
Solving MDPs using Two-timescale Simulated Annealing with
Multiplicative Weights

Mohammed Shahid Abdulla and Shalabh Bhatnagar
Department of Computer Science and Automation

Indian Institute of Science, Bangalore, INDIA
email: {shahid,shalabh}@csa.iisc.ernet.in

Abstract— We develop extensions of the Simulated Annealing
with Multiplicative Weights (SAMW) algorithm that proposed a
method of solution of Finite-Horizon Markov Decision Processes
(FH-MDPs). The extensions developed are in three directions:
a) Use of the dynamic programming principle in the policy
update step of SAMW b) A two-timescale actor-critic algorithm
that uses simulated transitions alone, and c) Extending the
algorithm to the infinite-horizon discounted-reward scenario.
In particular, a) reduces the storage required from exponen-
tial to linear in the number of actions per stage-state pair.
On the faster timescale, a ‘critic’ recursion performs policy
evaluation while on the slower timescale an ‘actor’ recursion
performs policy improvement using SAMW. We give a proof
outlining convergence w.p. 1 and show experimental results
on two settings: semiconductor fabrication and flow control in
communication networks.

Keywords

Markov decision processes, reinforcement learning,
two timescale stochastic approximation, Simulated An-
nealing with Multiplicative Weights.

I. INTRODUCTION

Markov decision processes (MDPs) are a gen-
eral framework for solving stochastic control problems.
Value iteration and policy iteration are two of the classi-
cal approaches for solving the Bellman equation for opti-
mality. Whereas value iteration proceeds by recursively
iterating over value function estimates starting from a
given estimate, policy iteration does so by iterating over
policies and involves updates in two nested loops. The
inner loop estimates the value function for a given policy
iterate (policy evaluation phase) while the outer loop
updates the policy (policy improvement phase).

Since an MDP with finite state and action spaces
will also have a finite number of policies, the method
of policy iteration converges to the optimal policy in
a finite number of steps. However, in both the above
classical approaches, one requires complete knowledge
of the system model via transition probabilities. Even
if these are available, the ‘curse of dimensionality’
makes the computational requirements prohibitive since
classical approaches do not scale well to state- or action-
space size. Research on simulation-based methods that
largely go under the rubric of reinforcement learning or
neuro-dynamic programming [1] is motivated by these
constraints and has gathered momentum recently. The
main idea in these schemes is to simulate transitions
instead of estimating transition probabilities and, in
scenarios where the numbers of states and actions are
large, use parametric representations of the cost-to-go
function and/or policies.

The proposed algorithms are simulation-based
analogs of policy iteration, where one proceeds us-
ing two coupled recursions driven by different step-
size schedules or timescales. The policy evaluation step
(termed the ‘critic’) is performed on the faster timescale
while the policy improvement step (the ‘actor’) is carried
out along the slower one. Thus, both recursions are
executed in tandem, one after the other, and the actor
(resp. critic) converges to the optimal policy (resp. value
function corresponding to the optimal policy). Two-
timescale stochastic approximation is further applied in
[2], where parameterizations of both value-function and
policy are considered.

Another application of the two-timescale method,
is the simulation-based policy iteration algorithm of [3]
which performs updates in the space of deterministic sta-
tionary policies and not randomized stationary policies
(RSPs) as do [4] and [2]. In the same vein, [5] considers
the finite-horizon scenario and therefore uses Markov
randomized policies (MRPs). In the ‘actor’ recursion of
[5], [6] and [3] the policy-gradient is computed using
the Simultaneous Perturbation Stochastic Approximation
(SPSA). Note that unlike classical policy iteration the
optimal policy in all the above methods is reached only
asymptotically.

The faster timescale recursion in [3] is similar to
the corresponding recursion in [4] except that, in [3],
an additional averaging over L epochs (for some fixed
L > 1) is proposed for enhanced convergence behaviour.
This averaging takes the form of simulating L transitions
out of each state in every step of the critic recursion.
We employ a variation of this technique in the proposed
SAMW-F and SAMW-D: we simulate L transitions out
of a given state x for each action in the feasible set. The
tag F in SAMW-F indicates finite horizon, whilst D in
SAMW-D stands for infinite horizon discounted reward.
SAMW-F performs policy iteration over the space of
MRPs (as does the algorithm of [5]), while SAMW-D
iterates over the space of RSPs (as do the algorithms in
[4], [6]). The key difference is that the actor recursions
of SAMW-F and SAMW-D perform policy improvement
using the SAMW technique.

A. Comparison with SAMW
The proposed algorithm for the finite-horizon case

is known as SAMW-F and the decision-horizon has du-
ration T . At each policy-improvement iteration i ∈ Z+,
SAMW-F takes a step towards the optimal decision rule
φ∗

l (x) for a given stage-state pair (l, x) by comparing
the Q−values of each action in the feasible set Ul,x.
Note our somewhat unconventional usage of the term
Q−value: the Q−value of action a ∈ Ul,x is the sum

of the single-stage reward obtained from applying a in
(l, x) and the cost-to-go from the subsequent stage l+1
under the policy iterate φi. Assuming that all states in
S are feasible in all stages l, the proposed SAMW-F
views the entire T -stage policy as a T×|S|−dimensional
vector, and updates all components of this vector at each
i. We show that as i goes to infinity, the SAMW-F
iterates φi converge to the optimal T -stage finite horizon
policy. On the slower timescale, we update the policy φi

using the SAMW technique - the update step involving
estimates of Q−value computed by the faster timescale
recursion. With analogous modifications, the SAMW-D
for infinite-horizon discounted-reward also possesses the
properties described above.

We outline some key features of the proposed
SAMW-F vis-a-vis SAMW:

• Both are policy-iteration algorithms where only
asymptotic efficiency is assured. This is in contrast
to the policy-iteration behaviour for MDPs with
finite state space and finite action sets.

• SAMW uses meta-policy iterates φi i.e. it operates
on the space of probability vectors over the entire
deterministic policy space Π. In contrast, SAMW-F
restricts to (l, x) pairs: φi has components φi

l(x),
∀x ∈ Sl and 0 ≤ l ≤ T − 1 over the (far smaller)
feasible action set Ul,x, where Sl represents the
feasible states in stage l.

• SAMW (resp. SAMW-F) has the attraction that
policy iterates φi (resp. φi

l(x)) do not exit the
probability simplex at any iteration i. In other
algorithms that update MRPs (e.g. [4], [7], [5], [6]),
the policy iterates φi+1

l (x) exit the probability sim-
plex when first computed and need to be projected
therein.

• Proposed SAMW-F has two storage requirements:
the MRP φi, and a look-up table of
Q−values Qi

l(x, a) thus resulting in a
2
∑T−1

l=1

∑|Sl|

x=1
|Ul,x|−sized storage. SAMW

stores the probability vector φ over Π, a much
larger set (note that |Π| = ×T−1

l=0 ×
|Sl|
x=1 |Ul,x|).

• In its current form, SAMW cannot be extended to
infinite-horizon problems since repeated simulation
of infinite trajectories is not possible. SAMW-D
overcomes this handicap, by using the Dynamic
Programming principle.

When using MRPs or RSPs, a large proportion of
processor-time is devoted to projecting φi

l(x) iterates
into the probability simplex. In [5] and [6], the computa-
tional effort for projection is far in excess of that needed
for one policy update and consumes nearly 2

3
−rds of

total computation time. The SPSA policy update step in
these references only requires two additions, a multipli-
cation and (an easy) division. In contrast, the projection
algorithm represents an optimization problem with an
iterative algorithm that takes |φi

l(x)| number of steps to
solve (cf. [8, §5.5.2]). There are work-arounds available,
e.g. Algorithms 3 and 6 of [4] assume that RSPs are of
a Gibbsian architecture where the parameters belong to
compact intervals, thus eliminating the projection onto a
simplex. However, sub-optimality of the resulting policy
is an automatic consequence of such a restriction.

To describe the outline of the article: Section II
describes the framework of a finite-horizon MDP, pro-
vides a brief background of the SAMW algorithm,
and identifies the conditions that the stepsizes should
satisfy. Section III proposes SAMW-F while Section
IV extends it to the infinite-horizon case. In section

V, we describe experiments in two frameworks: one of
semiconductor fabrication and the other of flow control
in communication networks. We dwell on some future
directions in section VI.

II. FRAMEWORK AND DESCRIPTION OF SAMW
Consider an MDP {Xl, l = 0, 1, ..., T} with deci-

sion horizon T < ∞. Suppose {Zl, l = 0, 1, ..., T − 1}
be the associated control valued process. Decisions are
made at instants l = 0, 1, ..., T − 1, and the process ter-
minates at instant T . Let state space at epoch l be Sl and
let the control space at epoch l be Πl, l = 0, 1, ..., T −1.
Note that ST is the set of terminating states of this
process. Let pl(x, a, y), x ∈ Sl, a ∈ Πl,x, y ∈ Sl+1,
l = 0, 1, ..., T − 1 denote the transition probabilities
associated with this MDP. An admissible deterministic
policy π is a set of T functions π = {π0, π1, ..., πT−1}
with πl : Sl 7−→ Πl such that πl(x) ∈ Ul,x, ∀x ∈ Sl,
l = 0, 1, ..., T − 1. In stage l with the system in state
x, a controller under policy π applies action πl(x). Let
Kl(x, a) denote the l−th stage reward when state is
x ∈ Sl, the action chosen is a ∈ Πl,x and the subsequent
state is y ∈ Sl+1, respectively, for l = 0, 1, ..., T − 1.
Note that rewards of the form Kl(x, a, y) can also be
admitted, we have chosen Kl(x, a) for economy of nota-
tion. Also, let KT (y) denote the terminal cost at instant
T when the terminating state is y ∈ ST . The aim here is
to find an admissible policy π = {π0, π1, ..., πT−1} that
maximizes for all x ∈ S0 the total-reward: V0,x(π) =

E

{

KT (XT) +

T−1
∑

l=0

Kl(Xl, πl(Xl))|X0 = x

}

, (1)

the expectation above being over the joint distribution of
X1, X2, ..., XT .

The Dynamic Programming algorithm for this prob-
lem is well-known (see [9]). The problem is broken
down into T coupled maximization problems with each
of these sub-problems, in turn, defined over the corre-
sponding feasible set Ul,x. Here,‘coupled’ means that the
l−th problem depends on the solution of the (l +1)−th
problem, for 0 ≤ l ≤ T − 1. In this paper we are
interested in scenarios where pl(x, a, y) are not known,
however, where transitions can be simulated. Thus, given
state of the system at stage l is x and action a is picked
(possibly randomly), we assume that the next state y can
be obtained through simulation.

A. Algorithm SAMW
A description of the SAMW algorithm of [10]

follows. SAMW operates on meta-policy iterates φi,
as we explain below. Define Ul = ×

|Sl|
x=1Ul,x and

further, Π = ×T−1
l=0 Ul. A deterministic policy (DP) π

is a
∑T−1

l=0
|Sl|−size vector s.t. π ∈ Π and the meta-

policy iterate φi in SAMW is a probability vector on
the ×T−1

l=0 ×
|Sl|
x=1 |Ul,x| number of DPs. We use the

same notation for a Markov randomized policy (RP)
iterate φi having |Ul,x|−sized components φi

l(x) which
is a probability vector over Ul,x. This policy iterate
φi is such that φi

l(x) = (φi
l(x, a), ∀a ∈ Ul,x)

T , φi
l =

(φi
l(x), ∀x ∈ Sl)

T and φi = (φi
l, 0 ≤ l ≤ T − 1)

T .
Note that |φi| =

∑T−1

l=0

∑|Sl|

x=1
|Ul,x| has a smaller

number of elements and coupled with a look-up table
of similar size, implies lesser storage.

For each σ ∈ Π, implementation of SAMW in-
volves generating a trajectory {Xl}

T
l=0 with X0 chosen

according to an a-priori distribution δ and actions σl(Xl)

applied at each stage l. This trajectory produces the i−th
total-reward estimate for policy σ, the random variable
V σ

i (xi) with X0 = xi as the start state. We produce this
estimate for each σ ∈ Π and update the policy φi as per
the following recursion:

φ
i+1(π) =

φi(π)β
V π

i
(xi)

i
∑

σ∈Π
φi(σ)β

V σ
i

(xi)

i

∀π ∈ Π.

We note the analogy with how a deterministic iterate
φi+1(π) would be produced, the above operator being a
soft-maximization.

The key SAMW condition is on βi, where βi ↓ 1
and i · βi−1

βi
↑ ∞. The {βi} used in Section V is

βi = 1 + i−0.6. In every update i, we need to simulate
a trajectory ∀σ ∈ Π, which may be a simulation burden
on the algorithm. In [10], an ε−cut SAMW is suggested
where trajectories at iteration i are simulated only for
such σ ∈ Π whose φi(σ) > ε, otherwise V σ

i−1(xi−1)
are reused. However, one would have to store such σ,
upto a maximum of |Π|.

B. Two-timescale stepsizes
In the proposed SAMW-F and SAMW-D, we require

βi to satisfy additional conditions over [10], and intro-
duce the stepsize αi. Call β̄i = lnβi, and assume that
these satisfy

βi ↓ 1 , i ·
βi − 1

βi

↑ ∞,

∑

i

β̄i =
∑

i

αi = ∞,
∑

i

β̄
2
i ,

∑

i

α
2
i < ∞,

and
β̄i = o(αi).

Thus {αi} goes to zero faster than does {β̄i}, which
corresponds to the slower timescale. Likewise, {αi} is
the faster timescale. Informally, a recursion using αi as
the stepsize views a recursion guided by β̄i as quasi-
static whilst this latter recursion views the former as
equilibrated.

III. PROPOSED ALGORITHM (SAMW-F)
Terms Sl and Ul denote the state and control spaces,

respectively. Further, Ul,x denotes the set of feasible
actions in state x ∈ Sl and may vary based on stage:
however |Ul,x| < ∞. As in SAMW, for theoretical
reasons we will need the following assurance on per-
stage rewards.

Assumption 1: The cost functions Kl(x, a), x ∈ Sl,
a ∈ Ul,x, are bounded for all l = 0, 1, ..., T − 1 s.t.
Kl(x, a) < 1

T
. Similarly, KT (x) < 1

T
, ∀x ∈ ST .

Note that this assumption is non-restrictive as it is a
scaling of the one-step rewards.

Algorithm SAMW-F
• Step 0 (Initialize): Fix φ1

l (x, a) = 1
|Ul,x|

, ∀x ∈ Sl,
∀a ∈ Ul,x, 0 ≤ l ≤ T − 1 as the initial MRP
iterate. Fix integers L and (large) M arbitrarily.
Choose step-sizes βi and αi as in Section II-B. Set
critic iterates Qk

l (x, a) = 0, 0 ≤ l ≤ T , ∀x ∈ Sl,
a ∈ Ul,x and k = 0, 1, ..., L−1 as initial estimates
of Q−values. Set actor index i := 1.

• Step 1 (Critic): for m = 0, 1, ..., L − 1, l = T −
1, T − 2, ..., 0, and x ∈ Sl, do

– for each a ∈ Ul,x, do

∗ Simulate next state η ≡ ηiL+m
l (x, a) ac-

cording to distribution pl(x, a, ·).
∗ Simulate action ξ ≡ ξiL+m

l (x, a) for η
according to φi

l+1(η).
∗ QiL+m+1

l (x, a) := (1 − αi)Q
iL+m
l (x, a)

+αi(Kl(x, a) + Q
iL+m
l+1 (η, ξ)). (2)

• Step 2 (Actor): ∀x ∈ Sl and 0 ≤ l ≤ T − 1:

– Zi
l (x) :=

∑

a∈Ul,x
φi

l(x, a)β
Q

(i+1)L

l
(x,a)

i

–

φ
i+1
l (x, a) :=

φi
l(x, a)β

Q
(i+1)L

l
(x,a)

i

Zi
l (x)

(3)

– Set i := i + 1. If i = M , go to Step 3; else
go to Step 1.

• Step 3 (termination): Terminate algorithm and out-
put φM as the final policy.

Note that two RVs are simulated in Step 1, the first
where specific actions a ∈ Ul,x are used to produce the
next state ηiL+m

l (x, a) and the second where action in
this state is chosen as per iterate φi. The termination
of Step 3 can also occur after a convergence test - a
method used in the experimental results of Section V.
Further, efficient performance can be obtained by scaling
iterates Q

(i+1)L
l (x, a), ∀a ∈ Ul,x in (3) to spread over

the interval [0, 1].

A. Outline of Convergence Analysis
We now proceed with a brief convergence analysis

of the algorithm. To observe the ‘actor-critic’ interac-
tion between (2)-(3), (3) can be written as an additive
recursion:

φ̄
i+1
l (x, a) = φ̄

i
l(x, a) + β̄i(Q

(i+1)L
l (x, a) −

Z̄i
l (x)

β̄i

),

where φ̄, β̄i and Z̄ are logarithms of φ, βi, and
Z,respectively. Due to β̄i = o(αi) (cf. Section II-B)
and the boundedness of Zi

l
(x)

β̄i
, the above recursion is

φ̄
i+1
l (x, a) = φ̄

i
l(x, a) + αiO(1),

implying that it is ‘quasi-static’ on the scale αi. Note
that, with the present information, the above additive
recursion may or may not converge. Even if φi → φ∗,
all components except a ≡ ξ∗

l,x (the optimal action in
(l, x)) are such that φ̄i

l,x(a) → −∞. Yet this is not of
consequence, since all we require is that stepsize β̄i be
o(αi). These arguments are detailed in [5] and [3]. Thus,
as i → ∞, recursion (3) is supplied with increasingly
precise estimates Q

(i+1)L
l (x, a) of the Q−value Q̄ of

triplet (l, x, a) under policy φi

Q̄l(x, a, φ
i)

∆
= Kl(x, a) +

∑

y,a

pl(x, a, y) ·

φ
i
l+1(y, a)Q̄l+1(y, a, φ

i), (4)

with y and a belonging to sets Sl+1 and Ul+1,y , respec-
tively.

The results that follow mirror those in [10], with
modifications to accommodate use of the dynamic pro-
gramming principle. Lemma 2 below is a further mod-
ification, in that it extends the Cauchy-like property
of the KL-entropy D(φi

l(x), φi+k
l (x)) → 0 to show

convergence to a policy element φ̄l(x). Take φ∗
l (x) as

the (l, x)−th component of the optimal policy φ∗ with

value 1 on optimal action ξ∗
l (x) and 0 on all other

actions. Abusing somewhat the notation QiL+m
l (x, a)

in the algorithm above, consider the random variable
Q

j

l (x, ξ∗l (x)) that is an estimate of the reward accrued
when ξ∗l (x) is taken in stage l and the policy φj fol-
lowed thence until T . Similarly, let the random variable
Vl(x, φj) denote estimates of the l−th stage reward
using policy φj . Define V̄l(x, φi) corresponding to how
Q̄l(x, a, φi) is defined as in (4).

Lemma 1: Keep β ∈ (1,∞) fixed in SAMW-F.
Then, for 0 ≤ l ≤ T − 1, and x ∈ Sl with φ1

l (x, a) =
1

|Ul,x|
, ∀a ∈ Ul,x the sequence of distributions φi gen-

erated by SAMW-D satisfies:

i
∑

j=1

Q
j

l (x, ξ
∗
l (x)) ≤

β − 1

lnβ

i
∑

j=1

Vl(x, φ
j) +

ln|Ul,x|

lnβ

Proof: Follows from the proof of Lemma 1 in [10] with
minor changes in notation. 2

Lemma 2: For βi that satisfies conditions in Sec-
tion II-B, the sequence φi

l(x) generated by SAMW-F
converge to some φ̄l(x)
Proof: To the proof of Lemma 2 in [10], we add
the following analysis (from Theorem 1 of the same
reference). For a given ε > 0, D(φi+k, φi) ≤ ε for all
i > Tε. Due to finite T , Sl and Ul,x, ∃ a T̃ε where
φi+k

l (x, a) ≤ φi
l(x, a)eε ∀l, x, a. Thus, noting that

φi
l(x, a) < 1, we have ‖φi+k

l (x) − φi
l(x)‖

∞
≤ eε − 1,

giving us the proof. Alternative norms could be used, in
particular, any Euclidean norm on R|Ul,x| suffices. 2

We note that a reviewer of this article hinted at an
easier proof of the above result via the Csizar inequality
of Information Theory.

Theorem 1: For a βi that satisfies conditions in Sec-
tion II-B, the sequence of distributions φi

l(x) generated
by SAMW-F satisfy:

βi − 1

lnβi

1

i

i
∑

j=1

Vl(x, φ
j) +

ln|Ul,x|

ilnβi

→ V̄l(x, φ
∗).

Proof: We use a backward induction argument. Con-
sider l = T − 1, from Lemma 1 we have that
1
i

∑i

j=1
Q

j
T−1(x, ξ∗T−1(x)) ≤

βi − 1

lnβi

1

i

i
∑

j=1

VT−1(x, φ
j) +

ln|UT−1,x|

ilnβi

Using the Law of Large Numbers on the LHS
and φj → φ̄ in RHS (cf. Lemma 2), we have
Q̄T−1(x, ξ∗T−1(x), φ̄) ≤ V̄T−1(x, φ̄). An inequality
contradicts our assumption of φ∗

T−1(x) being opti-
mal and hence φ̄T−1(x) = φ∗

T−1(x). We now show
for l = T − 2: using the same argument we have
Q̄T−2(x, ξ∗T−2(x), φ̄) ≤ V̄T−2(x, φ̄). Knowing that the
(T − 1)−th component is φ∗

T−1, we have φ̄T−2(x) =
φ∗

T−2(x). Similarly, we show for l = T − 3, ..., 0. 2

IV. ALGORITHM SAMW-D

The aim is to find a randomized stationary policy
(RSP) φ ≡ (φx, ∀x ∈ S)T that maximizes the infinite-
horizon discounted-reward:

V (x, φ) = E

{

∞
∑

l=0

α
l
K(Xl, ξ(Xl))|X0 = x

}

,

where discount factor α ∈ (0, 1) and ξ(x) is a
Ux−valued random variable generated according to the
law φ(x).

The algorithm SAMW-F extends with only minor
changes in notation, primarily removing dependence on
the stage marker l. Note also the introduction of discount
factor α in (5) below.

Algorithm SAMW-D
• Step 0 (Initialize): Fix φ1(x, a) = 1

|Πx|
, ∀x ∈ S,

∀a ∈ Ux as the initial RSP iterate. Set ‘critic’
iterates Qk(x, a) = 0, ∀x ∈ S, ∀a ∈ Ux and 0 ≤
k ≤ L − 1 as initial estimates of Q−values. Set
i := 1.

• Step 1 (Critic): for m = 0, 1, ..., L−1, and x ∈ S,
do

– for each a ∈ Ux, do
∗ Simulate next state η ≡ ηiL+m(x, a) ac-

cording to distribution p(x, a, ·).
∗ Simulate action ξ ≡ ξiL+m(x, a) for η

according to φi(η).
∗ QiL+m+1(x, a) := (1 − αi)Q

iL+m(x, a)

+ αi(K(x, a) + αQ
iL+m(η, ξ)). (5)

• Step 2 (Actor): For each x ∈ S

– Zi(x) :=
∑

a∈Ux
φi(x, a)β

Q(i+1)L(x,a)
i

–

φ
i+1(x, a) :=

φi(x, a)β
Q(i+1)L(x,a)
i

Zi(x)

– Set i := i + 1.
If i = M , go to Step 3;
else go to Step 1.

• Step 3 (termination): Terminate algorithm and out-
put φM as the final policy.

All the previous lemmas hold in this case too. How-
ever, Theorem 1 uses backward induction and therefore
we need a separate proof of convergence:

Theorem 2: For a βi that satisfies conditions in
Section II-B, the sequence φi(x) generated by SAMW-F
satisfy:

βi − 1

lnβi

1

i

i
∑

j=1

V (x, φ
j) +

ln|Ux|

ilnβi

→ V̄ (x, φ
∗).

Proof: Analogous to Lemma 1, 1
i

∑i

j=1
Qj(x, ξ∗(x))

≤
βi − 1

lnβi

1

i

i
∑

j=1

V (x, φ
j) +

ln|Ux|

ilnβi

.

From Lemma 2 we have that φj → φ̄, and
Q̄(x, ξ∗(x)) ≤ V̄ (x, φ̄), ∀x ∈ S. Notice that, w.p. 1,

Q̄(x, ξ
∗(x), φ̄) = K(x, ξ

∗(x))

+ α
∑

y∈S

p(x, ξ
∗(x), y)V̄ (y, φ̄).

Substituting Q̄(y, ξ∗(y), φ̄) for V̄ (y, φ̄), (i.e.
we take optimal action ξ∗(y) in every state
y seen after x), we have Q̄(x, ξ∗(x), φ̄) ≥
K(x, ξ∗(x)) + α

∑

y∈S
p(x, ξ∗(x), y)Q̄(y, ξ∗(y), φ̄).

Repeated substitution yields Q̄(x, ξ∗(x), φ̄) ≥ V̄ (x, φ∗)
where inequality cannot hold and equality holds if
φ̄ = φ∗. 2

V. SIMULATION RESULTS

A. Capacity Switching in Semiconductor Fabs
We first briefly describe the model of a semicon-

ductor fabrication unit, considered in [11]. The factory
process {Xl|X0 = i}, 1 ≤ l ≤ T , i ∈ S0 is such
that each Xl is a vector of capacities at time epochs
l ∈ {1, 2, ..., T}, the components X

(A,i),w
l representing

the number of type w machines allocated to performing
operation i on product A. The duration of the planning
horizon is T , casting this problem as a finite horizon
Markov decision process. A type w machine indicates
a machine capable of performing all operations which
are letters in the ‘word’ w. Note that the product A
requires the operation i for completion and that the word
w contains the letter i, among others. The word w of a
machine can also contain the action 0 - indicating idling.
The control πl(Xl) taken at stages 0 ≤ l ≤ T − 1

would be to switch u
(A,i),w,(B,j)
l machines of type w

from performing operation i on product A to performing
operation j on product B.

As in inventory control models, the randomness in
the system is modeled by the demand DA

r for product
A at stages 0 ≤ l ≤ T − 1. The per-step transition cost
consists of costs for excess inventory (Ke

A, for every
unit of product A in inventory), backlog (Kb

A), cost of
operation (Ko

w, one-stage operating cost for a machine
of type w) and the cost of switching capacity from one
type of operation to another (Ks

w, the cost of switching
a machine of type w from one type of production to
another). In all these costs, further complications can be
admitted, e.g., the cost Ks

w could be indexed with the
source product-operation pair (A, i) and the destination
pair (B, j).

We adopt a finite horizon of T = 5 and consider a
fab producing two products (A and B), both requiring
two operations, ‘litho’ and ‘etch’ (call these L and E).
We have a fab with 2 litho and 2 etch machines that can
each perform the corresponding operation on either A
or B. We denote the operations {A, L} (i.e., ‘litho on
A’) as 1, {A, E} as 2, {B, L} as 3 and {B, E} as 4,
implying that the word w of a litho machine is 013 and
that of an etch machine is 024. The product-operation
pairs that admit non-zero capacities are therefore: (A, 1),
(A, 2), (B, 3), and (B, 4).

The fab’s throughput Pl = (P A
l , P B

l)
is constrained by the following relation:
P A

l = min(X
(A,1),013
l , X

(A,2),024
l) and P B

l =

0.5·min(X
(B,3),013
l , X

(B,4),024
l), 0 ≤ l ≤ T − 1

indicating the slower production of B. We assume
that no machine is idling and therefore the capacity
allocated to product B, given capacity allocated to A, is
simply the remainder from 2 for both ‘litho’ and ‘etch’.
Therefore, these are X

(B,3),013
l = 2 − X

(A,1),013
l ,

X
(B,4),024
l = 2 − X

(B,4),024
l . We also

constrain the inventories: IA
l ∈ {−1, 0, 1},

IB
l ∈ {−0.5, 0, 0.5}, 0 ≤ l ≤ T − 1. The state

is thus completely described by the quadruplet:
Xl = (X

(A,1),013
l , X

(A,2),024
l , IA

l , IB
l), 0 ≤ l ≤ T .

One can choose a lexicographic order among the
possible starting states X0, which are 34 = 81 in
number.

Capacity switching at stage 0 ≤ l ≤ T − 1 is
specified by the policy component πl,·. Thus πl(Xl)
is a vector such that πl(Xl) = (πl(Xl, 1), πl(Xl, 2)),
making X

(A,1),013
l+1 = X

(A,1),013
l + πl(Xl, 1) (similarly

for X
(A,2),024
l+1). Note that controls πl(Xl) belong to

the feasible action set Ul,Xl
, and that in our setting

0 ≤ |Ul,Xl
| ≤ 9, the state ‘group’ (1, 1, xA, yB),

∀xA ∈ {−1, 0, 1}, ∀yB ∈ {−0.5, 0, 0.5} having the
maximum of 9 actions. We take the various one-step
costs to be Ke

A = 2, Ke
B = 1, Kb

A = 4, Ke
B = 2,

Ko
013 = 1.5, Ko

024 = 1, Ks
013 = 2 and Ks

024 = 2.
The noise (demand) scheme is such that: DA

l = 1
w.p. 0.4, DA

l = 2 otherwise, and DB
l = 0.5 w.p.

0.7, DB
l = 1 otherwise, for all 0 ≤ l ≤ T − 1.

We assume that the control πl(Xl) is applied to the
state Xl at the beginning of the epoch l whereas the
demand Dl is made at the end of it, i.e., X

(A,1),013
l+1 =

X
(A,1),013
l + πl(Xr, 1), X

(A,2),024
l+1 = X

(A,2),024
l +

πl(Xl, 2), IA
l+1 = max(min(IA

l +P A
l+1−DA

l , 1),−1),
IA

l+1 = max(min(IB
l + P B

l+1 − DB
l , 0.5),−0.5)). We

also take the terminal cost KT (XT) to be 0. Thus, the
per-stage cost K̄l(Xl, πl(Xl), Xl+1) = 2Ko

013 +2Ko
024

+ πl(Xl, 1)·Ks
013 + πl(Xl, 2)·Ks

024

+ max(IA
l+1, 0)·Ke

A + max(IB
l+1, 0)·Ke

B

+ max(−I
B
l+1, 0)·Kb

A + max(−I
B
l+1, 0)·Kb

B

implies Kl(Xl, πl(Xl)) = K̄−1
l (Xl, πl(Xl), Xl+1). A

check indicates this reward satisfies Assumption 1.
Both algorithms were terminated at the iteration i

when erri ≤ 0.01. This criterion is described as:

erri = max
x∈S,k∈{1,2,...,50}

‖πi(x) − π
i−k(x)‖2,

where πi(x) = (πi
l (x, a), 0 ≤ l ≤ T − 1, a ∈ Ul,x)T ,

and ‖ · ‖2 is the Euclidean norm in the appropriate
dimension

∑T−1

l=0
|Ul,x|.

The total rewards obtained using the proposed
SAMW-F and RPAFA-2 (a two-simulation variant of the
algorithm in [5]) is plotted in Figure 1. The states are
sorted in decreasing order of the exact reward (computed
using DP). The reward computed using the converged
policy of RPAFA-2 is reliably close - albeit lower than
DP. The advantage lies in the faster convergence time
of SAMW-F, computing performances being outlined in
Table I. Note the proportionally less time that SAMW-F
takes, a consequence of the absence of probability vector
projection. In the experiments we chose the averaging
parameter L as 100 for the RPAFA-2 algorithm. To
approximately adjust for the number of table look-ups,
we chose L = 20 for SAMW, i.e. 20 transitions for
each a ∈ Ul,x are simulated from the pair (l, x) (the
adjustment is approximate since |Ul,x| varies). We used
the step-sizes αi = 1

i0.55 and βi = 1+ 1
i0.60 in SAMW-

F.

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0 10 20 30 40 50 60 70 80

F-
H

 T
ot

al
 R

ew
ar

d

States

Finite Horizon (F-H)

SAMW-F
RPAFA-2

DP

Fig. 1: Comparing Finite Horizon Rewards

Iter. i Time in sec. erri Max Error
SAMW-F 100 5 0.01 0.10
RPAFA-2 900 85 0.01 0.09

TABLE I: Comparison of SAMW-F with RPAFA-2

B. Flow control in communication networks
For the proposed SAMW-D algorithm, we consider

a continuous time queuing model of flow control. The
numerical setting here is somewhat similar to that in
[3]. Assume that a single bottleneck node has a finite
buffer of size B. Packets are fed into the node by both
an uncontrolled Poisson arrival stream with rate λu =
0.2, and a controlled Poisson process with rate λc(t)
at instant t > 0. Service times at the node are i.i.d.,
exponentially distributed with rate 2.0. We assume that
the queue length process {Xt, t > 0} at the node is
continually observed every T̃ instants, for some T̃ > 0.
Suppose Xl denotes the queue length observed at instant
lT̃ , l ≥ 0. This information is fed back to the controlled
source which then starts sending packets at λc(Xl) in the
interval [lT̃ , (l + 1)T̃), assuming there are no feedback
delays. We use B = 50, and designate the ‘target state’
T̂ = 25 representing the middle of the buffer. The goal is
to maximize throughput and minimize the queue length
and, therefore, the delay in a queueing system.

The one-step reward under a given randomized sta-
tionary policy π is computed as K(Xl, ξl, Xl+1) =

1−α

max(|Xl+1−T̂ |,1)
where ξl is a random variable with law

φ(Xl) and 0 < α < 1 is the discount factor. Such
a cost function penalizes states away from the target
state T̂ . For the current setting where |Ux| < ∞, we
discretize the interval [0.05, 4.5] so as to obtain five
equally spaced actions in each state. For purposes of
comparison, we also implemented the Dynamic Pro-
gramming algorithm. However, one would then require
the transition probability matrix PT̃ in order to compute
which, we use the approximation method suggested in
[12, §6.8]. The calculation is complex: take q (e.g. q = 5
here) controls per state, then q number of PT̃ matrices of
size B×B each are required. Also note that the amount
of computation required for PT̃ also depends upon the
convergence criteria specified for the method in [12,
§6.8]. Besides, such probabilities can only be computed
for systems whose dynamics are well known.

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 5 10 15 20 25 30 35 40 45 50

I-H
 D

is
co

un
te

d
R

ew
ar

d

States

Infinite Horizon (I-H)

SAMW-D
RPAFA-2

Fig. 2: Comparing Infinite-Horizon Rewards

The comparable algorithm RPAFA-2 (a variant
of the RPAFA-2 in [6]) is terminated at iteration
i where erri ≤ 0.01, criteria erri being: erri =
maxx∈S,k∈{1,2,...,50} ‖φ

i(x, a) − φi−k(x, a)‖2, where

Iter. i Time in sec. erri
SAMW-D 100 2 0.01
RPAFA-2 220 19 0.01

TABLE II: Comparison of SAMW-D and RPAFA-2

φi(x) = (φi(x, a), a ∈ Ux)T . Again, ‖ · ‖2 being the
Euclidean norm in Rq . Shown in Figure 2 is the dis-
counted reward for each state in a system operating
under the optimal policy computed using SAMW-D and
RPAFA-2, respectively. The plots shown in Figure 2 are
obtained using stochastic approximation from 1 × 104

transitions from each state x ∈ S to compute the value
functions. Tables II shows performance comparisons
of SAMW-D with RPAFA-2. The proposed SAMW-D
converges much faster, despite L = 20 in order to adjust
for number of table look-ups.

VI. FUTURE DIRECTIONS

It appears possible to eliminate the large table re-
quired to store the Q-values. This can be done by having
only estimates of V̄ (x, φi) stored in the look-up table
and estimating Q−values by simulation.

Acknowledgments
This work was supported in part by Grant no.

SR/S3/EE/43/2002-SERC-Engg from the Department of
Science and Technology, Government of India.

REFERENCES

[1] D. Bertsekas and J. Tsitsiklis, Neuro-Dynamic Program-
ming. Belmont, MA: Athena Scientific, 1996.

[2] V. Konda and J. Tsitsiklis, “Actor–Critic Algorithms,”
SIAM Journal on Control and Optimization, vol. 42, no. 4,
pp. 1143–1166, 2003.

[3] S. Bhatnagar and S. Kumar, “A Simultaneous Perturbation
Stochastic Approximation–Based Actor–Critic Algorithm
for Markov Decision Processes,” IEEE Transactions on
Automatic Control, vol. 49, no. 4, pp. 592–598, 2004.

[4] V. Konda and V. Borkar, “Actor–Critic Type Learning Al-
gorithms for Markov Decision Processes,” SIAM Journal
on Control and Optimization, vol. 38, no. 1, pp. 94–123,
1999.

[5] S. Bhatnagar and M. S. Abdulla, “An Actor-Critic Algo-
rithm for Finite Horizon Markov Decision Processes,” in
Proceedings of the 45th IEEE-CDC, Dec 11-13 2006, San
Diego, CA, USA, 2006.

[6] M. S. Abdulla and S. Bhatnagar, “Reinforcement learn-
ing based algorithms for average cost markov decision
processes,” Accepted for publication in Discrete Event
Dynamical Systems, 2006.

[7] S. Bhatnagar and M. Abdulla, “An Actor-Critic Algorithm
for Finite Horizon Markov Decision Processes,” Submit-
ted, 2006.

[8] V. Raju Ch, Learning Dynamic Prices In Electronic Mar-
kets. PhD Thesis: Department of CSA, IISc, Bangalore,
2004.

[9] D. Bertsekas, Dynamic Programming and Optimal Con-
trol, Volume I. Belmont, MA: Athena Scientific, 1995.

[10] H. S. Chang, M. C. Fu, and S. I. Marcus, “An Asymp-
totically Efficient Algorithm for Finite Horizon Stochastic
Dynamic Programming Problems,” in Proceedings of the
42nd IEEE-CDC, Dec 2003, Maui, HI, USA, 2003.

[11] J. Panigrahi and S. Bhatnagar, “Hierarchical Decision
Making in Semiconductor Fabs using Multi-time Scale
Markov Decision Processes,” in Proceedings of IEEE
Conference on Decision and Control, Paradise Island,
Nassau, Bahamas, 2004.

[12] S. M. Ross, Introduction to Probability Models, 7/e. San
Diego, CA: Academic Press, 2000.

