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Abstract— We develop a simulation based algorithm for
finite horizon Markov decision processes with finite state and
finite action space. Illustrative numerical experiments with the
proposed algorithm are shown for problems in flow control of
communication networks and capacity switching in semicon-
ductor fabrication.
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I. INTRODUCTION

Markov decision processes (MDPs) are a general
framework for solving stochastic control problems [1].
Value iteration and policy iteration are two of the clas-
sical approaches for solving the Bellman equation for
optimality. Whereas value iteration proceeds by recur-
sively iterating over value function estimates starting
from a given such estimate, policy iteration does so by
iterating over policies and involves updates in two nested
loops. The inner loop estimates the value function for a
given policy update while the outer loop updates the
policy. The former estimates are obtained as solutions
to linear systems of equations, known as the Poisson
equations, that are most often solved using value itera-
tion type recursions rather than explicit matrix inversion.
This is particularly true when the numbers of states
and actions are large (the ‘curse of dimensionality’).
However, in the above classical approaches, one requires
complete knowledge of the system model via transition
probabilities. Even if these are available, the ‘curse
of dimensionality’ threatens the computational require-
ments for solving the Bellman equation as these become
prohibitive. Motivated by these considerations, research
on simulation-based methods that largely go under the
rubric of reinforcement learning or neuro-dynamic pro-
gramming [2] have gathered momentum in recent times.
The main idea in these schemes is to simulate transitions
instead of directly computing transition probabilities and,
in scenarios where the numbers of states and actions are
large, use parametric representations of the cost-to-go
function and/or policies.

The inner loop of the policy iteration algorithm,
for any given policy update, may typically take a long
time to converge. In [3], an actor-critic algorithm
based on two-timescale stochastic approximation was
proposed. A simulation-based analog of policy iteration,
the algorithm proceeds using two coupled recursions
driven by different step-size schedules or timescales. The
policy evaluation step of policy iteration is performed
on the faster timescale while the policy improvement

step is carried out along the slower one, the advantage
being that one need not wait for convergence of the
inner-loop before an outer-loop update unlike regular
policy iteration. Instead, both recursions are executed in
tandem, one after the other, and the optimal policy-value
function pair are obtained upon convergence of the algo-
rithm. This idea of two-timescale stochastic approxima-
tion is further applied in [4], where parameterizations of
both value function (termed ‘critic’), and policy (termed
‘actor’) are considered. As yet another application of
the two-timescale method, the simulation-based policy
iteration algorithm of [5] performs updates in the space
of deterministic stationary policies and not randomized
stationary policies (RSPs) as in [3], [4]. While not sta-
tionary, the proposed algorithm RPAFA uses randomized
policies as well. On the slower timescale, a gradient
search using simultaneous perturbation stochastic ap-
proximation (SPSA) gradient estimates is performed and
convergence to a locally optimal policy is shown. While
gradient search on the slower timescale is recommended
in [4], no specific form of the gradient estimates is
proposed there. The SPSA estimates used in [5] are of
the two-measurement form first proposed in [6], while
a one-measurement form of SPSA was proposed in
[7]. A performance-enhancing modification to this latter
algorithm was described in [8] that used deterministic
perturbation sequences derived from certain normalized
Hadamard matrices. This last form of SPSA is used in
the proposed RPAFA algorithm.

The algorithm of [5] is for infinite horizon dis-
counted cost MDPs. Obtaining a solution to the Poisson
equation (along the faster timescale) is simpler there as
the cost-to-go depends only on the state and is stage-
invariant (i.e. stationary). Since we consider the finite
horizon setting here, the cost-to-go is now a function
of both state and stage. The faster timescale updates
now involve � ‘stage-wise’ coupled stochastic recursions
in addition to being ‘state-wise’ coupled, where � is
the planning horizon. Therefore, the resulting system of
equations that need to be solved is ��� fold larger than
in [5]. Numerical experiments in [5] are shown over
a setting of flow control in communication networks.
We consider experiments not only in this setting, but
also on another setting involving capacity allocation in
semi-conductor fabs. Further, as already pointed out, [5]
considers the setting of compact (non-discrete) action
sets while we consider a finite action setting in our work.

Reinforcement learning algorithms have generally
been developed and studied as infinite horizon MDPs
under the discounted cost or the long-run average cost
criteria. For instance, approximate DP methods of TD
learning [2, � 6.3], Q-learning [2, � 6.6] and actor-critic



algorithms [4] etc., have been developed in the infinite
horizon framework. However, in most real life scenarios,
finite horizon decision problems assume utmost signifi-
cance. For instance, in the design of a manufacturing fab,
one requires planning over a finite decision horizon. In
a communication network, flow and congestion control
problems should realistically be studied only as finite
horizon decision making problems, since the amount
of time required in clearing congestion and restoring
normal traffic flows in the network is of prime concern.
Finite-horizon tasks also form natural subproblems in
certain kinds of infinite-horizon MDPs, e.g. [9, � 2]
illustrates this by using models from semiconductor fab-
rication and communication networks where each tran-
sition of the upper level infinite-horizon MDP spawns a
finite-horizon MDP at a lower level. Policies in finite
horizon problems depend on stage and need not be
stationary, thereby contributing in severity to the ‘curse
of dimensionality’.

We develop in this paper, two-timescale stochastic
approximation based actor-critic algorithms for finite
horizon MDPs with finite state and finite action sets.
Most of the work on developing computationally effi-
cient algorithms for finite horizon problems, however,
assumes that model information is known. For instance,
in [10], the problem of solving a finite horizon MDP
under partial observations is formulated as a nonlinear
programming problem and a gradient search based solu-
tion methodology is developed. For a similar problem,
a solution procedure based on genetic algorithms and
mixed integer programming is presented in [11]. In [12],
a hierarchical structure using state aggregation is pro-
posed for solving finite horizon problems. In contrast, we
assume that information on transition probabilities (or
model) of the system is not known, although transitions
can be simulated. In [13], three variants of the Q-learning
algorithm for the finite horizon problem are developed
assuming lack of model information. However, the finite
horizon MDP problem is embedded as an infinite horizon
MDP either by adding an absorbing state at the terminal
stage (or the end of horizon) or a modified MDP is
obtained by restarting the process by selecting one of the
states at the initial (first) stage of the MDP according to
the uniform distribution, once the terminal stage is hit.

Our approach is fundamentally different from that in
[13]. In particular, we do not embed the finite horizon
MDP into an infinite horizon one. The solution proce-
dure that one obtains using the approach in [13] is at
best only approximate, a restriction not applicable to
our work. In the limit as the number of updates goes
to infinity, our algorithms converge to the optimal � -
stage finite horizon policy. Our algorithms update all
components of the policy vector at every update epoch,
resulting in the near-equal convergence behaviour of� � th stage policy components and costs-to-go, for each��� �
	���
���������� ��� 
 � .

Further, the method of [13] is a trajectory-based
scheme, in that repeated simulations of entire ��� length
trajectories are performed, whereas our algorithm uses
single transitions. In the former method, not all
(state,action) pairs are sufficiently explored and hence
a separate exploration function is needed. Apart from a
look-up table proportional in the number of actions per-
state, the algorithm of [13] also requires counters for the
number of times a (state,action) pair has been seen by
the algorithm.

Section II describes the framework of a finite-
horizon MDP, provides a brief background of the tech-

niques used, and proposes the algorithm. In section III,
we illustrate numerical experiments in the framework of
flow control in communication networks and capacity
switching in semiconductor fabrication wherein we com-
pute the optimal costs and policies using the proposed
algorithm and compare performance with Dynamic Pro-
gramming using certain performance metrics. We dwell
on some future directions in section IV.

II. FRAMEWORK AND ALGORITHMS

Consider an MDP
������� ��� 	���
���������� ��� with deci-

sion horizon ��� � . Suppose
��! � � �"� 	���
���������� �#� 
 �

be the associated control valued process. Decisions are
made at instants �$� 	���
���������� �%� 
 , and the process
terminates at instant � . Let state space at epoch � be& ��� �'� 	���
���������� � and let the control space at epoch� be ( � � �)� 	���
���������� �*� 
 . Note that

&,+
is the set

of terminating states of this process. Let - �/.102��354( ��� �"� 	���
���������� �6� 
 , be the set of all feasible controls
in state

07�
, in period � . Let 8 ��.10 �:9;�2< 3 � 0 � & � �=9 �- � .1073 �2< � & �?>A@B� �"� 	���
���������� �C� 
 denote the transition

probabilities associated with this MDP. The transition
dynamics of this MDP is governed according toD . � �?>E@ � 02�?>E@�F �CG � 0 GH�?!IG � 9JGH�K	�L�MNL � 3 �

8 � .10 ���:9���� 0 �?>A@ 3�"� 	���
���������� �O� 
 , for all
07P � 0 @���������� 0 + �K9 P �:9;@����������B9 +RQ @

,
in appropriate sets. We define an admissible policy S
as a set of � functions S � ��T P �UTI@��V�������:T +RQ @ � withT �XW & �ZY�\[ ( � such that

T �/.10U3 � - �/.1073 , ] 0 �& � � �6� 	���
���������� �^� 
 . Thus at (given) instant � with
the system in say state

0
, the controller under policy S

selects the action
T �/.10U3

. Let _ ��.10 �K9;�1< 3 denote the single
stage cost at instant � when state is

0 � & � , the action
chosen is

9 � - �/.1073 and the subsequent next state is< � & �?>E@ , respectively, for �`� 	���
���������� �a� 
 . Also,
let _ + . M 3 denote the terminal cost at instant � when
the terminating state is

M � &,+ . The aim here is to
find an admissible policy S � ��T P �=Tb@����������:T +RQ @ � that
minimizes for all

0 � & P ,c"dP . S 3 �e*f _ + . � + 3,g +,Q @h �?i P _ �/. � � �UT �/. � ��3 �:� �?>E@?3�F � P � 0�j �
(1)

The expectation above is over the joint distribution
of
� @ �:��k����������K� +

. The dynamic programming algo-
rithm for this problem is now given as follows (see
[14]): for all

0 � &,+ ,c d+ . S 3 � _ + .1073 (2)

and for all
0 � & � , �"� 	��V
���������� ��� 
 ,c d� . S 3 �

lCm�no�p�q/r�s dutwvx y hz pH{ r:|~} 8 � .10 �K9;�2< 3V. _ � .10 �K9;�1< 3�g c z�B>E@ . S 3:3/� �� �
(3)

respectively.



A. Brief Overview and Motivation
Note that using dynamic programming, the original

problem of minimizing, over all admissible policies S ,
the � -stage cost-to-go

c dP . S 3 , ] 0 � & P , as given in (1),
is broken down into � coupled minimization problems
given by (2)-(3) with each such problem defined over
the corresponding feasible set of actions for each state.
Here,‘coupled’ means that the � � th problem depends on
the solution of the

. � g 
 3 � th problem, for
	�L � �$� .

In this paper, we are interested in scenarios where the8 � .10 �K9;��< 3 are not known, however, where transitions can
be simulated. Thus, given that the state of the system at
epoch � ( ��� ��	���
�������� �N� 
 � ) is

0
and action

9
is picked

(possibly randomly), we assume that the next state
<

can
be obtained through simulation.

We combine the theories of two-timescale stochastic
approximation and SPSA to obtain actor-critic algo-
rithms that solve all the � coupled minimization prob-
lems (2)-(3), under the (above) lack of model informa-
tion constraint. For the case of infinite horizon problems,
[3], [4] and [5] all use two-timescale stochastic approx-
imation algorithms of which [5] adopts two-simulation
SPSA to estimate the policy gradient.

Before we proceed further, we first motivate the use
of SPSA based gradient estimates and two timescales in
our algorithm. Suppose we are interested in finding the
minimum of a function � .���3 when � is not analytically
available, however, noisy observations � .�� �=�
� 3 , � � 	
of � .���3 are available with

� �
, �`� 	 being i.i.d. random

variables satisfying � .��/3 � eC� � .�� �:��� 37� . The expecta-
tion above is taken w.r.t. the common distribution of

� �
,�`� 	 . Let

� � .��/@ ��������� ���
3 + , � d . � 3 , 0 � 
��V�������K� , �O� 	
be generated according to the method in section II-A.1
below and let � . � 3 � . � @�. � 3 �V������� ��� . � 3:3 + , ��� 	 .
Let
�J. � 3 denote the � th update of parameter

�
. For a

given (small) scalar �`� 	 , form the parameter vector�J. � 3Ig ��� . � 3 . Then the one-measurement SPSA gra-
dient estimate �� d � .��J. � 3:3 of

� d � .���. � 3:3 , 0 � 
����������=�
has the form (cf. algorithm SPSA2-1R of [8]:�� d � .��J. � 3:3 � � .��J. � 3,g � . � 3 �=� �\3�/� d . � 3 �

(4)

Note that only one measurement (corresponding to�J. � 3,g ��� . � 3 ) is required here.
Also observe that unlike SPSA estimates, Kiefer-

Wolfowitz gradient estimates require � � (resp.
. � g 
 3

)
measurements when symmetric (resp. one-sided) differ-
ences are used. We now describe the construction of the
deterministic perturbations � . � 3 , �#� 
 , as proposed in
[8].

1) Construction for Deterministic Perturba-
tions: Let � be a normalized Hadamard matrix (a
Hadamard matrix is said to be normalized if all the ele-
ments of its first row and column are



s of order

D
withD � � g 
 ). Let � . 
 3 ��������� � . � 3 be any

�
columns other

than the first column of � , thus forming a new
. D$� � 3

–
dimensional matrix �� . Let �� . 8 3 , 8 � 
���������� D denote
the
D

rows of �� . Now set � . � 3 � �� . � lC��� D g 
 3 ,];�#� 	 . The perturbations are thus generated by cycling
through the rows of the matrix �� . Here

D
is chosen asD � �\�u�  :¡K¢ s �?>A@ t¤£ . It is shown in [8] that under the above

choice of
D

, the bias in gradient estimates asymptotically
vanishes. Finally, matrices �¦¥§�C¨ª©J¨ of dimensionD«�OD

, for
D � � G , are systematically constructed as

follows: � k © k �§¬ 
­

 � 
$® �

� k:¯ © k:¯ �§¬ � k ¯�° } © k ¯�° } � k ¯�° } © k ¯�° }� k:¯�° } © k:¯�° } �±� k:¯�° } © k:¯�° } ® �
for
M � 
 .
2) Two-timescale stepsizes: Let

��² . � 3 � and��³ . � 3 � be two step-size schedules that satisfyh � ² . � 3 � h � ³ . � 3 � � � h � ² . � 3 k � h � ³ . � 3 k � � �
and ³ . � 3 �µ´ . ² . � 3:3 �
respectively. Thus

��³ . � 3 � goes to zero faster than��² . � 3 � does and corresponds to the slower timescale
(since beyond some integer ¶ P (i.e., for �·�¸¶ P ),
the sizes of increments in recursions that use

��³ . � 3 �
are uniformly the smallest, and hence result in slow
albeit graceful convergence). Likewise,

��² . � 3 � is the
faster scale. Informally, a recursion having

² . � 3 as the
stepsize views a recursion that has stepsize

³ . � 3 as static
whilst the latter recursion views the former as having
converged.

B. Proposed Algorithm (RPAFA)
The acronym RPAFA stands for ‘Randomized Policy

Algorithm over Finite Action sets’. In the following, for
notational simplicity and ease of exposition, we assume
that the state and action spaces are fixed and do not
vary with stage. Thus

&
and ( respectively denote the

state and control spaces. Further, - .1073 denotes the set of
feasible actions in state

0 � & and is also stage invariant.
The set - .1073 of feasible actions in state

0
is assumed

finite. Further, we assume that each set - .1073 has exactly. � g 
 3
elements ¹ .10 �?	 3 , �V��� , ¹ .10 �=� 3 that however may

depend on state
0
. For theoretical reasons, we will need

the following assurance on per-stage costs.
Assumption (A) The cost functions _ ��.10 �K9;��< 3 � 0 �7< � & ,9 � - .1073 , are bounded for all �"� 	���
���������� �º� 
 . Further,_ + .1073 is bounded for all

0 � & .
We now introduce a Randomized Policy (RP). LetS � .10 �:9 3 be the probability of selecting action

9
in state0

at instant � and let �S ��.10U3 be the vector
. S �/.10 �:9 3 � 0 �& �=9 � - .10U3:» � ¹ .10 �?	 3 � 3 + , �"� 	���
���������� ��� 
 . Thus given�S �/.1073 as above, the probability S �/.10 � ¹ .10 �?	 3:3 of selecting

action ¹ .10 �?	 3 in state
0

at instant � is automatically
specified as S ��.10 � ¹ .10 �:	 3:3 � 
 ��¼ �z iA@ S ��.10 � ¹ .10 �7< 3:3 .
Hence, we identify a RP with �S � . �S � .1073 � 0 � & �K	OL� L ��� 
 3 + . Let ½& � � .1¾ @����V����� ¾ � 3�F ¾ z � 	�� ] < �
������V���:��� ¼ �z iA@ ¾ z L¿
 � denote the simplex in which�S � .1073 , 0 � & , �À� 	���
���������� ��� 
 take values. SupposeD W,Á � Y[ ½& denotes the projection map that projects�S �/.1073 to the simplex ½& after each update of the algorithm
below.

Algorithm RPAFAÂ Step 0 (Initialize): Fix �S PVÃ �/.10 �K9 3 , ] 0 � & ,
9 �- .1073 , 	µL � L ��� 
 as the initial RP iterate.

Fix integers Ä and (large) Å arbitrarily. Fix a
(small) constant �º� 	 . Choose step-sizes

² . � 3 and³ . � 3 as in Section II-A.2. Generate �� as in Section
II-A.1. Set

c G Ã ��.1073 � 	 , ] 	µL � L ��� 
 , andc G Ã + .10U3 � _ + .10U3 , 	�L MÆL ÄO� 
 , 0 � & as initial
estimates of cost-to-go. Set ‘actor’ index � W � 	 .Â Step 1: For all

0 � & ,
	�L � L ��� 
 , do:

– Set � � Ã ��.1073ÇW � �� . � lC��� D g 
 3 ,
– Set ½S � Ã ��.1073ÇW � D . �S � Ã �/.1073Èg �/� � Ã ��.1073:3 .



Â Step 2 (Critic): For ‘critic’ index É � 	���
���������� Ä��

, ��� ��� 
�� ���'� ���������?	 , and

0 � & , do
– Simulate action Ê ��ËJ>ÍÌ Ã �/.1073 according to dis-

tribution ½S � Ã �/.10U3 .
– Simulate next state Î ��ËJ>ÍÌ Ã � .1073 according to

distribution 8 ��.10 � Ê ��ËJ>ÍÌ Ã �/.1073 ��Ï 3 .
–
c �/Ë�>ÍÌÐ>A@ Ã � .10U3ÑW � . 
 � ² . � 3:3 c ��ËJ>ÍÌ Ã � .1073g ² . � 3 _ � .10 � Ê ��ËJ>ÍÌ Ã � .1073 � Î �/Ë�>,Ì Ã � .1073:3g ² . � 3 c ��ËJ>ÍÌ Ã �?>E@�. Î ��ËJ>ÍÌ Ã �/.1073:3 �Â Step 3 (Actor): For

0 � & ,
	�L � L ��� 
 , do�S ��>A@ Ã �/.1073ÇW � D . �S � Ã ��.1073 � ³ . � 3 c �/Ë Ã �/.1073� � Q @� Ã � .1073:3

Set � W � � g 
 .
If � � Å , go to Step 4;
else go to Step 1.Â Step 4 (termination): Terminate algorithm and out-
put ½SÍÒ as the final policy.

III. SIMULATION RESULTS

A. Flow control in communication networks
We consider a continuous-time queuing model of

flow control. The numerical setting here is somewhat
similar to that in [5]. In [5], this problem is modelled
in the infinite horizon discounted cost MDP framework,
while we study it in the finite horizon MDP framework
here. Flow and congestion control problems are suited
to a finite horizon framework since a user typically
holds the network for only a finite time duration. In
many applications in communication networks, not only
is the time needed to control congestion of concern,
these applications must also be supported with sufficient
bandwidth throughout this duration.

Assume that a single bottleneck node has a finite
buffer of size Ó . Packets are fed into the node by
both an uncontrolled Poisson arrival stream with rateÔ~Õ � 	�� � , and a controlled Poisson process with rateÔ\Ö .Ø×:3

at instant
× � 	 . Service times at the node are

i.i.d., exponentially distributed with rate � � 	 . We assume
that the queue length process

����ÙB� × � 	 � at the node
is observed every �� instants, for some ��Ú� 	 , upto
the instant ��È� . Here � stands for the terminating stage
of the finite horizon process. Suppose

���
denotes the

queue length observed at instant � �� ,
	ÆL � L � . This

information is fed back to the controlled source which
then starts sending packets at

Ô Ö . ��� 3
in the interval� � �� � . � g 
 3 �� 3 , assuming there are no feedback delays.

We use Ó �%Û 	 and � � 
�	 , and designate the ‘target
states’ �� � as evenly spaced states within the queue i.e.,� �� @ �ÝÜ 	�� �� k �ÝÞ/ß � ��,à �ÝÞ�Ü ��������� ��,á � 
�â�� �� @ P � 	 � .
The one-step transition cost under a given policy S
is computed as _ � .10 �
� Ê � .10 � 3 � 0 �?>E@ 3 �äãã 0 �?>E@ �å�� �?>A@ ãã
where Ê �/.102��3 is a random variable with law S �/.102��3 .
Also, _ + .1073 � 	�� ] 0 � & . Such a cost function penalizes
states away from the target states �� �?>E@ , apart from
satisfying Assumption (A). The goal thus is to maximize
throughput in the early stages ( � small), while as �
increases, the goal steadily shifts towards minimizing
the queue length and hence the delay as one approaches
the termination stage � .

For the finite action setting, we discretize the interval� 	�� 	 Û � Ü � Û � so as to obtain five equally spaced actions
in each state. For purposes of comparison, we also im-
plemented the DP algorithm (1)-(2) for the finite action
setting. Application of DP presupposes availability of the

transition probability matrix
DCæ+ , and in order to compute

these we use the approximation method of [15, � â�� ç ].
Since each state has the same

� g 

admissible controls,� g 


number of
D æ+ matrices of size Ó � Ó each are

required. This storage required becomes prohibitive as
either the state space increases, or the discretization is
made finer. Also note that the amount of computation
required for

DCæ+ also depends upon the convergence
criteria specified for the method in [15, � â�� ç ]. Besides,
such probabilities can only be computed for systems
whose dynamics are well known, our setting being that
of a well-studied Å è�Å�è 
 è
Ó queue.
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The policy obtained using finite-horizon DP with
DCæ+

computed as above is shown in Figure 1. Note how the
policy graphs shift to the left as the target state moves
to the left for increasing � . Thus, the throughput of the



r=2 r=6 r=10
Target éê � 37 25 0

DP 27.1 ë 6.3 22.4 ë 5.1 5.7 ë 3.6
RPAFA 19.2 ë 6.5 19.4 ë 4.8 8.9 ë 5.3

TABLE I
OBSERVED ì�í¤î ��ï FOR THE PROPOSED ALGORITHM

r=2 r=6 r=10
Target éê � 37 25 0

DP 0.07 ë 0.13 0.21 ë 0.34 0.19 ë 0.31
RPAFA 0.01 ë 0.03 0.13 ë 0.22 0.14 ë 0.24

TABLE II
PROBABILITIES ð �Ðñ)ò íuî �Ðñ éê � ë)ó ï

system decreases from one stage to another as the target
queue length is brought closer to zero.

The algorithm RPAFA is terminated at iteration �
where ô �
� � L�	�� 	�
 . The convergence criterion isô �
� � � lwõ
öd p/{ Ã G pH÷ @ Ã k Ã ø ø ø Ã ù=P?ú�û S � .1073 �OS � Q G .1073 û k �
where S �Í.10U3 � . S � Ã ��.10 �K9 3 �=	�L � L � � 
��:9 � - .1073:3 + .
Further, û Ï û k is the Euclidean norm in

Á + © s �?>E@ t .
On a Pentium III computer using the C programming
language, termination required upto Ü/ß � 
�	 à updates
and
ç � 
�	 à seconds. The policy obtained is shown

in Figure 2, where for each state the source rate
indicated is the rate that has the maximum probability
of selection. Also shown in Figure 3 is the finite-horizon
cost for each state in a system operating under the
policies in Figure 1 and Figure 2, respectively. The
plots shown in Figure 3 are obtained from � � 
�	 ù
independent sample trajectories

� 07P � 0 @���������� 0 @ P � , each
starting from state

0 P � 	 with a different initial seed.
Tables I, II and III show performance comparisons
of the proposed algorithm for various metrics with
mean and standard deviation taken over the (above
mentioned) � � 
�	 ù independent sample trajectories.
Table I shows the mean queue length

e .107��3
at

instants �^� � � Ü �Kâ��?ç�� and

�	

, respectively, with the
corresponding standard deviation. With �� � defined
as the ‘target’ state at instant � , Table II shows the
probability of the system being in states �� �Çü 
 at the
above values of � . Table III shows the mean one-stage
cost

e . _ � Q @�.102� Q @ �=T � Q @�.107� Q @?3 � 02��3:3 � e .KF 02� � �� �HF 3
incurred by the system during transition from

07� Q @
to
0 �

under policy S . Note that the relatively bad
performance of RPAFA is since it applies a randomized
policy wherein the optimal action, though having a high
probability of selection, may not be selected each time.

The approximate DP algorithm in this case con-
verges much faster since transition probabilities using
the method in [15] are easily computed in this setting.
However, in most real life scenarios, computing these
probabilities may not be as simple, and one may need
to rely exclusively on simulation-based methods.

r=2 r=6 r=10
Target éê � 37 25 0

DP 10.5 ë 5.5 5.2 ë 3.6 5.8 ë 3.6
RPAFA 18.0 ë 6.3 6.7 ë 3.9 8.8 ë 5.3

TABLE III
MEAN ONE-STAGE COSTS ì"íUý î �Ñþ éê � ý ï

B. Capacity Switching in Semiconductor Fabs
We first briefly describe the model of a semicon-

ductor fabrication unit, considered in [16]. The factory
process

����� F � P � 0 � ��
�L � L � ,
0 � & P is such

that each
� �

is a vector of capacities at time epochs��� �H
�� � ��������� ��� , the components
� s ÿ Ã d¤t Ã ��

representing
the number of type � machines allocated to performing
operation

0
on product

�
. The duration of the planning

horizon is � , casting this problem as a finite horizon
Markov Decision Process. A type � machine indicates
a machine capable of performing all operations which
are letters in the ‘word’ � . Note that the product

�
requires the operation

0
for completion and that the word� contains the letter
0
, among others. The word � of a

machine can also contain the action
	

- indicating idling.
The control

T�� . ��� 3
taken at stages

	µL � L ��� 

would be to switch ¹ s ÿ Ã d¤t Ã � Ã s�� Ã z t�

machines of type �
from performing operation

0
on product

�
to performing

operation
<

on product Ó .
As in inventory control models, the randomness in

the system is modeled by the demand � ÿ� for product�
at stages

	�L � L ��� 
 . The per-step transition cost
consists of costs for excess inventory ( �	�ÿ , for every
unit of product

�
in inventory), backlog ( �	
ÿ ), cost of

operation ( ���� , one-stage operating cost for a machine
of type � ) and the cost of switching capacity from one
type of operation to another ( �	
� , the cost of switching
a machine of type � from one type of production to
another). In all these costs, further complications can be
admitted, e.g., the cost �	
� could be indexed with the
source product-operation pair

. � � 073
and the destination

pair
. Ó �2< 3 .

We consider here a simple model also experimented
with in [16] where the infinite horizon discounted
cost for a semiconductor fab model was computed
using function approximation coupled with the policy
iteration algorithm. In contrast, we do not use function
approximation and adopt a finite horizon of


�	
. The

cost structure, however, remains the same as [16]. In
particular, we consider a fab producing two products (

�
and Ó ), both requiring two operations, ‘litho’ and ‘etch’
(call these � and ô ). We have a fab with � litho and �
etch machines that can each perform the corresponding
operation on either

�
or Ó . We denote the operations� � � ��� (i.e., ‘litho on
�

’) as


,
� � � ô�� as � , � Ó � ��� asÞ and

� Ó � ô�� as Ü , implying that the word � of a litho
machine is

	�
 Þ and that of an etch machine is
	 � Ü . The

product-operation pairs that admit non-zero capacities
are therefore:

. � ��
 3
,
. � � � 3 , . Ó � Þ 3 , and

. Ó � Ü 3 .
The fab’s throughput

D � � . D ÿ� � D �� 3
is constrained by the following relation:D ÿ� � É 0 � . � s ÿ Ã @ t Ã P @ à� �:� s�ÿ Ã k t Ã P k��� 3

and
D �� �	�� Û Ï É 0 � . � s�� Ã à t Ã P @ à� �:� s�� Ã � t Ã P k��� 3

,
	 L � L � � 


implying the slower production of Ó . We assume
that no machine is idling and therefore the capacity
allocated to product Ó , given capacity allocated to�

, is simply the remainder from � for both litho and
etch. Therefore, these are

� s�� Ã à t Ã P @ à� � �È� � s�ÿ Ã @ t Ã P @ à�
,� s�� Ã � t Ã P k��� � � � � s�� Ã � t Ã P k���

. We also
constrain the inventories: � ÿ� � � � 
��?	���
 � ,
� �� � � � 	�� Û �?	��?	�� Û � , 	§L � L ��� 
 . The state
is thus completely described by the quadruplet:� � � . � s�ÿ Ã @ t Ã P @ à� �:� s�ÿ Ã k t Ã P k��� � � ÿ� � � �� 3 �K	*L � L � .
One can choose a lexicographic order among the
possible starting states

� P
, which are Þ � � ç�
 in

number.
Capacity switching at stage

	ÝL � L ��� 
 is



Iterations Time in sec. ����� � Max Error
RPAFA 1500 209 0.1 30.4

TABLE IV
PERFORMANCE OF RPAFA

specified by the policy component
T��

. Thus
T�� . ��� 3

is
a vector such that

T �/. � ��3 � . T �/. � � �V
 3 �=T �/. � � � � 3:3 ,
making

� s�ÿ Ã @ t Ã P @ à�?>A@ � � s�ÿ Ã @ t Ã P @ à� g T ��. � � ��
 3
(similarly

for
� s ÿ Ã k t Ã P k���B>E@ ). Note that controls

T�� . ��� 3
belong to

the feasible action set - �/. � ��3 , and that in our setting	*L F - � . ��� 3�F L��
, the state ‘group’

. 
���
���� ÿ � ¾ � 3 ,] � ÿ � � � 
��?	���
 � , ] ¾ � � � � 	�� Û �?	��?	�� Û � having the
maximum of

�
actions. We take the various one-step

costs to be � �ÿ � � , � �� � 
 , � 
ÿ � 
�	 , � 
� � Û ,
� �P @ à � 	�� � , � �P k�� � 	���
 , � 
P @ à � 	�� Þ and � 
P k�� � 	�� Þ .
The noise (demand) scheme is such that: � ÿ� � 

w.p. 0.4, � ÿ� � � otherwise, and � �� � 	�� Û w.p.
0.7, � �� � 
 otherwise, for all

	 L � L ��� 
 .
We assume that the control

T�� . ��� 3
is applied to the

state
� �

at the beginning of the epoch � whereas the
demand � � is made at the end of it, i.e.,

� s�ÿ Ã @ t Ã P @ à�?>E@ �� s�ÿ Ã @ t Ã P @ à� g T �/. � � ��
 3
,
� s�ÿ Ã k t Ã P k���?>A@ � � s�ÿ Ã k t Ã P k��� gTR� . ����� � 3 , � ÿ�B>E@ � É 9�� . É 0 � . � ÿ� g D ÿ� ��� ÿ� ��
 3 � � 
 3 ,

� ÿ�?>A@ � É 9�� . É 0 � . � �� g D �� ��� �� �K	�� Û 3 � � 	�� Û 3:3 . We
also take the terminal cost � + . � + 3 to be

	
. Thus, we

have the per-stage cost:

� � . �����=TR� . ��� 3 �:���B>E@ 3 ���� �P @ à g � � �P k�� g T ÿ Ã @� Ï � 
P @ à g T ÿ Ã k� Ï � 
P k��g É 9�� . � ÿ�?>E@ �:	 3 Ï � �ÿ g É 9�� . � ��?>E@ �:	 3 Ï � ��g É 9�� . �!� ÿ�?>E@ �:	 3 Ï � 
ÿ g É 9�� . �!� ��?>E@ �K	 3 Ï � 
�
The resulting costs-to-go obtained using our algo-

rithm is plotted in Figure 4. The states are sorted
in decreasing order of the exact costs-to-go (computed
using DP). The corresponding cost computed using the
converged policy of RPAFA is seen to be reliably close
- albeit higher than DP. The computing performance is
outlined in Table IV. In the experiments we chose Ä
and � as � 	�	 and

	���

, respectively.
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Fig. 4. Comparison of Costs-to-go

IV. FUTURE DIRECTIONS

The policy iteration algorithm used one-simulation
SPSA gradient estimates with perturbation sequences
derived from normalized Hadamard matrices. However,
in general, two-simulation SPSA algorithms are seen to

perform better and converge faster as compared to one-
simulation SPSA, which could be derived along similar
lines (see [8]). In order to further improve performance,
efficient simulation-based higher order SPSA algorithms
that also estimate the Hessian in addition to the gradient
along the lines of [17] could also be explored.
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