈ R. For every t ∈ R+,
n(t) will indicate the counting process of all events. We
use parentheses (·) to identify a variable according to this
global index whilst square brackets [·] will denote ‘with
respect to local indices’ tr . For each value of n ≥ 0 there
are corresponding local indices tr

∆
=tr(n) and tl

∆
=tl(n)

such that tr, tl ≤ n and
∑

r∈R,l∈L
tr + tl = n. The

global index n thus can be constructed from local indices
tr and tl. Also, if xr(n) 6= xr(n− 1) (implying that an
update of xr has taken place at n−1), then xr(n+k) =
xr(n), ∀k : tr(n+ k) = tr(n). Analogously define the
process pl(n) for links l. Also note that neither links l
nor sources r need to know this global clock n.

A. Convergence Analysis
For ease of analysis, assume that at a given instant

t only one event of measurement or update occurs. This
can be accomplished using a technique to unfold the
recursions proposed in [8, §3]. These can, however, be
multiple updates at any instant. For each source r, define
two vectors x̄r(n) = (xl

s,r(n), ∀l ∈ Lr, ∀s ∈ Rl)
T

and
εr(n) = (εlr(n), ∀l ∈ Lr)

T
. Here, xl

s,r(n) = xs(n −
ξl

r−ψ
l
s) with Z+−valued random variables ξl

r , ψl
s being

delays in terms of n. Though we re-use symbols ξ and
ψ denoting delays, the parenthesis (·) makes the context
clear. The total delay in receiving xs by source r, via
link l, is given by τ l

s,r

∆
=ξl

r +ψl
s. Similarly, εlr(n) is the

noise seen at instant n in measurement pl communicated
by link l to source r. Thus, the update can be written
as:

xr(n+ 1) := xr(n) + κ(n, r) ·

Fr(x̄r(n), xr(n), εr(n))I{ϕn=r},

where {ϕn = r} corresponds to the event that xr

is updated at n and
∑n

k=1
I{ϕk=r} = tr . Further,

κ(n, r) = κ[tr] and Fr is the ‘reinforcement’ term
(U ′

r(xr[tr]) − qr[tr]) in the recursion (4). It is possible
that ϕn = φ, the empty set, if n corresponds to a link
measurement instant.

The analysis follows the pattern and notation of
[8]: [8, Lemma 3.3] is modified as Lemma 1 to
accommodate the delays τ l

s,r . Treatment in [8] han-
dles only a single delay τs,r per pair of components
(s, r) whereas here, per source r we have

∑

l∈Lr
|Rl|

such delays including ‘self-delays’ of the form τ l
r,r .

We verify assumptions (A1)-(A6) of [8] and mod-
ify where necessary to accommodate τ l

s,r . Assumption
(A1) follows from the ITS property of κ[tr]. Fur-
ther, (A2) holds due to |R| < ∞ and the upper-
bound on Retransmission Time-out (RTO) (due to
which component xr is updated regularly). We de-
fine the sigma-algebra Fn

∆
=σ(xr(m̃), τ l

s,r(m), εlr(m)),
∀m̃ ≤ n, ∀m < n, ∀r ∈ R, l ∈ Lr , and s ∈ Rl in order
to rephrase (A3):

Assumption 2: τ l
s,r(n) ∈ {0, 1, ..., n}, ∀r ∈ R,

l ∈ Lr , s ∈ Rl and ∃b, C > 0 s.t. E((τ l
s,r(n))

b
|Fn) ≤

C a.s.
It is sufficient to have τ l

s,r < ∞, w.p.1, to satisfy this
assumption. Assumption 1 made above results in (A4)
being satisfied. The next assumption is on the stochastic
effects εlr(n), we first define:

fr(x̄r(n), xr(n)) =

∫

Fr(x̄r(n), xr(n), εr)Pr(dεr).

where Pr(dεr) is the law according to which εr is
distributed and integration is over the positive orthant
R

|Lr|
+ . Note that Pr may, in general, depend upon x̄r(n)

although what we require is:
Assumption 3: If τ l

s,r = 0, ∀r ∈ R, l ∈ Lr , s ∈ Rl

then fr(x̄r(n), xr(n)) = U ′
r(xr(n)) − qr(n).

Mean-zero εlr(n) suffices to satisfy this assumption, and
the Poisson congestion indication of [1] is an example.
We abuse notation to consider the function fr(x(n)) =
fr(x̄r(n), xr(n)) in the absence of delays. Then, the
system of ODEs asymptotically tracked by recursion (4)
is ẋr(t) = fr(x(t)), ∀r ∈ R. Thus (A5) is satisfied
since the set J of equilibrium points required by (A5)
contains the single element x∗. Further, (A6) is satisfied
by the strict Liapunov function V (x) defined in (2).

Let F̂ (n) = E(F (n)|Fn) and fs :
R|R|×|R|×|L| 7→ R|R| be a function which we describe
as follows. Given s ∈ R, let x̃s(n) be an element
of R|R|×|L| with components (x̃s(n))r,l = xl

r,s(n)

if r, s ∈ Rl and all other components zero. Consider
x̂(n)

∆
=((xs(n), x̃s(n)), s ∈ R)T and thus fs is such

that fs
r (x̂(n)) = fs(x̄s(n), xs(n))δs,r for r, s ∈ R

where δs,r is the Kronecker delta function. Let the
analogous f̄s be defined when delays τ l

s,r are zero

∀r, s. The stepsize b(n)
∆
=maxr κ(n, r) for n ≥ 0.

Lemma 1: For ϕn 6= φ, almost surely, ∃K1 > 0,
and a random N ≥ 1 s.t. for n ≥ N :

‖f̄ϕn(x̂(n)) − F̂ (n)‖ ≤ K1b
q(n)

Proof: We take K2 as the upper bound on
{‖f(x)‖∞}. Let F̃r = fϕn

r (x̂(n)), and c = 1 − q
(for q from (5) above). Modify (3.5) of [8] as follows:
|f̄ϕn

r (x̂(n)) − F̃r(n)|

≤ E[|f̄ϕn
r (x̂(n)) − F̃r(n)|I{∀l,s,r:τl

s,r(n)≤b−c(n)}|Fn]

+ E[|f̄ϕn
r (x̂(n)) − F̃r(n)|I{∃l,s,r:τl

s,r(n)>b−c(n)}|Fn].

By Assumption 2 (the b and C from which we use)
and the modified Chebyshev inequality, the second term
is a.s. bounded by 2K2C|R|2|L|bbc(n). The remainder
of the proof now follows as in Lemma 3.3 of [8]. In
passing, we mention that the assumption τr,r = 0 made
in (A3) of [8], although intuitive, is not required. 2

Theorem 1: Over trajectories where ‖x(n)‖∞ <
∞, ∀n, the algorithm (4) converges to x∗

r a.s..
Proof: We verify two conditions in the statement of

Theorem 3.1 (a) in [8]. The first condition is to check
if ∃a > 0 s.t. ẋ(t) = f(x(t)) is an a−robust system.
To see this, we note that the strict Liapunov property
of V (x) and the distributed form of (3) ensures that
5rV (x) · fr(x) < 0 for any point x 6= x∗. Thus, for
any a > 0, 5rV (x) ·a ·fr(x) < 0, implying the system
is a−robust.

Next, construct a sequence tn where
tn

∆
=

∑n

k=0
κ(k, ϕk). For a given t, µ̄t(s), s > 0

is the Dirac measure ϕn for s ∈ [t + tn, t + tn+1).
Further, a−thickness of the continuous-time process µ̄t

is defined as µ̄t
r(s) > a, ∀r ∈ R. We refer to [8, §3]

for detailed definitions. The second condition of the
theorem is to check that all limit points of µ̄t in U are
a−thick a.s.. The limit points of µ̄t correspond to the
update frequencies of the sources r at time t ∈ R+.
Upper bounds on RTO mentioned earlier along with
bounded delays τ l

s,r ensure that as t → ∞, µ̄t(r) > a,
∀r ∈ R for some a > 0. Thus limit points of µ̄t are
a−thick, and the claim follows. 2

The statement of the theorem is qualified, in that it
assumes bounded trajectories xr(n). This can be imple-
mented by clipping the iterates xr(n) against an interval

Cr
∆
=[x

r,min, xr,max] such that x∗
r is contained in this

interval, a reasonable guess being Cr = [0,minl∈Lrcl].
Consider C = Πr∈RCr , then the projected ODE that
results will nevertheless be asymptotically stable. This
is because either the asymptotically stable equilibrium
point is contained within C or if it lies outside of C, the
ODE will get trapped at a boundary point of C (thus
introducing spurious fixed points).

III. ENHANCEMENTS

A. Second-order Primal Algorithm

The primal algorithm can be interpreted as a gradient
ascent along the Liapunov function V (x) of (2) above.
Therefore, the diagonal elements of the Hessian matrix
of V (x) can also be computed in a distributed man-
ner: 52

r,rV (x) = U
′′

r (xr) −
∑

l∈Lr
5rpl(

∑

s∈Rl xs).
Apart from Ur , also assume that pl(·) are C2 (i.e. twice
continuously differentiable). This is a pre-requisite since
the gradient terms 5rpl(

∑

s∈Rl xs) are estimated using
an efficient variant of SPSA proposed in [9]. Though
5rpl(

∑

s∈Rl xs) is of identical value ∀r ∈ Rl, each
source needs to compute its own estimate.

This estimate is constructed by measuring pl such
that the rate of source r is not xr[tr] but a perturbed

value x+
r [tr]

∆
=xr[tr] + δr[tr]∆r[tr]. The scalar δr is

a positive, diminishing step-size with other properties
explained later, while perturbations ∆r[tr] are indepen-
dent, ±1−valued with probability 0.5. Both δr and
∆r are the local information of source r. A crucial
departure from SPSA-based gradient search occurs due
to the asynchronous nature of the update scheme. The
measurement pl(n−ξ

l
r) seen at update tr does not reflect

the rate x+
r [tr − 1] set at the last update tr − 1.

Thus an asynchronous variant of SPSA is proposed
here. This algorithm would also be of independent
interest in the SPSA framework. Assume that current
measurement of pl has a contribution from x+

r [tr − kl
r]

and that kl
r ≤ Kr , ∀l ∈ Lr with a non-zero probability.

In the absence of precise methods to determine Kr ,
it can be taken as 1 if time between updates at r is
distributed closely about the fixed RTT Tr . At each
source r, we maintain an array of size Kr and store
{∆r[tr−1],∆r[tr−2], ...,∆r[tr−Kr]} while δr[tr−k]
can be computed due to its closed form.

Since at tr the offset kl
r is unknown, we pick

∆r[tr − kl
r], 1 ≤ kl

r ≤ Kr with probability 1
Kr

and
use δr[tr − kl

r]∆r[tr − kl
r] in a manner described in

the following. Let x̄l,r(n) be the |Rl|−sized vector
(xs(n− τ l

s,r), ∀s ∈ Rl)
T

and similarly, let δ̄l,r(n)

be (δ̄l,r(n, s)
∆
=δs(n− τ l

s,r)∆s(n− τ l
s,r), ∀s ∈ Rl)

T

.
Now we define x̄+

l,r(n) as x̄l,r(n) + δ̄l,r(n). We
choose from the array of ∆, and get a correspondence
δr[tr − kl

r]∆r[tr − kl
r]≡δr(n − τ l

r)∆r(n − τ l
r) where

τ l
r ∈ Z+: this we abbreviate as δ̃l,r(n). We also

abbreviate the noisy measurement pl(x̄
+
l,r(n)) + εlr(n)

as p̃l(x̄
+
l,r(n)). Notation pl is used loosely here,

since pl depends on x̄+
l,r(n) through the sum

∑

s∈Rl xs(n− τ l
s,r).

Using a Taylor series expansion of pl(x̄
+
l,r(n)) we

have:

p̃l(x̄
+
l,r(n))

δ̃l,r(n)
=
pl(x̄l,r(n)) + εlr(n)

δ̃l,r(n)

+
∑

s∈Rl

5spl(x̄l,r(n))δ̄l,r(n, s)

δ̃l,r(n)
(6)

+
δ̄T

l,r(n)Hl(x̄l,r(n))δ̄l,r(n)

2δ̃l,r(n)
+O(δ̃2l,r(n)),(7)

where Hl corresponds to the Hessian of pl. With
probability 1

Kr
our guess of δ̃l,r(n) will result in (6)

becoming:

5rpl(x̄l,r(n)) +
∑

s6=r,s∈Rl

5spl(x̄l,r(n))δ̄l,r(n, s)

δ̃l,r(n)
.

The expected value of the second term w.r.t. ∆ is 0.
Further, the terms involving δ̄l,r(n) in (6)-(7) are also
mean-0 when the guess δ̃l,r(n) is wrong. Thus, we
conclude that:

E

(

p̃l(x̄
+
l,r(n))

δ̃l,r(n)
|x̄l,r(n)

)

=
1

Kr

5rpl(x̄l,r(n))

+O(δ̃2l,r(n)).

This estimate, however, corresponds to a delayed mea-
surement and proving convergence would further hinge
on the ASA framework of [8] as applied in §II-A. The
choice δ̃l,r(n) need not be separate for each l ∈ Lr and
a single δ̃r(n) suffices. These estimates are iterated for
better averaging according to the following recursion:

hr(n+ 1) := hr(n) + α(n, r) ·

(
∑

l∈Lr

p̃l(x̄
+
l,r(n))

δ̃r(n)
− hr(n))I{ϕn=r}, (8)

with the properties: α(n, r) = α[tr],
∑

k
α[k] = ∞,

∑

k
α2[k] < ∞, κ[k] = o(α[k]) as k → ∞. This last

property is the characteristic property of two-timescale
stochastic approximation. Further, the ratio of α[k] with
δr[k] must be square-summable over k. As the selection
of Kr may be imprecise, estimates hr(n) of (8) can be
truncated against [m,M] for some M > m > 0 so as
to avoid arbitrarily small values.

The discrete-time implementation is now:

xr(n+ 1) := xr(n) + κ(n, r)h−1
r (n) ·

(U ′
r(xr(n)) −

∑

l∈Lr

p̃l(x̄
+
l,r(n)))I{ϕn=r}. (9)

We show that using
∑

l∈Lr
p̃l(x̄

+
l,r(n)) above in place

of
∑

l∈Lr
p̃l(x̄l,r(n)) in (4) does not impact the

convergence of the algorithm. Again, a Taylor se-
ries expansion of p̃l(x̄

+
l,r(n)) results in p̃l(x̄l,r(n)) +

O(δ2r(n − τ l
r)). The latter bias term arises from

1
2
δ̄T

l,r(n)Hl(x̄l,r(n))δ̄l,r(n) and cancels due to square-
summability of the ratio of κ[tr] and δr[tr]. Once the
tr−th update is performed according to (8)-(9), the
index tr is increased by one, source r computes δr[tr]
and generates ∆r[tr] to send at rate x+

r (n + 1) =
xr(n+ 1) + δr[tr]∆r[tr] until the next update.

We now efficiently implement (8) using the method
of [9]. Define τr ∈ Z+ as τr = minτI{ϕn−τ =r} =
1. The past measurements of prices at |Lr| links,
p̃l(x̄

+
l,r(n−τr)) are stored at r, with |Lr| units of storage

being needed for this. Then replacing p̃l(x̄
+
l,r(n)) in (8)

with p̃l(x̄
+
l,r(n))− p̃l(x̄

+
l,r(n− τr)) results in improved

performance of the algorithm, as analyzed in [9].

B. Rectification of misbehaving flows
Recently, [10] considered a misbehaving source of

announced-utility Ur(xr) surreptitiously using Ûr(xr)
for rate updates. An edge-router r̂ was proposed to police
r subject to certain information constraints. This r̂ knows
only current source flow-rate xr , declared utility Ur and
price qr(n) and uses these to produce a reference rate x̂r .
Lacking direct control over r’s sending rate, r̂ computes

x̂r to demand a price q̂r(n) from r, in place of qr(n) that
r assumes would suffice. The convergence (cf. [10]) is
to the (approximate) proportionally-fair equilibrium x∗

r

and not some optima desired by the malicious user. It is
even possible for r to destabilize the network, by using
a Ûr that thwarts the convergence of (3).

To illustrate the proposed algorithm, we consider the
following synchronous recursions. For the present, take
ϕn to be set-valued in R∪L and assume that r and r̂ both
perform updates at the same indices n, i.e., I{r∈ϕn} =
I{r̂∈ϕn}. Their corresponding recursions are:

xr(n+ 1) = xr(n) + κ(n, r)(Û ′
r(xr(n)) − q̂r(n))

x̂r(n+ 1) = xr(n) + κ(n, r)(U ′
r(xr(n)) − q̂r(n)).

It is now easy to penalize source r, since, subtracting
the two equations, the quantity

δqr(n+ 1)
∆
=

xr(n+ 1) − x̂r(n+ 1)

κ(n, r)

is the extra allocation gained by source r. Thus the price
demanded of source r from epoch n+1 onwards till the
next update is q̂r(n + 1) := qr(n + 1) + δqr(n + 1),
composed of the cost for the present rate and the penalty
for misrepresenting utility in the last epoch. However,
complications arise when r and r̂ update asynchronously.
Suppose there is an n s.t. I{ϕn=r̂} = 1 and the local

index is tr̂ . Then, x̂r(n)
∆
=xr[tr̂] is available from the last

update whereas the rate at which r is sending currently
is xr(n).

The edge-router r̂ takes the view that source r has
changed its transmission rate from x̂r(n) to xr(n) in
a single update, and that r also has the same update
frequency as itself. Thus, r̂ assumes that at r the local
index nr is nr̂ + 1. It assumes that the following
recursion has taken place at source r:

xr(n) := x̂r(n) + κ(n, r̂)(Û ′
r(x̂r(n)) − q̃r(n)),

where q̃r(n) is the modified cost payable by r computed
(and stored) by r̂ at local index tr̂ − 1. Further, r̂
computes the one-time reference quantity x̃r:

x̃r := x̂r(n) + κ(n, r̂)(U ′
r(x̂r(n)) − q̃r(n)).

Thus, an approximation to Û ′
r(x̂r(n)) − U ′

r(x̂r(n))
would be xr(n)−x̃r

κ(n,r̂)
and therefore

δqr(n+ 1) :=
xr(n) − x̃r

κ(n, r̂)
,

q̃r(n+ 1) := qr(n) + δqr(n+ 1),

x̂r(n+ 1) := xr(n).

To see how the convergence analysis proceeds, we
take a large enough n such that I{ϕn=r} = 1 and assume
that all other delays of the form τ l

s,r are zero. Now
suppose n−τ1

r was the last instant at which r̂ performed
an update, and computed δqr(n− τ1

r + 1) such that the
current price is q̂r(n) = qr(n) + δqr(n− τ1

r + 1). Also
assume that n − τ1

r − τ2
r was the previous update at r̂

and define τr = τ1
r + τ2

r . The update at n − τ 1
r uses

the older xr(n − τr) as reference value x̂r(n − τ1
r).

Thus, the recursion at r is: xr(n + 1) := xr(n) +
κ(n, r)(Ûr(xr(n))−Ûr(xr(n−τr))+Ur(xr(n−τr))−
qr(n)). We again have a case where varying delays affect
the same component of the recursion, viz. xr is affected
by delays 0 and τr . The analysis now follows largely on
the same lines as that in §II-A.

We note here that the ASA framework requires the
edge-router to adjust the costs x̂r only a minimal number
of times. It suffices for convergence if sampling of all
sources occurs with non-zero relative frequencies.

IV. DUAL AND PRIMAL-DUAL ALGORITHMS

We explain the continuous-time Kelly dual algorithm
briefly. The source r infers its sending rate from the
price signal qr(t) as xr(t) = (U ′

r)
−1

(qr(t)). At link
l, a first-order dynamic price update follows the ODE
ṗl(t) = αl(yl(t) − cl(pl(t))) where αl > 0 is a scale
factor, yl(t) is the flow

∑

s∈Rl xs(t) through l, while
cl(pl(t)) is the flow at l for which pl(t) is payable. The
corresponding ASA algorithm again uses an ITS α[tl]:

pl[t
l + 1] := pl[t

l] + α[tl](yl[t
l] − cl[t

l])
+

pl
, ∀l ∈ L,

where measurement yl[t
l] is

∑

s∈Rl xs[ts − ψl
s]. Op-

erator (yl[t
l] − cl[t

l])
+

pl
signifies truncation to 0 if both

yl[t
l] − cl[t

l] < 0 and pl[t
l] ≤ 0 (cf. [10]).

The proof techniques of §II hold. The Lipschitz
continuity of the term yl[t

l] − cl[t
l] which corresponds

to
∑

s:l∈Ls
U ′−1

s (
∑

l∈Ls
pl[tr − ξl

r]) − cl[t
l] must be

satisfied. Thus, we assume U ′−1
s and cl(·) are Lipschitz.

The unique, globally stable equilibrium p∗l is reached as
t→ ∞ and has the property q∗r =

∑

l∈Lr
p∗l = U ′

r(x
∗
r).

Next we propose an ASA algorithm to solve the
primal-dual problem. The inequality constraints of the
network-utility maximization problem (1) can be folded-
in as follows:

minpl>0maxxr≥0

|R|
∑

r=1

Ur(xr) −

|L|
∑

l=1

pl(
∑

s:l∈Ls

xs − cl),

where the latter term involves a multiplication with the
Lagrange multipliers pl (not the functions pl(·) used
previously). The slower timescale recursion is performed
at the links l with stepsizes α[tl] whilst the faster is at
sources r with stepsizes κr[tr]

xr[tr + 1] = xr[tr] + κr[tr]
(

U
′
r(xr[t]) − qr[tr]

)

qr[t] =
∑

l∈Lr

pl[tr − ξ
l
r] + ε

l
r[tr]

pl[t
l + 1] = pl[t

l] + α[tl](yl[t
l] − cl)

+
pl
.

The conditions on the stepsizes, ∀r ∈ R and l ∈ L,
are: κ[tr], α[tl] > 0,

∑

tr

κ[tr] =
∑

tl

α[tl] = ∞,

∑

tr

(κ[tr])
2

,
∑

tl

(α[tl])
2
<∞,

and, the characteristic two-timescale condition:

α[tl] = o(κ[tl]), as tl → ∞, ∀l ∈ Lr

V. SIMULATION RESULTS

We conduct two sets of experiments with the pro-
posed algorithms. First, we consider a simple setting of
a single link into which four sources feed traffic. These
sources r = {1, 2, 3, 4} send Poisson streams of packets
at rates xr . The value y1 =

∑4

r=1
xr is estimated at

the end of every slot of 5.0 seconds by the link by
dividing the number of packets arrived in the slot with

Algorithm E(n̂) σn̂ ‖ · ‖1−error
Fixed Delay 7365 580 0.070
Noisy Delay 7234 726 0.072
Second-Order 4128 972 0.214
Rectification 7568 625 0.071

TABLE I: Performance of Primal Algorithm and variants

Algorithm E(n̂) σn̂ | · |−error
Dual 4780 506 0.101

Primal-Dual 961 153 0.102

TABLE II: Performance of Dual and Primal-Dual Algo-
rithms

5.0. This aggregate measurement y1 is then intimated
to all sources r via the cost-function p1(y1) = y0.8

1 .
The sources, however, update only at intervals of 1,
2, 3 and 6 slots, respectively. Therefore, the global
index n now corresponds to the most frequent of all
updates/measurements, viz. that of link 1 and source 1.

We choose the utility function Ur(x) = wrlnxr

(from [1]) where wr = 1, 2, 3, and 6, respectively. First,
fixed delays were considered where both feedforward
ψ1

r(n) and feedback delays ξ1r (n) were set to 1, 2, 2
and 4, respectively, ensuring that no source r performs
an update using the most recent measurements. Next,
variable delays were considered as ψ̃1

r(n) = ψ1
r(n) −

P 1
r (n) where the random variable P 1

r (n) ∈ {0, 1} with
probability 0.5 each. Also, feedback delays ξ̃1r (n) are
defined analogously. This delay structure also helps in
the experiment with second-order enhancement of §III-A
since a choice of Kr = 1, ∀r is valid. We also truncate
against [0.1, 10.0] the iterates hr(n) of (8). Further, to
experiment with the rectification algorithm of §III-B we
took ŵ1 = 2.0, where source 1 has misrepresented its
utility Û1(x1) = ŵ1lnx1. The edge-router that computes
the modified price q̂1(n) does so every 5 slots, as
compared to source 1 which updates rate x1(n) in every
slot n.

Our findings are tabulated in Table I. The
algorithms were terminated at an n̂ where
maxk∈{1,2,...,100}‖x(n̂− k) − x(n̂)‖1 ≤ 10−3.
We used the stepsizes, κ[tr] = t−1

r and α[tr] = t−0.55
r

(applicable to the second-order algorithm). The optimum
vector x∗ is (0.33, 0.66, 0.99, 1.98)T , and the error
‖x(n̂) − x∗‖1 w.r.t. x∗ is also recorded. The term σn̂

denotes the standard deviation of n̂ from its mean E(n̂)
over 100 runs of the algorithm.

We verified the dual and primal-dual algorithms pro-
posed in §IV. The dual algorithm divided the bandwidth
C1 = 5.0 packets per second of the single link among
the sources r. While the utility functions Ur were the
same as above, note that the price charged by the link is
always linear in the aggregate flow y1. We chose stepsize
α1[tl] = (tl)

−1
. In the primal-dual algorithm, the same

task is accomplished faster. For any system, once the
regime αl[k] = o(κr[k]) is in place, the primal and dual
algorithms at sources and links, respectively, can execute
in tandem. A source r, for example, is unaffected by
(and is also unaware of) an algorithm that changes the
price-function at some link l ∈ Lr .

In the second set of experiments we chose the
unstable system in §IX.A.2 of [5]. In this system, three
sources r ∈ R ≡ {1, 2, 3} use two links l1, and l2
such that R1 = {1, 3} and R2 = {2, 3}. The utility
functions are Ur(xr) = −1

ar

1
x

ar
r

(resulting in U ′
r(xr) =

Algorithm E(n̂) σn̂ E(x(n̂)) ‖ · ‖1−error
Exact - - (1.65, 1.44, 1.22)T 0
Delay 91762 15774 (1.63, 1.43, 1.22)T 0.040

TABLE III: Comparing with system in [5]

x
−(ar+1)
r) with a1, a2 = 3 and a3 = 4. Links charge

using the function pl(y) =
(

y

Cl

)bl

, bl = 3.5 for

l = 1, 2 where Cl are the link capacities at 5 and 4,
respectively. Using the analysis of [5], feedback delays
(ξ11 , ξ

1
3)

T
= (280, 770)T and (ξ12 , ξ

1
3)

T
= (430, 770)T

seconds (all feedforward delays ψl
r are 0) result in

a delayed differential equation (DDE) that does not
possess a globally stable equilibrium point. For smaller
delays or a different set of parameters a and b, this
system converges, as evidenced in §IX.A.1 of [5].

When implemented using the ASA framework of §II
convergence is assured irrespective of delays, since it is
the ODE with a globally stable equilibrium point that the
ASA recursion tracks. The global index n represents a
slot of 1 second. Thus, source 3, for example updates at
{n : n%770 = 0}. Since the updates are spaced farther
apart, the convergence conditions are stricter, with n̂ =
maxk∈{1,2,...,5000}‖x(n̂− k) − x(n̂)‖1 ≤ 10−3.

Acknowledgments
This work was supported in part by Grant no.

SR/S3/EE/43/2002-SERC-Engg from the Department of
Science and Technology, Government of India.

REFERENCES

[1] F. Kelly, A. Maulloo, and D. Tan, “Rate control in commu-
nication networks: shadow prices, proportional fairness,
and stability,” Journal of the Operational Research Soci-
ety, vol. 49, pp. 237–252, 1998.

[2] R. Johari and D. Tan, “End-to-End Congestion Control
for the Internet: Delays and Stability,” IEEE/ACM Trans-
actions on Networking, vol. 9, no. 6, pp. 818–832, 2001.

[3] G. Vinnicombe, “On the stability of networks operating
TCP-like congestion control,” Proceedings of the IFAC
World Congress, Barcelona, Spain, 2002.

[4] S. Liu, T. Basar, and R. Srikant, “Modeling of rtt vari-
ations in window-based congestion control,” in Proceed-
ings of IEEE INFOCOM, Miami, FL, 2005.

[5] P. Ranjan, R. La, and E. Abed, “Global Stability Con-
ditions for Rate Control With Arbitrary Communication
Delays,” IEEE/ACM Transactions On Networking, vol. 14,
no. 1, pp. 94–107, 2006.

[6] S. Deb and R. Srikant, “Rate-based versus queue-based
models of congestion control,” in Proceedings of ACM
SIGMETRICS, 2004.

[7] R. Srikant, “Models and methods for analyzing internet
congestion control algorithms,” in Advances in Commu-
nication Control Networks (series LCNCIS), C. Abdallah,
J. Chiasson, and S. Tarbouriech, Eds. Springer-Verlag,
2004.

[8] V. Borkar, “Asynchronous stochastic approximations,”
SIAM Journal on Control and Optimization, vol. 36, pp.
840–851, 1998.

[9] M. S. Abdulla and S. Bhatnagar, “SPSA with measure-
ment reuse,” in Proceedings of the Winter Simulation
Conference, Dec 4-6, Monterey, CA, USA, 2006.

[10] X. Fan, K. Chandrayana, M. Arcak, S. Kalyanaraman,
and J. Wen, “A Two-Time-Scale Design for Edge-Based
Detection and Rectification of Uncooperative Flows,” Ac-
cepted in IEEE/ACM Transactions on Networking, also in
IEEE CDC’05, 2006.

[11] V. Borkar, “An actor-critic algorithm for constrained
markov decision processes,” Systems and Control Letters,
vol. 54, pp. 207–213, 2005.

