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ABSTRACT

Four algorithms, all variants of Simultaneous Perturba-
tion Stochastic Approximation (SPSA), are proposed.
The original one-measurement SPSA uses an estimate of
the gradient of objective function L containing an addi-
tional bias term not seen in two-measurement SPSA. As
a result, the asymptotic covariance matrix of the iterate
convergence process has a bias term. We propose a one-
measurement, algorithm that eliminates this bias, and
has asymptotic convergence properties making for eas-
ier comparison with the two-measurement SPSA. The
algorithm, under certain conditions, outperforms both
forms of SPSA with the only overhead being the storage
of a single measurement. We also propose a similar algo-
rithm that uses perturbations obtained from normalized
Hadamard matrices. The convergence w.p. 1 of both al-
gorithms is established. We extend measurement reuse
to design two second-order SPSA algorithms and sketch
the convergence analysis. Finally, we present simulation
results on an illustrative minimization problem.

1 INTRODUCTION

Simultaneous Perturbation Stochastic Approximation
(SPSA) is an efficient parameter optimization method
that operates under the constraint that only noisy mea-
surements of the objective function L are available at
each parameter iterate ;. First proposed in (Spall
1992), it involves making only two measurements of L at
each update epoch k that are obtained by perturbing 6y,
along random directions. A plethora of applications and
enhancements of this technique can be found at (Spall
2001). A variant of SPSA that reduces the number of
function measurements made at each iteration k from
two to one and establishes the conditions under which
a net lower number of observations suffice to attain the
same Mean Square Error (MSE) is provided in (Spall
1997). However, an impediment in rapid convergence to

6* is that the algorithm constructs a gradient estimate
of L at 6, that contains an additional error term over
the scheme in (Spall 1992) and that contributes heavily
to the bias in the estimate. A solution to this problem
was proposed in (Bhatnagar, Fu, Marcus, and Wang
2003) in the simulation optimization setting, where the
perturbation to 8}, in the one-simulation case is gener-
ated in a deterministic manner. While this algorithm
performs considerably better in practice, the asymp-
totic convergence properties in the setting of (Spall
1992) and (Spall 1997) were derived in (Xiong, Wang,
and Fu 2002) and found to be on par with those of
one-measurement SPSA.

In this work, we first propose two first-order al-
gorithms: one using randomly generated perturbations
(cf. Section 2) and the other using deterministic per-
turbations (cf. Section 4). We show convergence w.p. 1
for both the algorithms. For the first algorithm, we also
derive the asymptotic convergence properties and com-
pare these with (Spall 1992) (cf. Section 3). Further,
we design two second-order algorithms based on the
measurement-storage concept in Section 5. A numeri-
cal example is used to justify our findings (cf. Section
6).

The general structure of gradient descent algorithms
is as follows. Suppose Gké(ﬁk,l,...,ﬁk,p)T where 6y,
1 < ¢ < p, are the p components of parameter 6. Let
G, be an estimate of the [—th partial derivative of the
cost L(0), 1 € {1,2,...,p}. Then,

Or+1,0 = Oy — arGri(6r),1 <I1<p,k>0, (1)

where {ay} is a step-size sequence. In the following, we
refer to the one-measurement form of SPSA asSPSA2-1R
and the two-measurement form as SPSA2-2R following
the convention of (Bhatnagar, Fu, Marcus, and Wang
2003). In such a convention, the ‘R’ refers to pertur-
bations which are randomly obtained, in contrast to
deterministic perturbations in Section 4. The trailing



Abdulla and Bhatnagar

‘1’ in SPSA2-1R refers to the fact that at each iteration,
the algorithm makes one measurement. The leading
‘2’ stands for a variant of the algorithm that makes
parameter updates at every epoch, in contrast to al-
gorithms like SPSA1-2R which update the parameter
after an (increasingly large) number of epochs. The
current parameter estimate 6 is perturbed with a vec-
tor Ag = (Ak,l; ooy Ak,p)T to produce 01—: =0y + cpAg,
where ¢ is a small step-size parameter that satisfies
Assumption 1 (below) together with the step-size pa-
rameter ay, in (1). The gradient estimates Gy,;(6y) used

in SPSA2-1R are: Gy (6y) = %
P
= A 4000+ Y g6
i=1,i#l
+ CiAQgcfA(ikz)Ak + CkeA:kl
n CkL(S)(eﬁkc)kAAk:blAk@Ak (2)

We assume here that L is twice continuously differen-
tiable with bounded third derivative. Note that H (6},) is
the Hessian evaluated at 8y, and L) (0,) A, @ Ar @Ay =
AT (L®)(8,)Ag)Ay, where 0), = 0), + M\cr, Ay for some
0 < M <1 and L® is the third derivative of ob-
jective function L(-), where ® denotes the Kronecker
product. Also, e: corresponds to additive observa-
tion noise. Thus, G, is a random variable, which
we assume is measurable with respect to (w.r.t.) the

—algebra Fy = 0(0;,A;,0 < i < k—1,0;). In con-
trast, g;(6x) is the [—th component of the derivative of
L() at 6. The gradient of L(-) at 0 is now defined
as g(0r) = (@(6r), 1 <1 < p)T. Although not the
current object of study, we observe that the estimate of
SPSA2-2R needs two measurements of L(-) about 6:

+ -\_ .=
Gri(0r) = L, H;CkAk(la’“) ‘. Here G}, uses function
measurements at both 6 and 6, =6 — ¢, A, and the

measurement noise values at these points are e;: and

€, , Tespectively.

We retain all assumptions of (Spall 1997), most of
which are carried over from (Spall 1992). Asin (Spall
1997), the key assumption requires the measurement
noise ek to be mean 0: E(ef |6k, Ag) =0, Vk > 1, and
var(ef) — o2, where o2 is some finite constant. The
step-size sequences used are of the form ay = ak~* and
cr, = ck™7, respectively, where k > 1, a,c > 0, are given
constants and with constraints on 0 < v, < 1 such
that the following assumption holds

2
Assumption 1 Y7, ar =00 and ), % < oo.
k

2 ALGORITHM SPSA2-1UR

The proposed algorithm also has a similar structure as
SPSA2-1R and we call this algorithm SPSA2-1UR, the
alphabet ‘U’ indicating ‘unbiased’. We utilize the noisy
measurement already made at §; |, the storage of which
results in unit space complexity.

Algorithm 1 (SPSA2-1UR)

L) +er —L(F_)—ef_,
Dk ’

Or+1 = Opy —ag

where £ > 0, 1 <1 < p. We have in the above,

9 [ A
Gri(6) = % +a1(0k) + Zi:l,i;ﬁl 9:(0k) A:,z

CkAfH(Gk)Ak*Ci_lquH(@k—l)Ak—l

+ QCkAk’l
+ LB (0p)ALRALRA
6crLAr,
_ 3 LB (Fr 1) Ap_1@Ak_1®Ak_1
6crAr,1

Ak—l,'
Hk 1 Akll

+_ ot
€k k-1

YT

—€

Using a similar analysis as in Proposition 2 of (Spall
1992), we identify below the order of convergence of the
bias to 0:

Lemma 1 Suppose for each k > K for some
K < oo, {Ag;} are ii.d., symmetm’cally distributed
about 0, with Ay ; independent of Oj, ;1<) <k
Further let |Ay;| < Bo a.s., E’|A*1.| < B1, and L be

thrice continuously differentiable with |L§f)12 sl < B2,
Vi1, i2,i3 € {1,2,...,p}, for some constants 60, B1, and
Br. Then, E{Giy(6%)|Fi} = ai(6%) + O(c2), 1 <1 <,
a.s.

Proof: The bias  vector  bg(6) =

(b,1(0),bk,2(0), ..., b, p(9))T is defined as:
b (0k) = E{Gr(0r) — 9(6k)|0k}, ®3)

where Gy(0r) = (Gr1(0),Gra(Bk), - Grp(61))"

Due to the mean-zero assumption on e}l‘ and A;l

wr.t. Fi, we have E{-*x el S Pt =
cial here to note that, desplte the previous equal-
ity, E{ekJr — ez_1|fk,Ak} # 0. Further, using the
properties of independence, symmetry and finite in-
verse moments of perturbation vector elements (i.e.,
Apg, Agg, and Ag_q;), observe that terms on the
RHS of (3) have zero mean, with the exception of

3)(g
iy (Or) = cul? (%i)ki’“k@iA’“@A’“ | Fi . Observe that
the bias term here is the same as for SPSA2-1R. The

claim is now obtained by the arguments following Equa-

It is cru-
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tion (3.1) in Lemma 1 of (Spall 1992). In particular,
note that
Bac A i Arig Ak s
SO IIAE Ve

|bk,l(0k)|
21 2 Z3

%(@3_(1)_

IA

IA

1185 + (0= 1)°5153 )

O

The relation in Lemma, 1 is of value in establishing
a form of asymptotic normality of the scaled iterate
convergence process, see Section 3. Note that Lemma
1 will not hold if normalized Hadamard matrix-based
{x1}P—valued perturbations Ay that were first intro-
duced in (Bhatnagar, Fu, Marcus, and Wang 2003)
(Section 4 below explains this deterministic perturba-
tion method in some detail). This is because there
Ck k: 1,4
Cke + 9i(0k—1) Ak,
will average to 0 as k — oo, unlike the previous term
>t i g,(@k) . In such a case, a different method
for unblasmg that does not use the immediate past
measurement, in the spirit of Section 4 later, would be
appropriate. A consequence of the a.s. convergence of
the bias by (6x) is the strong convergence of the iterates
0r to a local minimum 6*. We now state Assumption
A2 of (Spall 1992) (that is also applicable to the setting
of (Spall 1997)):

Assumption 2 Jag, a1,as > 0 andVk, Ee;c'j <
a0, EL*(0}) < a1, and A,;j <ag as., for1 <l <p.

While this does not entail any difference, observe
that we use A,;j < a9 a.s. instead of the original
E{A;?} <asin (Spall 1992).

Lemma 2 Under assumptions of (Spall 1997),
as k — oco: 0 — 0* a.s.

Proof: Follows almost verbatim as Proposition 1
of (Spall 1992). The only modifications are due to a
different error process ey, defined as ey (0;) = Gr(0r) —
E(Gr(0r)|0r). We can thus rewrite recursion (1) as:
0k+1 =0, — ak(g(ek) + bk(ek) + ek(ak)). The claim is
obtained if the following conditions are satisfied:

is no assurance that the term > _,

(a) |6k (8k) || < oo, Vk and bg(6x) — 0 a.s.

(b)  limyoo P(sup,,>p | o1ty aiei(6:)]l > ) = 0,
for any n > 0.

where || - || represents the Euclidean norm in parameter
space RP. Lemma 1 establishes (a) whilst for (b), notice
that {37, aiei}m>r is a martingale sequence (since
E(ei+1|F;) = 0) and the martingale inequality gives:
_ 2
P(supp, [ 2575 aies (09l > n) <n~2E| 352, asesll”
This upper bound equals 7723, a?E||e;||” since
E(e] e;) = E(el E(e;16;)) =0, Vj > i+ 1.
Further, for 1 < [ < p using Holder’s inequal-
ity: B(G2,(6)) < BILOT) — LOF) + 6 — 62)°

AT2
A7 (:J)Ilm < 2(a1+a0)a2c-_2

¢

zero property of e;;(6;), we have E (GZ (65 ))
(9:(0:) + bi,l(ai))2+E(e?,l(0i))7thus having E(e,(6;)) <
E(G2,(6:)), and resultingin E||e;||” < 2p(as+ag)aac;
The square summability of ‘;—:, from Assumption 1, now
establishes (b). m|

Due to the mean-

3 ASYMPTOTIC
COMPARISON

NORMALITY AND

The results obtained so far aid us in establishing the
asymptotic normality of a scaled iterate convergence

process. We show that kg(Gk — 09)-2 N (u, PN, PT)
as k — oo where the indicated convergence is in distri-
bution, 8 = a—2vy > 0 (given 3y — § > 0), and the
mean y is the same as in SPSA2-2R (Spall 1992, Propo-
sition 2) and SPSA2-1R. The orthogonal matrix P above
satisfies PTaH (6*)P = Diag({\i}/—,), A1,-., Ap being
the p eigen values of aH (0*). Unlike (Spall 1997), M,
above does not have an L2(§*) bias; however, it is scaled
by a factor of 2. This factor arises due to the use of the
additional noisy measurement L(f} |) + €} in (3) In
particular, M; = 2a2¢=2p?0?Diag({(2\ — 84) '} 1)
where 8 = Bif a = 1 and 0 otherwise, and EA — p.

However, as confirmed by (Spall 2005) the M1 in (5)

f (Spall 1997) should be

My = a®ep*(0? + L*(6%))Diag({(2h — B) ' Hoy),
(4)

and not a®c™?p?(o2Diag({(2\ — B4+) ' H_,) + L*(6*)I)
as printed, see Appendix 1 of (Abdulla and Bhatnagar
2006) for derivation of M;. Similarly, Appendix 2 there
establishes the form of M; and mean p that we claim.
We compare the proposed SPSA2-1UR with SPSA2-

2R in the number of measurements of cost function L
using variables 7i; and ns, respectively. As in (Spall
1997), we consider the case a=1andvy= % (giving

g = %) and E((Ek —Gk) |0k, Ax) = 202, resulting in
M, = La?c2p?0?Diag({(2\ — B4) '}_,) and M, =
4M,. This gives us:

3
Ay 1 (4rPMPT 4"\ 2 (5)
na trPMy PT+uT ’

where tr stands for the trace of the matrix. The ra-
tio above depends upon quantity g and to achieve
2
3

fin < ma we need that puTp > [ 452

231
4.11trPM2PT. We use n; to denote the number of
measurements of L made by SPSA2-1R. In the special
case L(6*) = 0, it is shown in (Spall 1997, eq. (8))
that ny; < no when pZ'p > 0.7024tr PM,PY. While our

trPMoPT ~
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result does not compare favorably, the advantage is that
(5) holds for all values of L(6*).

The comparison with SPSA2-1R yields an interest-
ing rule of thumb. Using D, to represent the diagonal
matrix Diag({2A; — 84+}]_,), we have:

3

[TRN trPA PT 400\ 2
1 trPM PT+uT

3

3
_ 2a2¢ 2p202trPDAPT 4T 1 2
- a2¢=2p2(o2+L2(0*)trPDA\PT+uTp

Irrespective of u, Dy, and P (quantities that may require
substantial knowledge of the system), it suffices to have
L?2(6*) > o2 to ensure that % < 1. The experimental
results in Section 6 provide verification of these claims.

4 ALGORITHM SPSA2-1UH

We now propose a fast convergence algorithm by modi-
fying SPSA2-1H of (Bhatnagar, Fu, Marcus, and Wang
2003, §3). The key departure in SPSA2-1H from gra-
dient estimate (2) of SPSA2-1R is that perturbation
vectors Ay are now deterministically obtained from
normalized Hadamard matrices. The kind of matrices
considered are the following: Let Hy be a 2 x 2 ma-
trix with elements Hy(1,1) = H2(1,2) = H»(2,1) =1
and H»(2,2) = —1. Likewise for any ¢ > 1, let the
block matrices Haq(1,1), H24(1,2), and H24(2,1) equal
Hyq-1. Also, let H4(2,2) = —Hgqe-1. For a param-
eter of dimension p, the dimension of the Hadamard
matrix needed is 27 where ¢ = [log, (p +1)]. Next, p
columns from the above matrix H, are arbitrarily cho-
sen from the ¢ — 1 columns that remain after the first
column is removed. The latter column is removed as it
does not satisfy a key property of the perturbation se-
quence. Each row of the resulting ¢ X p matrix H is now
used for the perturbation vector Ay in a cyclic manner,
ie. Ay = H(k%q + 1), where % indicates the modulo
operator. Though not shown here, the convergence of
SPSA2-1H can be shown as a special case of Prop. 2.5 of
(Xiong, Wang, and Fu 2002). The proposed algorithm,
which we call SPSA2-1UH, has two steps:
Algorithm 2 (SPSA2-1UH)

1. Fork>0,1<1<p,

L6 )+ef —L
Or+1,0 = Opy — ap— A —

2. ifk%q=0, L := L(G,j) +le else L4y := Ly.

In the above, L;, changes only periodically in epochs of
size ¢ and the algorithm has a unit space requirement.
Given index k, define £ = max{m : m < k,m%q = 0}.

For SPSA2-1UH, (2) is now modified to:

Gra(b) = W + 91(6k)
p
c Ak i
+ Z A gzok ZC:AMgl(G)
i=1,i#l i=1
€+—€-J—
+ Ofcg) + cz kkl )

where O(ci) contains higher order terms. Since A; =1,
we have XEi = AL“, V1 <i,l < p and Vk. Therefore,

A,
it can be shown as in Lemma 3.5 of (Bhatnagar, Fu,
Marcus, and Wang 2003) that the fourth term above
averages to 0 over g steps as k — oo, thus settling the
problem posed in §2. In passing, we also note that
step 2 can be written as k%g = m for any given m for
0<m<g-1

4.1 Convergence Analysis

We can now formally establish convergence w.p. 1 of
0. The original SPSA2-1H algorithm can be expanded
as follows

Opyr = Op — akAflA{g(ﬁk + Apcrlyg)
— wLO)AF - AT, (6)

where 0 < Ay < 1. Here A;l is the vector A;l =

(s Aip)T. This recursion is now presented in
the manner of (Xiong, Wang, and Fu 2002, eq. (6)),
with 7, dj and et there replaced by A,;l, Ay and ezr,
respectively:

Orr1 = Ok —arg(br)
— ar AT AL {g(8r + /\kaAk) 9(6x)}
—ap{ALTAL — Thg(0k) — 2 L(6k) A}
— —ek+A_

In the manner of (6), the SPSA2-1UH recursion is written
ast Op1 = Op —arAy AT (0 + MpcrAy) — o= (L(Ok) —

LOF)A; — 2(ef —€f)Ag! which can be expanded

3
as Ok+1 = O0r — arg(br)

— akAlzlAg{g(gk + ArckAr) — g(0r)}

— ap{AGTAL — T}g(60k) (7)
+ar A AT {9(6r + iz Ar) — 9(07)}

+ arA, AL g(6;) (8)
— & (L(6x) — L) —ef +) A (9)

However, we need to make a non-restrictive assumption:
Assumption 3 The function g (c¢f. Al of
(Xiong, Wang, and Fu 2002)) is uniformly continuous.



Abdulla and Bhatnagar

Theorem 1 Under Assumptions from (Spall
1997) and 3, Algorithm 2 produces iterates 0y where
0, — 6" w.p. 1.

Proof: We first show that terms in (8) and (9) are
error terms in the nature of e;(;) in condition (b) of
Lemma 2. In particular, we show that these satisfy the
conditions (B1) and (B4) in (Xiong, Wang, and Fu
2002). We reproduce these two conditions for clarity:

(B1)limnsco (SUP<icim(nm) 1| 25 aseill) -

0, for some T > 0, where
m(n, T) max{k:a, +..+ar <T}.

(B4) There exist sequences {e1,,} and {e2,} with

én = €1n + €2, for all n such that Y, areir

converges, and lim,_,. €2, = 0.

Observe that due to limy,_, ¢ = 0 and the uniform
continuity of g, Ay AT{g(0; + ApczAz) — 9(67)} sat-
isfies (B4). Since limy_,o0 05 — b7 = 0, A, A g(67)
satisfies (B1). This is shown by applying Lemma 2.2
of (Xiong, Wang, and Fu 2002) with the substitution
{z,} where z, = 1 Vn>1, {A,'Az} and {g(6r)}
for {cn}, {rn}, and {e,}, respectively. We have Vk,
(L0200~ 0ur) 2O 10020,

M We consider the first term on the RHS,

the second follows s1m11ar1y
k—
IL(0x)=L(95)| K%q— < %Q . L i fmr —

; (M Sy M, o |€+|) Tivqo

bunllliig=o + T2 Z
< Mo M q ak + MoMs ag |€ |) Ik%q 05 where

Cr Lk Cf
My, My, and M> represent approprlate bounds. The
summability of {'Z:'C‘;“} is obtained using Assumption
1 - implying that the LHS satisfies (B1). This fact is
used when we apply Lemma 2.2 of (Xiong, Wang, and
Fu 2002) again (with {A_ '}, {L(6,) — L(0;)} replacing
{rn,} and {e,}, respectively, and {c,} as is) to see
that Z00)=LU) AL

satisfies (B1). We now consider

the last term i.e.,
er—ef
term € = kAk l’“ is not mean 0 w.r.t. F but letting

k =k + g, Vk we see that E(€;;|Fk) = 0. This results

i {Tia 2]

w.r.t. F,, where we again utilize the inequality

. - However, now the noise

being a martingale sequence
m>n

P<sgp_ S e Zn) < 22( =) Blla?,
MEM | | k=n

2
the LHS modified to obtain < =2 Y5 (a—k) Ellex]>+
P(Supﬁ>m2n km:nc_

bility of ‘C‘—: and boundedness of €x result in quantities on
the RHS vanishing as n — oo. The proof of Proposition

2.3 in (Xiong, Wang, and Fu 2002) handles the terms
in the RHS of (7), thus resulting in the claim. O

5 SECOND-ORDER ALGORITHMS

We now propose two second order SPSA algorithms,
both re-use noisy function measurements. The first al-
gorithm - called 2SPSA-3UR since it is a modification
of 2SPSA of (Spall 2000) - makes three measurements
in the vicinity of each iterate 8y and re-uses the current
gradient estimate Gy (6y) to estimate the Hessian ma-
trix Hy(0g) at 6. The second algorithm 2SPSA-2UR
makes two measurements at 6, and reuses the value
L(#}_,) in the Hessian matrix estimation. A third
algorithm, 2SPSA-1UR, makes a single measurement
per iteration and is described in (Abdulla and Bhatna-
gar 2006). Second-order SPSA algorithms, which are
stochastic analogs of the Newton-Raphson algorithm,
are also proposed in (Spall 2000) and (Bhatnagar 2005).
The two algorithms that we propose are modifications
of 3SA and 2SA of (Bhatnagar 2005) although differing
in a few details.

e Unlike the 2SPSA in (Spall 2000), all three
algorithms 2SPSA-nUR n = 1, 2, 3 use an addi-
tional aj—like step-size sequence {b;} (not to
be confused with the bias term by (6,) in Lemma
1) in the recursion to compute Hy. Such an
additional step-size {by} is employed in all the
four second-order SPSA algorithms described in
(Bhatnagar 2005). The property of by, relative
to ay, is the well-known two-timescale’ property:
e br =00, >, b2 < 0o and a = o(by).

e Similar to 2SPSA, we employ an auxiliary per-
turbation sequence {A;} with the same prop-
erties as the original {A}, although indepen-
dently generated. There is also an associated
scaling parameter {é}. We will also require an
analog of Assumption 1: replace the pair (ag, c)
in Assumption 1 with the pairs (ag, ¢ ), (bx, k),
(br, ck)-

e  We use the ‘unbiasing’ concept by storing past
or current measurements of L and gradient es-
timate G. However, unlike the unit storage
overhead in SPSA2-1UR and SPSA2-1UH, this
retention of the current estimate of gradient G
arguably costs O(p) in storage. Second-order al-
gorithms of (Spall 2000) and (Bhatnagar 2005)
do implicitly assume memory to store, manipu-
late and multiply Hessian estimates Hj, - which
are O(p?) data structures.
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5.1 2SPSA-3UR

As used in (Bhatnagar 2005), the function I' used below
maps from the set of general p x p matrices to the set
of positive definite matrices. There are many possible
candidates for such a T, as explained in §II-D of (Spall
2000) where the notation fj is used.

Oht1 = Op—apH, 'Gi(0k) (10)
H, = T(Hy)
Hy, = Hp_1+b_1(Hp— Hp1)
where
S sGYE sar \T
Hk = % |:CkAkk (CkAkk) :|

oG}, GL(65) — Gr(6k).

Note the re-use of the current gradient estimate G, (6k)
in the second recursion above. This estimate is com-
puted as in the algorithm SPSA2-2R. In addition to 6}
and 6;,, we now employ the shorthand notation 6+ =
O +cpAg+ExAg. Similarly, we denote the measurement

noise incurred at 0,j+ as ek++. The terms used above

are: GL(6}) = AE—;l (LB ) + " — L(6) — ¢ ) and

k
-1

Gr(Br) = 35 (L(6]) + &t — L(6;) — ¢ ). Appendix3
of (Abdulla and Bhatnagar 2006) contains the derivation
regarding E(Hy|Fi) = H(6x)+O(ck). The convergence
analysis of 6 — 6* proceeds as in (Bhatnagar 2005),
outlines of which we explain here. We construct a time-
axis using the step-size by,: assume thatt(n) = >, _;bm,
and define a function H(-) as H(t(k)) = Hj, with linear
interpolation between [t(k),t(k + 1)). Similarly define
function () by setting 0(t(k)) = 6 and linear inter-
polation on the interval [t(k),t(k + 1)]. Let T' > 0 be
a scalar and define a sequence {T}} as Tp = 0 and
Tr = min{t(m)|t(m) > Tr_1 + T}. Then Ty = t(my)
for some my and T, — Tr_1 = T. Now define func-
tions H(-) and 6(-) as H(Ty) = H(tm,) = Hy and
O(Ty,) = O(tm, ) = Ok, and for t € [Tk, T11], the evolu-
tion is according to the system of ODEs:

H;;(t) = vi;L0) - H;;t)
o) = 0,
where 77, indicates ‘32%3(23. One can now
show as in Lemma A.8 of (Bhatnagar 2005)
that limy_,oo SUpyerr, 1, IH(#) — H(#)|| = 0 and

limg—s o0 SUPye(ry,, 13, [10(2) — O(2)|| = 0. Recursion (10)
can now be shown to asymptotically track the trajec-
tories of the ODE #(t) = —H~Y(8(t)) v L(6(t)) in a
similar manner as above on the slower timescale {ay}
(cf. Theorem 3.1 of (Bhatnagar 2005)).

5.2 2SPSA-2UR

The proposed algorithm can be understood in terms of
the gradient-free four-measurement algorithm 2SPSA of
(Spall 2000). In Footnote 6 of that article, the SPSA2-
1R analog of 2SPSA was not considered due to the
inherent variability of both estimates G and Hj, if the
one-measurement form of SPSA were to be used. We
employ the technique of the proposed SPSA2-1UR to
overcome this hurdle, in the process reducing the number
of function measurements required from 4 to 2. The fam-
ily of recursions (10) is retained with the differences that

-1
Gr(8k) = S (LB ) +¢f+ — L)) — ¢) and Hes-
. T
sian estimate H; = % [CiGAgk + (j}fﬁc) with Gy =

GLoh) —C:?,lc (6%), followed by a correction of the diagonal
terms in Hy:

+ +_ + o+
Hy(i,1) :== Hp(4,7) + L7 )+el —L(07_)—€ei_,

(11)

where the measurement at 6 | is reused. This cor-

rection assumes that A and A, are both Bernoulli
distributed over {+c¢, —c} for some ¢ > 0, although a
similar corrective term can be derived for other classes
of perturbations. Appendix 4 of (Abdulla and Bhatna-

gar 2006) derives the steps leading to this correction.

~ 4t _L(pt
In the above, G (6x) = LB )+ey fk(%_ and

G1(67) is as in 2SPSA-3UR. Note that G} (0)) is pre-
cisely the gradient estimate in the algorithm SPSA2-1UR
of Section 2. Also, Gi(6x) = G1(6}) indicating that a
re-use of the gradient estimate G, is being made to com-
pute the Hessian estimate Hy. Here, G}, is computed
using a one-sided difference just as in 2SA of (Bhatnagar
2005). Such an estimate still uses two measurements,
yet is different from the one-measurement form of Gy
as in SPSA2-1R or the unbiased G, of SPSA2-1UR
proposed in Section 2.

In place of a detailed convergence analysis, we pro-
vide an outline: E(G}(6}) — G}, (0x)|0k, Ak)

= E(Gp(0])|0k, Ak) — BE(GL(0k)|0k, Ax)

+
D€kt A—1
Ak

gt Yt
= g(of) - “EEE= A
L(OF)— L0 )—¢f_
9+ _ k k—1 k lA_1
Also, E | 2% ok ~ (A 1A =

H(6k)+0O(ck), the proof being in Appendix 4 of (Abdulla
and Bhatnagar 2006). Here H (8y) is the Hessian at 0,
while the error term corresponds to a matrix with an
induced norm bounded above by O(ci). We write this

as: E(‘sG’“’ |]—'k> = Hi;j(0) + O(cx), 1 < i, < p.

C)CAk,j
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The convergence analysis uses the ODE technique of
2SPSA-3UR, and since Gy, is the same as algorithm 2SA
of (Bhatnagar 2005), convergence of 6y is assured using
Theorem 3.3 of (Bhatnagar 2005). The convergence can
also be obtained in a manner similar to that of Theorems
la and 2a of (Spall 2000). Note that (Spall 2000) uses
the step-size byy+1 = ﬁ Our algorithm is applicable
for more general step-sizes as long as the requirement
ay, = o(bg) is met.

6 NUMERICAL EXAMPLE

We first compare algorithm SPSA2-2R of (Spall 1992)
with the proposed SPSA2-1UR using the setting of
(Spall 1997). In particular, the objective function used
is

5 5
Ly(6) =b+670+01)_ 67 +0.01>_ 6,

i=1 i=1

with 8* = 0 and Ly(6*) = 0 for all b. We keep b = 0
for comparison with SPSA2-2R and change to 0.1 for
comparison with SPSA2-1R. Weuse a = ¢c =1, a =
6y =1 and 6y = 0.11 (i.e., the vector with 0.1 in all its
components) in all the experiments. Assume that e;:
are i.i.d., mean-zero, Gaussian random variables with
variance o2. The formula for asymptotic normality
derived previously lets us consider two cases for the
observation noise:

1. o.=0.1 where Z—l — 1.30, and

2

2. o, =0.07 where Z—; — 0.93, respectively.

Each run of the SPSA2-2R algorithm is for 2000
iterations, thus making 4000 observations of the objec-
tive function. Table 1 summarizes the results, the mean
square error (MSE) obtained being over 100 runs of each
algorithm. The MSE values for SPSA2-2R are less when
compared to SPSA2-1UR, the proportion being 0.93 and
0.92, respectively for the two cases. However, this ratio
improves if we use the SPSA2-1UH algorithm, which
we compare with the analogous SPSA2-2H algorithm in
Table 2.

Table 1: Mean Square Error and No. of Iterations

o.=0.1 o = 0.07
Algorithm MSE | Iter. | MSE | Iter.
SPSA2-2R | 0.0135 | 2000 | 0.0130 | 2000

SPSA2-1UR | 0.0145 | 5200 | 0.0144 | 3600

While we have no asymptotic normality results for
SPSA2-1UH, the performance obtained is better than
that of SPSA2-1UR. We also observe the performance
of SPSA2-1UR vis-a-vis SPSA2-1R in Table 3. Possibly
due to the larger number of iterations required to achieve

asymptotic normality, the MSE is always higher. A
notable change in the behaviour of SPSA2-1R is the
higher MSE when b = 0.1. This is due to the L2(8*)
bias term in (6). Note that we use o, = 0.1 in both the
above comparisons.

We compare the second-order algorithms on the
same setting. For algorithms 2SPSA-3UR and 2SPSA-
2UR, we use Ak,i € {+1,—1} while the step-size & was
the same as cg, with by = z55. We used a similar
projection operator I'(-) as in the experiments of (Bhat-
nagar 2005), i.e., choose the diagonal elements Hy (i, 1),
1 <4 < p of the Hessian estimate and then truncate to
interval [0.1,10.0]. This upper bound of 10 on Hy(i,1)
was justified since typically two-timescale algorithms are
known to perform better with an additional averaging
on the faster timescale, where L >> 1 measurements are
made. Since recourse to multiple measurements is ruled
out in this setting, we chose to prune the fluctuations
in the diagonal terms Hy,(i,4).

We compare 2SPSA-3UR  with the four-
measurement 2SPSA  of (Spall 2000) to obtain
the results in Table 4. We run both algorithms in
such a manner that the number of function evaluations
is the same: 4000. The convergence of the bias (of
Hp) in 2SPSA-3UR is O(cy), resulting in problems
establishing any asymptotic normality results. As a
consequence, there is no clear set of parameters for
which 2SPSA-3UR would outperform 2SPSA. This
slower order of convergence may also be responsible
for the poor performance of the algorithm. The
experiments indicate the disconnect between finite-time
performance of the second-order algorithms vis-a-vis
the robust convergence behaviour expected from a
Newton-Raphson method. We chose this numerical
setting to compare the proposed algorithms with
those in the literature. The work (Zhu and Spall
2002) explores both finite-time performance and a
computationally-efficient second-order SPSA algorithm.
The difference with (Zhu and Spall 2002) would lie in
choosing the I' operator of (10). This is an issue also
identified in (Bhatnagar 2005), from where we chose
the 3SA and 2SA algorithms for modification. Table
5 compares performance of 2SPSA-2UR w.r.t. 2SA of
(Bhatnagar 2005). The algorithms are more or less on
par with each other.

Table 2: Mean Square Error and No. of Iterations

o.=0.1 o. = 0.07
Algorithm MSE | Iter. | MSE | Iter.
SPSA2-2H | 0.0133 | 2000 | 0.0127 | 2000

SPSA2-1UH | 0.0109 | 5200 | 0.0109 | 3600
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Table 3: Mean Square Error and No. of Iterations

b=0 b=0.1
Algorithm MSE | Iter. | MSE | Iter.
SPSA2-1R | 0.0443 | 4000 | 0.0492 | 4000

SPSA2-1UR | 0.0132 | 6000 | 0.0147 | 4000

Table 4: Comparison of 2SPSA-3UR

o.=0.1 o. = 0.07
Algorithm | MSE | Iter. | MSE | Iter.
2SPSA 0.037 | 1000 | 0.039 | 1000
2SPSA-3UR | 0.078 | 1333 | 0.073 | 1333

Table 5: Comparison of 2SPSA-2UR

o, =0.1 o = 0.07
Algorithm | MSE | Iter. | MSE | Iter.
25A 0.076 | 2000 | 0.077 | 2000
2SPSA-2UR | 0.072 | 2000 | 0.078 | 2000

7 TFUTURE DIRECTIONS

The asymptotic convergence properties of SPSA2-1H
have been theoretically shown to be on par with SPSA2-
1R in Proposition 2.5 of (Xiong, Wang, and Fu 2002).
Yet, it is unclear why SPSA2-1H performs better in
practice and this represents an avenue for future inves-
tigation. Also of interest is the possibility of reducing
the scale factor 2 in the asymptotic covariance matrix
M; using an average of past measurements L(6j_;),
j > 1. Whether online function regression mechanisms
will serve as a ‘critic’ to speed up SPSA gradient descent
by yielding an approximation of the objective function
remains to be seen. Such an arrangement would place
the resulting algorithm in-between the accepted forms of
‘gradient-free’ and ‘gradient-based’ methods. Further,
in line with the asymptotic normality results of both first
and second order SPSA algorithms, work such as (Konda
and Tsitsiklis 2004) that identifies rate of convergence
of two-timescale recursions should be useful.
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