
Reinforcement Learning Based Algorithms For Average Cost Markov Decision Processes

Abstract

This article proposes several two-timescale simulation-based actor-critic algorithms for solution of

infinite horizon Markov Decision Processes with finite state-space under the average cost criterion. Two

of the algorithms are for the compact (non-discrete) action setting while the rest are for finite-action

spaces. On the slower timescale, all the algorithms perform a gradient search over corresponding policy

spaces using two different Simultaneous Perturbation Stochastic Approximation (SPSA) gradient esti-

mates. On the faster timescale, the differential cost function corresponding to a given stationary policy

is updated and averaged for enhanced performance. A proof of convergence to a locally optimal pol-

icy is presented. Next, a memory efficient implementation using a feature-vector representation of the

state-space and TD(0) learning along the faster timescale is discussed. The TD(0) algorithm does not

follow an on-line sampling of states but is observed to do well on on our setting. Numerical experiments

on rate based flow control on a bottleneck node using a continuous-time queueing model are presented

using the proposed algorithms. We show performance comparisons of our algorithms with the two-

timescale actor-critic algorithms of (Konda & Borkar, 1999). Our algorithms exhibit more than an order

of magnitude better performance over those of (Konda & Borkar, 1999).

Keywords

Actor-critic algorithms, two timescale stochastic approximation, Markov decision processes, pol-

icy iteration, simultaneous perturbation stochastic approximation, normalized Hadamard matrices, rein-

forcement learning, TD-learning.

1

Reinforcement Learning Based Algorithms For Average

Cost Markov Decision Processes
�

Mohammed Shahid Abdulla and Shalabh Bhatnagar
�

Department of Computer Science and Automation,

Indian Institute of Science,

Bangalore - 560 012, India.

E-mail: � shahid,shalabh � @csa.iisc.ernet.in

�
This work was supported in part by Grant no. SR/S3/EE/43/2002-SERC-Engg from the Department of Science and Technology,

Government of India.�
Corresponding Author, E-mail for correspondence: shalabh@csa.iisc.ernet.in

2

1 Introduction

While Dynamic Programming (DP) makes available a family of methods to solve Markov Decision

Process (MDP) models, see for instance, (Puterman, 1994), it also assumes explicit knowledge of the

system dynamics through the transition probabilities. Simulation-based schemes for solving MDPs have

recently been used for systems when one has no knowledge of the system dynamics but can simulate

the transitions of the system, see (Bertsekas & Tsitsiklis, 1996), (Bhatnagar & Kumar, 2004), (Borkar

& Konda, 2004), (Konda & Borkar, 1999), (Konda & Tsitsiklis, 2003), (Tsitsiklis & Van Roy, 1997),

(Tsitsiklis & Van Roy, 1999), and (Van Roy, 2001). Even with complete knowledge of the transi-

tion probabilities, DP methods suffer from ‘the curse of dimensionality’, where by the computational

requirements to explicitly solve the Bellman equation become prohibitive when state spaces are large.

This problem is mitigated by parameterizing either or both the value-function and the policy. The pa-

rameterized form of the policy is known as the ‘actor’ while the ‘critic’ is an analogous manifestation of

the value-function.

Policy iteration is one of the classical methods for solving MDPs (cf. (Bertsekas, 1995, section 8.3))

that is performed using two loops - a policy update on the outer loop being performed once the inner

loop that computes the stationary value function for a given policy estimate has converged. The outer

loop’s ‘wait’ for convergence of the inner loop is avoided when two timescale stochastic approximation is

used. In such a setting, the policy evaluation recursions proceed on a faster timescale whereas the policy

updates, using the above evaluation estimates, are performed on a slower timescale. A simulation based,

two timescale, approach for policy iteration is considered by (Konda & Borkar, 1999) for MDPs with

finite state and finite action spaces. In (Konda & Tsitsiklis, 2003), the value function is parameterized

using a linear approximation architecture and two timescale algorithms are used where on the faster

scale, a temporal difference (TD) type learning algorithm, see (Tsitsiklis & Van Roy, 1999), is used and

on the slower scale, an approximate gradient search is performed.

For noisy measurement based parameter optimization, a gradient descent stochastic approximation

algorithm known as simultaneous perturbation stochastic approximation (SPSA) was proposed in (Spall,

1992) that uses only two cost function measurements for any � -dimensional parameter vector. Further,

3

(Spall, 1997) proposed a similar method that used only one measurement. The algorithm of (Spall,

1992) has been seen to perform well in a variety of settings by several authors. The algorithm of (Spall,

1997), however, does not perform as well (as (Spall, 1992)) because of the presence of additional bias

terms in its gradient estimate. The algorithms of (Spall, 1992) and (Spall, 1997) perturb the parameter

vector randomly in all components by using independent and identically distributed (i.i.d.), symmetric

mean-zero random variables. In (Bhatnagar et al., 2003), perturbations based on certain deterministic

sequences for two-timescale SPSA algorithms were proposed and a simulation based optimization set-

ting was considered. It was observed in (Bhatnagar et al., 2003) that algorithms that use deterministic

perturbations performed better than those that use randomized perturbations on the settings considered

therein. In particular, the improvement in performance of one-simulation algorithms that use certain nor-

malized Hadamard matrix based perturbations, over those that use randomized perturbations was found

to be significant. The SPSA approach to gradient approximation has recently been used in (Bhatnagar

& Kumar, 2004) to compute the optimal policy in infinite-horizon discounted-cost MDPs and in (Bhat-

nagar & Abdulla, 2006) for finding the optimal policy in the case of MDPs under the finite horizon total

cost criterion.

Long run average-cost problems are studied in areas such as communication networks where steady-

state system performance is of interest. This paper is concerned with computing an optimal policy for the

long run average cost, extending the work of (Bhatnagar & Kumar, 2004) in several ways. In (Bhatnagar

& Kumar, 2004), the problem considered was of the discounted cost criterion. Moreover, the action sets

were considered to be compact (non-discrete). Here we consider not just compact action sets but also

those that are discrete (finite). We consider both one and two simulation algorithms that use deterministic

Hadamard matrix based perturbations whereas in (Bhatnagar & Kumar, 2004), only the two simulation

approach using randomized perturbations was considered. We employ an actor-critic approach similar

to (Konda & Borkar, 1999) and (Konda & Tsitsiklis, 2003) with the difference that the actor updates

in our algorithm use suitable SPSA policy gradient estimates. Moreover, the critic updates have an extra

averaging step for enhanced performance. Our algorithms show more than an order of magnitude better

performance over the algorithms of (Konda & Borkar, 1999).

4

The critic used is an estimate of the differential cost function �	��
 � . In the general case, we perform

updation of the critic by simulating transitions out of every state in the MDP state-space
 . The con-

trols belong to the control space � , a possibly infinite set, and are specified by the present iterate of

the (parameterized) policy � . Such an implementation of the critic is amenable to parallelization when

multiple processors are available, each capable of simulating the system transitions. Though the critic

updates are performed synchronously in (Konda & Borkar, 1999), an associated stability test to make

the critic-updates asynchronous was suggested in (Borkar & Meyn, 2000), and that permits therefore

the above-mentioned parallelization. The actor updates in the algorithms proposed in (Konda & Borkar,

1999) converge to the optimal policy using stochastic approximation with ‘reinforcement-signals’ of

varied types. All these signals require actor-specific simulation to be performed that results in a compu-

tational effort of ����� ��� � in each update step of the actor. In contrast, we employ SPSA estimates of the

gradient (as do (Bhatnagar et al., 2003), (Bhatnagar & Kumar, 2004) and (Bhatnagar & Abdulla, 2006))

that do not cause any simulation load specific to the actor. Thus the processors responsible for updating

the actor parameters here need not simulate any transitions of the system. This results in a significant

reduction in the overall computational effort (as is also seen from our experiments) in the case of our

algorithms over those of (Konda & Borkar, 1999).

Estimates of ���������������
 , are stored in a size- �
!� look-up table with an entry for each state �"�
 .

Such a look-up table becomes prohibitive in size for large state-spaces. We also propose variants that

use a smaller, # -dimensional coefficient vector with #%$&$'�
!� for the critic update. This vector is then

used to approximate �	�(��� via a linear approximation architecture, using a feature-vector representation

of state � , denoted)*�(�+� . This is similar to the method of (Tsitsiklis & Van Roy, 1999), but with some

key differences.

The rest of the article is organized as follows: , 2 identifies the setting, notation and a generic form

of the proposed algorithms. In , 3, the Hadamard matrix based construction of deterministic perturbation

sequences is presented. The algorithms are proposed in , 4, , 5 and , 6 respectively, for which the con-

vergence analysis is shown in , 7. The linear approximation method (above) is described in , 8 while , 9
provides the numerical results in the setting of flow control in communication networks. We conclude

5

and identify some future directions in , 10.

2 Framework and General Algorithm

We consider an MDP �.-�/0�0132%45�768�79:9;9;� where decisions are made at instants 132%45�.6<�79:9;9 , using an

associated control-valued process �>=�/0� . Suppose
@?A�868��B5�79:9;9:��C<� is the (finite) state space and �
is the control space. Suppose also that D������FEG� is the set of all feasible controls in state � . LetH ���I�0J��LKM�N���I�OKP�'
Q�0JR�RD������ be the transition probabilities associated with this MDP. An admissible

policy ST2%�.SVU8��S�WX��SZY>�.9;9:9;� with S /\[
^]_`� is one for which S / a �'D�����������1b� �c4d�768�79:9;9;�>�e�f���g
 .

We call Sh2i�cSVU>�0S�WX�0SZY>�79:9:9j� a stationary policy when S / 2k�e�e��1l�F�c45�.6<�.9;9:9j� , i.e., if the policy is

time/stage invariant. For simplicity, we denote using �P2m��� a �b�&�n
���o , a stationary policy. Suppose#p���L/I��J�/I���L/�q W � denotes the one-step transition cost when the current state is ��/r�s
 , the action chosen isJt/r�sD����L/�� and the next state is �+/�q W �s
 . The aim here is to find an admissible policy � that minimizes

the associated infinite horizon average cost u�v , where

u v 2xw;y:z{"|~} 6� �'� {�� W� /�� U #p�(�L/��0� a:� �0�O/�q W �X���
starting from any initial state � U . We assume here that the resulting chain under every stationary policy

is aperiodic, irreducible (and hence also positive recurrent). A weaker assumption requiring that the

resulting chain under every stationary policy be unichain (cf. (Puterman, 1994, Theorem 8.4.3)), viz.

a chain with a single class of recurrent states and a possibly empty set of transient states, would also

suffice. For an MDP under stationary policy � , with steady-state probabilities � v ����� of the resulting

chain, �����s
 (obtained using � v ������2����� � W H �:K<�0� � �0����� v �:KM�) one obtains

utv�2 �� a � W �7vV�����~�� ��� � W H ���I�0� a �OK���#����I��� a �OK������9
The corresponding differential cost function is denoted � v ��
 � and satisfies the Poisson Equation:

u v~� � v ������2 ��� � W H ���I��� a �LKM�7�(#����I��� a �LKM� � � v �;K����N���f���g
e� (1)

6

when action � a is used in state � . A unique solution for (1) can be obtained if we set � v ��� U �r2Ru v for a

prescribed � U �g
 that we call as a reference state. Suppose we define� vV�(���I�t�N�2 ��� � W H ���I��� a �LKM�7�(#����I��� a �OK�� � ���;K����N� (2)

then
� v ��
:�7
�� satisfies, for every stationary policy � ,

� v �(�I��� v ��2�� v ����� � � v �(� U ����������
 .

We consider two types of stationary policies � viz., randomized and deterministic. For a system

operating under a deterministic policy � , the action � a ��D������ is applied when in state � . It is for such

systems that equation (1) holds. In contrast, a randomized stationary policy (RSP) � is denoted (via

abuse of notation) as the vector ��2��(� a �����e��
�� o with each � a 2��(� �a �04���K���� a � , where � �a is the

probability of picking action J � a �sD��(��� . Here D��(�+� is a finite set with �(� a � 6c� elements �.J�Ua �0JVWa �79:9;9:��J {��a � .
In practice, an RSP is applied by generating, when in state � , a D��(�+�N� valued random variable 5���I��� a �
distributed according to the probability mass function (p.m.f.) � a . Note that to generate 5���I��� a � , only� a of the � a � 6 available weights � �a are sufficient. Thus, the vector ¡� a 2¢�(��Wa �0�ZYa �.9;9:9;�0� {��a � o , �f���g
 ,6&�£K\��� a , is sufficient to denote the ‘control’ � a , since �VUa 2'6e� � {*�� � W � �a . For the sake of uniformity

in notation across all policies, we assume that 5���I��� a � is also used when the deterministic policy � is

applied, except that in such a case 5�(���0� a �b2n� a .
Since we will require to generate multiple instances of 5���I��� a � during simulation, a subscript (¤ in 7¥����I��� a �) will identify the particular random variable in a stochastic process �. X¦V��
:�7
��I�8����§ ¨©4 of inde-

pendently generated random variables . Similarly, a superscript (ª in M«¥ ���I��� a �) will identify a particular

stochastic process. We describe simulated transitions of the system operating under a policy � , using the
�� valued random variable ¬V���I�� 5�(�I��� a �0� which is distributed according to the law H �(���0 5���I��� a ���.
 � . Here¬f�(�I�� 5���I�0� a ��� indicates the state to which the system transits due to application of action 5�(�I��� a � when

in state � . With the same connotation as for , we will use subscripts and superscripts for the random

variable ¬ also.

For the reasons explained above, the analogous Poisson equation for an RSP � differs slightly from

(1), and is as follows:

u v&� � v ������2 ��� � W
{*��­ � U � ­a H ���I��J ­a �OK��e®O#p�(���0J ­a �LK�� � � v �;K��0¯e�e�f���s
Q9 (3)

7

As in (1), a unique solution for (3) can be obtained if we set � v ��� U �\2°u v for a prescribed � U �'
 .

Further,
� v �(���I� v � can also be analogously defined.

We explain the mechanism used in the coupled stochastic recursions that we employ. On the faster

timescale, our algorithms use either one or two simulations that are identified by the index ª taking values

in the sets �XB�� or �86<�IB�� , respectively. We use the generic ª to qualify statements that hold for both cases

above. At the end of a given ± steps of each simulation, we update � a once and denote by � a ��§	� the §e� th

update of � a . Here � a ��§	� in general is a vector with � a elements, viz. � a ��§	�²2m����Wa ��§	���.9;9:9:��� { �a ��§	�0� o .

Thus, the policy ����§	� 2³��� W �(§	����� Y �(§	���.9;9:9;�0� � �(§	��� o is a column vector of size ���a � W � a . The two

simulations mentioned above correspond to the system operating under two perturbed policies, ��W<��§	�
and �	Y<��§	� , respectively. The differential-cost estimates, �VWa ��§Z±r� and �tYa ��§Z±l� , of � v8´Iµ ¦>¶ �(�+� and � v>·Nµ ¦>¶ �(�+�
respectively, (see (5) below) corresponding to the above perturbed policies are computed in the course

of updates �(§p�R6c��± to §Z± of the two simulations. We denote the general policy-gradient estimate

as ¸¹ a � v�µ ¦<¶ ���I��� v�µ ¦<¶ �º2»�t¸¹ � a � v¼µ ¦>¶ ���I�I� v�µ ¦>¶ ���.6s�'K��h� a � o . Here, ¸¹ a � v�µ ¦<¶ ���I��� v�µ ¦>¶ � stands for the� a � element vector gradient estimate of
� v�µ ¦<¶ ���I��� v�µ ¦>¶ � w.r.t. � a ��§	� . The policy gradient estimate

depends on the ‘critic’ estimates � «a ��§Z±l� . In particular, we propose forms of ¸¹ a � v�µ ¦>¶ �(���I� v¼µ ¦>¶ � that use

either �tYa ��§Z±l� or both �fWa ��§Z±l� and �tYa �(§Z±l� , respectively (see (9)-(12) below).

A projection operator ½ a ��
 � is used to ensure that the updated actions as given by the algorithms

remain feasible. We use perturbed policies � « �(§	� , obtained from ���(§	� (explained later, see (8)), for

driving recursions (5) below.

We have the following general form for our algorithms: For all �l�g

� a ��§ � 6¾��2P½ a*¿ � a �(§	�Q�FÀ<��§	�	¸¹3a � v�µ ¦>¶ �(�I��� v�µ ¦>¶ ��ÁÂ9 (4)

Since the estimate ¸¹ a � v¼µ ¦>¶ ���I�.
 � above requires critic estimates � «a �(§Z±l�N��6s�h�Ã��C with ªF�T�¾B�� orªº�F�868��B¼� (depending on whether one or two simulations are used), we perform the following ± updates

corresponding to 4Â��¤°��±£�©6 of these estimates: For all �b�s

� «a �(§Z± � ¤ � 6c�Ä2 ��6"�ÆÅX�(§	����� «a �(§Z± � ¤s�� ÅX�(§	�N�Ç#p���I�0 «¦>È5qZ¥ ���I�0� «a ��§	�0���0¬ «¦>È5qZ¥ ���I�0 «¦>È5qZ¥ ���I�0� «a ��§	�0���0�

8

�£� «a;É ��§Z± � ¤g� � � «ÊNËÌ.ÍXÎ8Ï µ a�Ð Ñ ËÌcÍXÎ<Ï µ a(Ð v Ë� µ ¦>¶�¶(¶ ��§Z± � ¤g�0��9 (5)

The precise relationship between ¸¹ a � v�µ ¦>¶ �(���I� v¼µ ¦>¶ � and � «a ��§Z±r� will be made clear as the algorithms

are introduced in , 4- , 6. It was observed in (Bhatnagar et al., 2001b) that SPSA based algorithms in the

setting of simulation optimization improved performance when an ± -step additional averaging as above

is used. The value of ± can be chosen arbitrarily in practice. We use ±p2�6.484 in our experiments. Note

that recursions in (5) are common to all algorithms. These are similar to the adaptive-critic updates in

the average-cost, finite-action setting of (Konda & Borkar, 1999, (3.5)), except that the above ±!� step

averaging is not present in the algorithms in (Konda & Borkar, 1999). All six proposed versions of

algorithm (4)-(5) have differences that pertain to the dissimilarities in the structure of D������ or the gradient

estimate ¸¹ a � v¼µ ¦>¶ �(���I� v¼µ ¦>¶ � of (4).

The requirements on the step-sizes in (4)-(5) are as follows:

ÅX��§	�N�0À>�(§	�rÒ©4d�+�f§�¨©4� ¦ ÅX�(§	��2 � ¦ À>�(§	�b2�ÓÔ� � ¦ ÅX��§	� Y � � ¦ À>�(§	� Y $PÓP� (6)

and À<��§	��2�Õ¼�ÇÅX�(§	����� (7)

respectively.

The extra averaging of the recursion (5) over ± iterations, besides being beneficial for convergence

(cf. (Bhatnagar & Kumar, 2004), (Bhatnagar et al., 2003), (Bhatnagar et al., 2001b)), has an added rel-

evance to any asynchronous implementation involving multiple parallel processors each updating the dif-

ferential cost estimate for a given state. Note that it is sufficient if we choose ± such that ±©ÒnB<Ö whereÖ is the upper bound on inter-processor communication delay (cf. (Konda & Borkar, 1999, Assumption

A5)), since in the recursion in (4), at iteration § , the ‘current’ policy gradient estimate ¸¹ a � v�µ ¦<¶ ���I��� v�µ ¦>¶ �
can still be used rather than the need to use any previous estimates ¸¹ a � v¼µ ¥�¶ ���I��� v�µ ¥�¶ � , 4��p¤»$©§ .

9

3 Construction for Perturbation Sequences × �MØ7Ù�Ú
Perturbation vectors Û a �(§	���������s
���§F¨�4 , used in the perturbed policies �QWa ��§	� and �ZYa ��§	� are obtained

as under. The construction used is as in (Bhatnagar et al., 2003, Section 3). Consider H Ü � as a normalized

Hadamard matrix (a Hadamard matrix is said to be normalized if all the elements of its first row and

column are 6 s) of order Ý a with Ý a ¨Þ� a � 6<�������p
 . Let h
a ��6¾��� h a �OB<�N�79:9;9:� h a �(� a � be any � a columns

other than the first column of H Ü � , and form a new Ý a*ß � a dimensional matrix Ḩ Ü � which has the above

as its columns. Let ¸Û�� H ��� H 2à68�79:9;9:�0Ý a be the Ý a rows of Ḩ Ü � . Now set Û a ��§	�Ã2 ¸Û���§�z�á¼âÂÝ a � 6c� ,��§n¨R4 . The perturbations are thus generated by cycling through the rows of Ḩ Ü � . Matrices H Ü � , withÝ a 2�B ­ � , are systematically constructed as follows:

H Y 2 �ãã� 6ä66ä�&6 �7åå� �

H Y�æ � 2 �ãã� H Y æ �+ç ´ H Y æ ��ç ´
H Y æ �+ç ´ � H Y æ �+ç ´ � åå� �

for è a ÒT6 , respectively.

One-simulation algorithms require Ý a 2�BVéëê ì0í · µ { � q W ¶�î �Q������
 , whereas two-simulation algorithms

require Ý a 2ïBféëê ì�í · {*� î �e�f���g
 (see (Bhatnagar et al., 2003)). In what follows, we consider two

different settings for the action sets D��(�+� viz., compact (non-discrete) action sets and discrete (finite)

action sets, respectively, and devise algorithms for both settings.

4 Algorithms for Compact Action Sets

Suppose D������N�����s
 , are of the form D�������2'ð { �� � W>ñ ò � a ��Å � a�ó . We make the following assumption:

Assumption(A): For all �I�LK��s
Q� ò �sD��(��� , both #p���I� ò �LK�� and H �(��� ò �OK�� are continuously differentiable

in ò .
Let ½ �a ��ô5��2õz�y;ö~�OÅ � a ��z�÷>øù� ò � a �0ô¼�0���0ôk�ûú , be the projection of ô onto the interval ñ ò � a ��Å � a ó ,6s�TKÆ�h� a . Further, for ô£2»��ô W �0ô Y 9:9;9:��ô { � � o �pú {*� , let ½ a �(ô5�~2»�Ç½ÃWa ��ô W ���.9;9:9:�0½ {*�a ��ô { � ��� o . Then

10

½ a ��ô5� denotes the projection of ô©�©ú { � to the set D��(�����b�º��
 . Using the method of , 3, we obtain�Xüº6>� { � -valued vectors Û a ��§	� �2Â�ÇÛ�Wa �(§	���.9;9:9;�IÛ {��a �(§	��� o , ���²�©
Q�0§�¨h4 to construct the two perturbed

policies, �*W>�(§	� and �	Y<��§	� respectively. Here, analogous to � , we have � « �(§	�b2R�(� «W �(§	����� «Y ��§	�N�79:9;9:��� «� ��§	�0� o ,

with � «a ��§	� defined as follows:

� Wa ��§	�ý2 ½ a �(� a ��§	�Q�£þ>Û a �(§	������ Ya ��§	�ý2 ½ a �(� a ��§	� � þ>Û a �(§	����� (8)

respectively. Let the iterates � «a �(§	���e�f����
Q��§ ¨©4 be defined as in (5) with

� «a �(48��2�� «a ��6¾�b2'9:9;9�2�� «a �Ç±£��6¾��2P45�����e��
Q9
Denote �OÛ a ��§	��� � W as

�ÇÛ a ��§	�0� � W 2»ÿ 6Û Wa ��§	� �79:9;9:� 6Û {a ��§	��� o �+�f�e��
Q9
We are now in a position to describe the first two algorithms. We adopt acronyms for all the al-

gorithms in order to avoid expanded descriptions. In the following, ‘ACA’ stands for Algorithms for

Compact Action sets (similar to the notation used by (Bhatnagar & Abdulla, 2006)). The numeral 6 orB at the end of the algorithm name identifies if the algorithm needs 6 or B simulations, respectively.

ACA-1

For all �l�g
 , substitute for the gradient estimate ¸¹ a � v�µ ¦<¶ ���I��� v�µ ¦>¶ � in (4):

¸¹ a � v¼µ ¦>¶ �(���I� v¼µ ¦>¶ ��2 �O�dYa ��§Z±r� � �tYa:É ��§Z±r���þ �OÛ a �(§	��� � W (9)

where for ¤i2h45�.6<�.9;9:9;��±��Ô6 , we perform the recursion (5) for ª�2¢B to compute the critic estimates�dYa ��§Z±r� required above.

ACA-2

For all �l�g
 , we propose a finite-difference policy gradient estimate where

11

¸¹ a � v�µ ¦>¶ �(���I� v¼µ ¦>¶ ��2 �Ç�tYa ��§Z±r� � �dYa É ��§Z±r���Q�n�Ç�fWa �(§Z±l� � �fWa É ��§Z±l�0�B>þ �OÛ a ��§	�0� � W (10)

where for ¤k2R45�.6<�.9;9:9;��±Æ�P6 , we perform recursion (5) for both ª�2�68��B in order to compute �VYa ��§Z±l�
and ��Wa ��§Z±r� , respectively. As stated before, ACA-2 uses two simulations while ACA-1 uses only one.

Next, we present two analogs of this algorithm for finite action sets.

5 Algorithms For Finite Action Sets using RSPs

Suppose D��(�������"�£
 , be finite action sets of the form D��(�+��2h�cJfUa �0JVWa �79:9;9:��J { �a � , where J � a ��4 ��Ks��� a
are feasible actions in state � . We assume:

Assumption (B): The cost functions #����I� ò �OK��N���I�OK��s
Q� ò ��D������ , are bounded.

Let
 a 2'����ôdWc�.9;9:9;�0ô { � � o � ô � ¨n45�+�5K�� �86<�IB¼�.9;9:9;��� a �M�I� {��� � W ô � �T6>� denote the simplex of the prob-

abilities of selecting actions in D��������5�.JfUa �Ã2^�cJVWa �.9;9:9:��J {��a � . We now define projection ½ a [ú { �]_ï
 a ,
such that for any �s�3ú {*� , ½ a ����� is the closest point in
 a to � . Let ¡Û a ��§	� be a vector of �Xüº6<� {�� � valued

perturbations generated in the same manner as the Û a ��§	� used in ACA- ª . We have seen earlier that¡��2Þ�7¡� W ��¡� Y �79:9;9:�8¡� � � o identifies an RSP � completely and that ¡� a ��
 a �e���b�g
 .

Let ¡��Wa �(§	� 2i�(½ a �.¡� a ��§	�!�nþ ¡Û a ��§	�0���e�f� �Þ
�� o and ¡�	Ya �(§	�\2i�Ç½ a �7¡� a �(§	� � þ ¡Û a �(§	���N���f�\�Þ
�� o ,

respectively, denote the perturbed policies. Let

� ¡Û a �(§	��� � W 2�� 6¡Û Wa �(§	� �79:9:9;� 6¡Û { �a ��§	�	� o �
as before. In the following, ‘RPAFA’ stands for Randomized Policy Algorithms over Finite Action sets.

RPAFA-1

Replace � a �(§	� and � a ��§ � 6c� in (4) with ¡� a �(§	� and ¡� a ��§ � 6c� , respectively. As was done in ACA- 6 (cf.

(9)), for all ����
 substitute for ¸¹ a � v�µ ¦<¶ ���I��� v�µ ¦<¶ � of (4) with:

¸¹ a � v�µ ¦<¶ ���I��� v�µ ¦>¶ ��2 �Ç�tYa �(§Z±l� � �tYa;É �(§Z±l�0�þ ¿ ¡Û a �(§	��Á � W (11)

12

where for ¤@2P4d�768�79:9;9:�0±ù�Ã6 , we perform (5) with ª~2ÔB . Note that, as seen earlier in (5), the action taken

in state � i.e. >Y¦>È5qZ¥ ���I���ZYa ��§	�0� is now a D��(�+�N� valued random variable that selects actions according to

the �(� a � 6c��� element p.m.f. �	Ya �(§	� , unlike in ACA-2 where <Y¦<È5qZ¥ ���I���ZYa ��§	��� was the deterministic

action �	Ya �(§	� itself. This therefore results in a different form of the Poisson equation (cf. (3)) that is

tracked by the recursion (5) for a given RSP as explained earlier.

RPAFA-2

Replace � a �(§	� and � a ��§ � 6c� in (4) with ¡� a �(§	� and ¡� a ��§ � 6c� , respectively. Analogous to ACA-2 (cf.

(10)), the policy gradient estimate is:

¸¹ a � v�µ ¦>¶ �(���I� v¼µ ¦>¶ ��2 �Ç�tYa ��§Z±r� � �dYa:É ��§Z±r���Q�n�Ç�fWa �(§Z±l� � �fWa;É ��§Z±l�0�B>þ � ¡Û a ��§	�0� � W (12)

where for ¤x2A45�.6<�.9;9:9;��±��h6 , recursion (5) is performed for both ªT2 68��B . As with RPAFA-1, «¦>È5qZ¥ ���I�0� «a ��§	�0� are also D�������� valued random variables.

6 Algorithms for Finite Action sets using Deterministic Policies

In order to develop the remaining two algorithms for finite action sets, we make some further assumptions

on the structure of D��������Q�f�!�Æ
 used in RPAFA- ª above. Let D������ be the feasible action set such thatD������32 ð { �� � W D � ����� , where D � �(�+� are finite sets �cJ � a ��6c�N��J � a �ÇB8���79:9:9;�0J � a �(� �a �I� and � D � �����.�l2k� �a . An

admissible control � a �sD��������������s
 is such that � �a �sD � ������� 6ù�ÆK��n� a . The additional requirement

is that the convex hull of D������ be the compact set ¡DÂ�����b2�ð {*�� � W>ñ ò � a ��Å � a ó . Without loss of generality, if we

assume that J � a ��6c�ù�TJ � a �OB<�²�^9;9:9	��J � a �Ç� �a � , then in the above ò � a 2ÞJ � a ��6c� and Å � a 2RJ � a �(� �a �N�e�f���g
 ,

respectively. Note that ¡D��(��� qualifies as the feasible action set for state � in algorithms ACA- ª . Though

the feasible action set D������ here is finite just as in RPAFA- ª , the policy ���(§	� used in the algorithm at

each update § is deterministic. A similar idea is used by (Gerencser et al., 1999) where a measurement

based stochastic approximation scheme is applied for a static resource allocation optimization problem.

In the proposed algorithm, the policy iterates � a ��§	� evolve in the convex hull ¡D��(��� to project into

13

which the projection ½ a as used in ACA- ª is employed. Thus, the perturbed deterministic policies at

the §e� th iteration are �*WX�(§	�²2à�(½ a �(� a ��§	�l��þ>Û a ��§	��� , �f�&�©
�� o and �ZY8��§	�&2m�Ç½ a ��� a �(§	� � þ>Û a �(§	��� ,���ù�Æ
b� o , where ½ a [ú { �]_ ¡DÂ����� is such that ½ �a ��� � a ��2�z�y;ö*��z�÷XøV� ò � a ��� � a �N��Å � a �N��6\�PK �'� a . Note

that the policy � « �(§	� to be applied in (5) need not be admissible. It is made so by another projection
½ a ��� «a ��§	�0� i.e. ¦>È5qZ¥ ���I�0� «a ��§	�0� 2
½ a �(� «a ��§	�0� . Here,

½ a ��� «a �(§	���ù2�÷	���^z�y;ö
	��� µ a ¶�� � «a �(§	�Q� J � is the map

into the feasible set D������ of the control � «a ��§	�ù� ¡D������ . If the minimum above is attained at two points,

one of the two is arbitrarily selected. In contrast, ACA- ª algorithms apply ¾¦>ÈdqZ¥º�(�I��� «a �(§	���~2h� «a ��§	�
in recursion (5). The letters ‘DPAFA’ in the following stand for Deterministic Policy Algorithms over

Finite Action sets.

DPAFA-1

Redefine ¬ «¦>ÈdqZ¥ �(�I�� «¦>ÈdqZ¥ �(�I��� «a �(§	���0���+�f§e��¤ Òû45�0ªn2 B¼� in (5) to be independent families of i.i.d.

random variables with distribution H �(���
½ a �(� «a �(§	���N�7
�� with «¦>ÈdqZ¥ �(�I��� «a �(§	���~2
½ a ��� «a ��§	��� as described

above. DPAFA-1 is now the same as ACA-1.

DPAFA-2

This algorithm is similar to ACA-2, using ¬ «¦>È5qZ¥ ��
:�7
�� and «¦>È5qZ¥ ��
:�7
�� as described above, for bothª&2Þ6 and B .
7 Convergence Analysis

We use Assumption (A) first and prove convergence for ACA- ª . The differential cost � v �(�����e�f�&�n
 ,

for an infinite-horizon MDP operating under a stationary deterministic policy � can be obtained as the

unique solution of the following linear system of C equations (i.e., the Poisson equation, also identified

in (1)): � vV���I���tv5��2��dvV�(� U � � �dvf�����b2 �� ��� H ���I�0� a �OK��N�Ç#p���I�0� a �LK�� � �tvV�;K��0��9 (13)

14

From Assumption (A), it is easy to see that #p���I� ò �LK�� and � v �(��� are uniformly bounded functions. More-

over, � v ����� is continuously differentiable in �e�+���b�g
 .

Lemma 1 The iterates � «a �(§	� , satisfy ����� ¦�� U � � «a �(§	�7�5$nÓÔ�+���b�s
e��ª²2Þ6<�IB .
Proof: Let ¸Å>��§	�!2^ÅX��� ¦È�� �N�b§©¨T4 , where � ¦È�� denotes the integer part of ¦È . Then the recursion in (5)

can be written as

� «a �(§ � 6c�Ä2 ��6!� ¸Å¾��§	�0��� «a �(§	� ��¸Å>��§	�N�Ç#p�(���0 «¦ ���I� ¸� «a ��§	�0���0¬ «¦ ���I�0 «¦ ���I� ¸� «a ��§	�0������£� «a É ��§	� � � «Ê ËÌ µ a�Ð Ñ ËÌ µ a�Ð! v Ë� µ ¦<¶�¶�¶ ��§	�0�
where ¸� «a ��§	��2�� «a � � ¦È � � . The above is now analogous to recursion (3.5) of (Konda & Borkar, 1999).

The proof now follows in a similar manner as (Konda & Borkar, 1999, Lemma 6.4). "
Now define �XC8�(§	�I� according to C8�Ç48��2�45�IC8�(§	��2 � ¦ � W­ � U À>�Çèd����§F¨T6 . Let Û a �(1�� �2��OÛ�Wa ��1��N�79:9;9:��Û {*�a ��1��0� o

be defined according to Û a ��1��~2 Û a ��§	� for 1Ã� ñ CM��§	�N��CM��§ � 6c� ó �0§�¨h45���Ã�n
 . Suppose that for any

bounded, continuous and real-valued function #���
 � ,
¡½ �a �$#��(ô5���b2 w;y:zÊ | U � ½ �a ��ô � ¬�#f��ô5�0�e� ô¬ �

for K\2¢6<�79:9:9;��� a �0�"�F
 . Further for any ô32¢�(ô W �.9;9:9;�0ô { � � o , let ¡½ a �(ô5��2�� ¡½ÃWa �(ô W �N�79:9;9:� ¡½ { �a ��ô { � �0� o . For

a given stationary deterministic policy �s2���� a �0����
�� o , suppose% vZ���I�I�t���2 �� ��� H �(�I��� a �OK��N�Ç#p�(���0� a �OK�� � � � �Q�Æ� a É �
where � is any vector �Ç� � �*K��s
���o . The Poisson equation (13) can now be written as

�tvV������2 % vV�(���I�dv5��2 � vV���I�I�dv5�Q�Æ�tvV��� U �N9 (14)

Consider �c1N��§	�I� defined as 1N�Ç48��2³4 , 1N��§	��2 � ¦ � W� � U ¸ÅX�;K��N��§%¨ 6 where ¸Å¾��§	�p2³ÅX� � ¦È � � and the

continuous-time policies ¸���(1��b2Ô���Çè5� when 1l� ñ 1N�Oè5���01N�Çè � 6c�0� . Further, consider the system of ODEs:

for all ����
 , &¸� «a ��1���2�45� (15)&� «a ��1��l2 % v Ë µ /�¶ ���I��� « �(1����Q�Æ� «a ��1��N9 (16)

15

Here ¸��Wa ��1��b2Ô½ a � ¸� a �(1��Q�£þ>Û a ��1��0� and ¸�	Ya ��1��l2Ô½ a � ¸� a ��1�� � þ>Û a �(1���� , respectively for all �b�s
 . Note that

(15) corresponds to a fixed policy ¸� « that is independent of 1 . Thus, (16) can be written as (with a time

invariant ¸� «) &� «a ��1��b2 % v Ë �(���I� « ��1����e�£� «a �(1���� (17)

���Ã�P
 . The ODE (17) is (cf. (Konda & Borkar, 1999, Lemma 6.3)) an asymptotically stable linear

system with � v Ë �����������ù��
 as its unique asymptotically stable equilibrium point. Let ¹ a � v ����� denote

the � a -vector gradient of � v ����� w.r.t. � a . Consider now the ODE:&� a �OC¾�b2 ¡½ a ��� ¹ a � v�µ � ¶ �����Q� ¹ a � v�µ � ¶ �(� U ����2 ¡½ a ��� ¹ a � v�µ � ¶ �(�I��� v�µ � ¶ �0� (18)

for all ���£
 . Let 'õ2��c�p� ¡½ a � ¹ a � v¼µ � ¶ ����� � ¹ a � v�µ � ¶ ��� U ����2T45�e�f�l�£
r� be the set of all fixed points

of (18). Also, given (ùÒÔ4 , let '*)r2��.�p��+
���,' C89 1�9 � ���
� � $-(7� be the set of all policies that are

within a distance (from ' .

Applying standard martingale analysis on (5) using (6) and Gronwall’s inequality upon the ODE

(17), we can see along similar lines as (Bhatnagar & Kumar, 2004, Corollary 4.2),

Lemma 2 For all �b�s
 , ª~2'68��B'w:y:z¦ |Ã} � � «a �(§	�Q�£� v Ë µ ¦>¶ �(�+�.�<2�4 w.p. 1. "
We now note that the slower time-scale recursion (4) can be rewritten as

� a ��§ � 6c��2P½ a ��� a ��§	�e�Æ¸ÅX�(§	�+ 5�(§	��� (19)

where 5��§	� 2�Õ¼��6¾� since À>��§	� 2ÞÕ¼� ¸Å<��§	��� . From (19) and Lemma 2, algorithms ACA- ª can be seen to

asymptotically track the trajectories of the ODE (15)-(16) along the faster timescale �.1N�(§	�I� . One now

needs to show that on the slower timescale, ����§	� converges to ' in the limit as þ&_û4 . We first consider

the case of ACA-2. Define D/.!? ð �a � W D0.<����� as the interior of the space D'2 ð �a � W D������ of all feasible

policies.

Theorem 1 Under Assumption (A), given ¬�Ò�4 , there exists þ U Ò©4 such that for all þÃ�£�(4d�0þ U ó , �c����§	�I�
of Algorithm ACA-2 converges to ' Ê with probability 1.

16

Proof: We assume that �f���s
 , � a 2Ô� , the general case being a minor modification. Fix 6&�nè U ��� .

We may rewrite recursion (4) as follows:

� ­ Éa ��¤ � 6c��2Ô� ­ Éa �(¤g�e�FÀ>�(¤g�	¸¹ ­ Éa � v�µ ¥�¶ �(���I� v¼µ ¥�¶ � � À>�(¤g��= ­ Éa ��¤s����������
Q�Iè U � �868��B¼�.9;9:9:�0�£�
where = ­ Éa ��¤s� represent error terms due to projection ½ ­ Éa . Define 1 ­ Éa ��¤s�r2¢� ¸¹ ­ Éa � v�µ ¥�¶ ���I��� v�µ ¥�¶ � ,
then using (10), we have1 ­ Éa �(¤g�b2 � v ´ µ ¥�¶ ����� � � v ´ µ ¥�¶ �(� U �Q�Æ� v · µ ¥�¶ �����Q�Æ� v · µ ¥�¶ ��� U �B<þ>Û ­ Éa ��¤s� � ª ­ Éa ��¤s���
where ª ­ Éa ��¤s��2ÔÕ¼��6c� by Lemma 2. For a fixed Ý\�32 q , we may write the above iteratively as:

� ­ Éa �(¤ � ÝM�b2P� ­ Éa �(¤g� � ¥�q	Ü � W�4 �Z¥ À>�$5O�61 ­ Éa �$5Ç� � ¥�q	Ü � W�4 �Z¥ À>�$5O�0= ­ Éa �$5O���������s
Q9 (20)

Now using the fact that � v�µ ¥�¶ is �~W w.r.t ���(¤g� , and performing a Taylor series expansion about ���(¤g� ,
we have: 1 ­ Éa ��¤s�õ2 � ¹ ­ Éa � v�µ ¥�¶ �����Q� ¹ ­ Éa � v¼µ ¥�¶ ��� U �� {�7 � W Ð 798� ­ É Û 7a ��¤s�Û ­ Éa �(¤g� ¹ 7a ® � v�µ ¥�¶ ����� � � v�µ ¥r¶ �(� U � ¯ � ���Çþ>��9 (21)

In the above, we assume that � a �(¤g�r��D0.<�����������e��
 and þºÒ�4 is small enough so that � «a ��¤s���sD/.>����� .
For the case of � «a �(¤g�"�sD��(����:<D . ����� , the above would continue to hold except for a constant multiplying

the first RHS term in (21) (cf. Corollary 4.3 of (Bhatnagar & Kumar, 2004)). Now from (20) and (21),

we have

� ­ Éa ��¤ � Ý��õ2 � ­ Éa ��¤s�Q� ¥rq�Ü � W�4 �Z¥ À>�;5Ç� ¹ ­ Éa ® � v¼µ 4 ¶ ����� � � v�µ 4 ¶ �(� U � ¯
�£À>��¤s� ¥�q	Ü � W�4 �Z¥ {�7 � W Ð 7<8� ­ É À>�$5O�À>�(¤g� Û 7a �;5Ç�Û ­ Éa �$5O� ¹ 7a ® � v�µ 4 ¶ �(��� � � v�µ 4 ¶ ��� U � ¯
� ¥�q	Ü � W�4 �Z¥ À<�$5Ç��= ­ Éa �$5Ç� � ���Çþ>��9 (22)

Here we take ÝÂ2ÔB éëê ì�í · { î . It can now be seen using Corollary 2.3 of (Bhatnagar et al., 2003) that====== ¥�q	Ü � W�4 �Z¥ {�­ � W Ð ­ 8� ­ É À>�;5Ç�À>��¤s� Û ­a �;5Ç�Û ­ Éa �;5Ç� ¹ ­a ® � v�µ 4 ¶ �(�+� � � v�µ 4 ¶ �(� U � ¯ ====== ¥ |~}_ 459 (23)

17

Therefore, (22) is equivalent in an asymptotic sense to the recursion

� ­ Éa ��§ � 6c��2Ô½ ­ Éa ¿ � ­ Éa �(§	�*�FÀ>�(§	� ¿ ¹ ­ Éa � v�µ ¦>¶ �(��� � ¹ ­ Éa � v�µ ¦<¶ ��� U ��ÁVÁÃ� (24)

except for an additional error term which however is ���Çþ>� . It can now be seen, as in pp. 191-194 of

(Kushner & Clark, 1978), that the above is a discretization of the projected ODE (18). Finally, note that' is an asymptotically stable attractor set for the ODE (18) with � a ��� � vV���I���tv5� itself serving as the

associated strict Liapunov function. The claim now follows. "
With the same arguments, the above theorem also holds for RPAFA- B , the difference being that since

randomized policies are now used, the Poisson equation tracked on the faster scale by a given randomized

policy is (3) instead of (1) as above. The modifications required in the proof for the other algorithms are

identified in the following:

ACA-1

Using the gradient estimate in (9), we may modify the proof in Theorem 1 with1 ­ Éa ��§	�b2Þ� �Ç� v>·Nµ ¦>¶ ����� � � v>·Nµ ¦>¶ �(� U ���þ>Û ­ Éa ��§	� � ª ­ Éa �(§	�
with ª ­ Éa ��§	�b2�Õ¼��6¾� . A Taylor series expansion on 1 ­ Éa ��§	� yields:1 ­ Éa �(§	�õ2 � �Ç� v�µ ¦>¶ �(�+� � � v�µ ¦>¶ �(� U ���þ>Û ­ Éa �(§	� � ¹ ­ Éa � v�µ ¦>¶ �(���Q� ¹ ­ Éa � v�µ ¦<¶ ��� U �

� {�7 � W Ð 7<8� ­ É Û 7a ��§	�Û ­ Éa ��§	� ¹ 7a ® � v�µ ¦>¶ �(�+� � � v�µ ¦>¶ �(� U � ¯ � ���Çþ>�
(25)

which is similar to (21), except for the additional first term in the RHS above. Note that ÝÂ2�B�éëê ì�í · { q W î
here. A similar argument as the one using (23) holds. Further, using Corollary 2.6 of (Bhatnagar et al.,

2003), we obtain ===== ¥�q	Ü � W�4 �	¥ À>�$5O�À>�(¤g� 6Û ­ Éa �$5O� ® � v�µ 4 ¶ ����� � � v¼µ 4 ¶ ��� U � ¯ ===== ¥ |~}_ 45� (26)

as well. This makes the algorithm equivalent to (24) with asymptotically diminishing error terms and the

result follows. With the changes mentioned earlier, Theorem 1 can be seen to hold for RPAFA-1 as well.

18

DPAFA-1

Using the properties of

½ ­ Éa , we see that �	Ya �(§	��2%�(� a ��§	� � þ a ��§	�0Û a �(§	��� o �Q�f����
 , where the termsþ a ��§	��2��(þ �a ��§	�N� 6²�ÆK��©��� o are such that

4Â�'� þ �a ��§	�.�¼�Þ¸þÃ$ÔÓP����§ ¨©4d�����s
Q�76&�£K��n�Æ�
for some ¸þ�ÒÔ4 that is a function of the ‘fineness’ of the grid. We now perform Taylor series expansion

about ���(§	� as in (25) to obtain� v · µ ¦>¶ ����� � � v · µ ¦>¶ �(� U �þ>Û ­ Éa ��§	� 2 � v�µ ¦>¶ ����� � � v�µ ¦>¶ ��� U �þ>Û ­ Éa ��§	� � þ ­ Éa ��§	�þ ¿ ¹ ­ Éa � v�µ ¦>¶ �(��� � ¹ ­ Éa � v�µ ¦<¶ ��� U ��Á
� {�7 � W Ð 7<8� ­ É þ 7a �(§	�þ Û 7a ��§	�Û ­ Éa �(§	� ¹ ­ Éa ® � v�µ ¦<¶ ����� � � v�µ ¦>¶ ��� U � ¯ � ���(þ>� (27)

We use the limit in (26) for the first term in the RHS above. For è?>2�è U , note that===== ¥�q	Ü � W�4 �Z¥ þ ­a �$5O�þ À>�$5O�À>�(¤g� Û ­a �$5O�Û ­ Éa �$5O� ¹ ­a �O� v¼µ 4 ¶ ����� � � v�µ 4 ¶ �(� U ��� ===== ¥ |~} Ð�@ æ� µ 4 ¶ | @�t_ 459 (28)

In the above, the fact that A µ 4 ¶A µ ¥r¶ _ý6 as ¤ _õÓP�B5 ���.¤F��¤ � 6<�79:9:9;�0¤ � Ý���6<� is used. Note that

as the partition is made ‘finer’, þ ­a �;5Ç�Â_ þ , the above reduces to the case of (22). The algorithm will

then converge to a local minimum in the limit as þ_ 4 . For a fixed þgÒR4 , the algorithm can be seen

to converge either to the local minimum or a point in its neighborhood. A similar analysis holds for

DPAFA- B .
8 A Variant of the TD(0) Algorithm

We propose a variant of the two-timescale TD(0) algorithm of (Konda & Tsitsiklis, 2003). Here we

approximate the differential cost �	��
 � using a linear approximation architecture (cf. (Bertsekas & Tsit-

siklis, 1996) and (Tsitsiklis & Van Roy, 1997)) as ¸�Z�(����2û)*����� o�C , where C ,)*�������RúED for some#i¨Þ6 . Here,)*����� is called the feature vector of state � , (see (Tsitsiklis & Van Roy, 1997), (Tsitsiklis

& Van Roy, 1999) and (Konda & Tsitsiklis, 2003)). We have the following recursion in place of (5):������
 ,C «¦ È¼qZ¥ � q a q W 2 C «¦ ÈdqZ¥ � q a � ÅX��§	� ® #����I��� «a �(§	���0¬ «¦>È5qZ¥ ���I�0 «¦>È5qZ¥ ���I�0� «a ��§	�0���0�
19

�Ô¸� «¦ È5qZ¥ � q a �(¬ «¦>È5qZ¥ ���I�0� «a ��§	�0���Q� ¸� «¦ È¼qZ¥ � q a ��� U �e� ¸� «¦ È5qZ¥ � q a ����� Á)*�(�+� (29)

for 6º�P¤%�Ô± and ¸±©2T±lC . The §e� th policy update is performed using ¸� «¦ È ������2')*����� o C¼«¦ È �Q�f�l�F

in place of � «¦>È ����� in recursion (4) for all algorithms.

Note that in (29), the states �~2k6<��B5�79:9;9:��C are thus sampled cyclically, one after another. Thus, C
updations of the vector C « would be performed before the algorithm visits state � again, and C.± updations

would be performed between two consecutive updates of the policy ���(§	� using (4). Such a method

corresponds to the implementation of the analogous ‘critic’ recursion (5) in the previous six algorithms.

However, the recursion in (29) requires less memory due to the use of a #p� dimensional coefficient

vector C « in place of a size C vector � « in (5), where typically #GF C .
Note that in visiting states cyclically (in a given lexicographic order), we are sampling the state space

with a distribution that is not the same as the stationary distribution imposed by policy � « ��§	� in (29), as

is asserted by (Bertsekas & Tsitsiklis, 1996, Section 6.3) and (Tsitsiklis & Van Roy, 1997, Section 9).

Nevertheless, the method is good in practice as borne out by the simulation results.

We give an outline of the theoretical impediments in proving convergence for (29). Consider anC ß # matrix H where) oa �e�f���s
 are the rows. Just as in (Tsitsiklis & Van Roy, 1997) and (Tsitsiklis

& Van Roy, 1999), H is assumed to have full column rank, a requirement implying that none of the

features are correlated. Using Lemma 4 of (Tsitsiklis & Van Roy, 1999) with appropriate modifications,

we have to establish that the (vector) linear ODE&C « ��1��l2 6C H oJI « H C « �(1�� � 6C H oLK « (30)

is asymptotically stable, where I « and K « are C ß C and C ß 6 matrices, respectively, used in the ‘exact’

critic ODE (cf. (16)) &� « ��1��b2 I�« � « ��1�� � KÃ« (31)

Here, using (13), we see that I « 2P½ v Ë µ ¦>¶ �,M&�NM U where M U �ÇèV��� U ��2Þ6 for 6&�nè3�nC and 4 elsewhere

whereas K «a 2 �Ô�� � W H �(���0� «a �LKM��#p�(���0� «a �OK��N�e�����Æ
 . Using (Perko, 1998, Theorem 2, pp.56), I « will

have negative real parts in all its eigen values by virtue of the asymptotic stability of (31) (see Lemma

6.3 of (Konda & Borkar, 1999) for a proof of asymptotic stability of (31)). However, I « need not be

20

negative definite in general, which would have been a sufficient condition to render (30) asymptotically

stable, since then H o I « H would also be negative definite. As a result, (29) cannot be guaranteed to

track an asymptotically stable ODE for all policies � « ��§	� . However, as already mentioned, the above

algorithm shows good numerical performance on our setting.

9 Numerical Experiments

9.1 Setting and Parameters

We consider a continuous time queuing model for flow control in communication networks as in (Bhat-

nagar et al., 2001a). A single bottleneck node is fed with two arrival streams, one an uncontrolled

Poisson stream and the other a controlled Poisson process. Service times are assumed i.i.d. with ex-

ponential distribution. We assume that the node has a buffer size K $ Ó . Given a constant OàÒ 4 ,
we assume that the continuous-time queue length process �c� / ��1ºÒ^45� at the node is observed every T

instants and on the basis of this information the controlled source tunes the rate at which it sends packets

so as to minimize a certain cost. Suppose � ¦ denotes the queue length observed at time §PO!��§F¨P4 . The

controlled source thus sends packets according to a Poisson process with rate u A �(�7¦5� during the time

interval ñ §PO!�.�(§ � 6¾�QO � . The rate is then changed to u A �(�.¦>q W � at instant ��§ � 6c�6O upon observation of

state �7¦<q W - we assume for simplicity that there is no feedback delay. The aim then is to find a stationary

optimal rate allocation policy that minimizes the associated infinite horizon average cost. We compare

performance of the algorithms in this setting.

Initially, we choose K 2SR>4 and take the compact action set D������ , �����s
 (where u A �(���ù�£D��(�+�) to

be the interval ñ 459 4�R5��Td9UR ó for the algorithms ACA- ª . In the finite action setting, the algorithms RPAFA- ª
compute the optimal stationary randomized policy over the discrete action set, D������N�e���²�n
 , consist-

ing of evenly spaced values within the action set for ACA- ª . Thus, for each state � , D��(��� is the set�c459 4�R5�7689;69V8B	R5��B59 B�WXR¼�ZY59 YX[�WXR¼��Td9 R¼� and the probability of applying action J ­a �04Ô�%èR�\T is obtained

from the vector ��� Ua �0� Wa �.9;9:9:���P]a � , where � ­a ¨�4d�+�Vè and �] ­ � U � ­a 2�6 . For DPAFA- ª , all deterministic

21

policies � , when applied, belong to a similar discrete action set as RPAFA- ª , i.e.,
½Â�(� a ��2�u A �����r�F�c4d9 4�R¼�.6<9:6<V8B�R¼�IB¼9�B�WXR¼��Y59 YX[�W�R¼��T59 R¼�<�f�f���g
Æ2R�c4d�76<�.9;9:9:� K �>9
The uncontrolled traffic rate u
 is chosen as 459�B and the service rate S for incoming packets is set toB¼9 4 . For a system operating under a stationary policy � , we use the cost function

#��(�7¦f�0� 7 Ì ���7¦>q W ��2^� �.¦>q W � K B �j9
Note that while the source rate chosen, � 7 Ì , does not directly enter into the cost function above, it has an

impact on the queue length � ¦>q W observed O seconds later, which in turn affects the cost. A cost function

of this type is useful in cases where the goal is to simultaneously maximize throughput and minimize the

delay in the system.

The value of þ needed in (4) is set to 4d9;6 . We arbitrarily set the initial policy as ��� a �(4M��2�B59 B�WXR , �f���
�� o for ACA- ª and DPAFA- ª and the initial stationary randomized policy to the uniform distribution��� ­a �Ç48��2�459�B¼�b4Â�Pè3�^TM� o for each state �b�s
 for RPAFA- ª . The value of ± in all algorithms is taken

to be 6c4<4 and the reference state (in the algorithms) � U is B	R .
In order to test for convergence of the ACA- ª and DPAFA- ª algorithms, we measured a quantity_ ª¾ªc¦ at policy update § in the following manner:_ ª¾ª ¦ 2 z�÷Xøa ��� Ð Wa` ­ `cb0U � � a ��§	�Q�F� a ��§g�Æè5�7�

where ���(§	� is the policy obtained from the § -th update. Similarly, convergence for the RPAFA- ª algo-

rithms was measured using _ ªcªc¦\2 z�÷>øa ��� Ð Wd` ­ `eb�U�fggh]�� � U ��� �a ��§	�Q�F� �a ��§g�Æè5��� Y 9
The step-size sequences �¾À>��§	��� and �¾Å>��§	�I� needed in (4)-(5) were chosen as

À>�(4M��2�Å>�(48��2R6<��À>��§	��2 6§ ��ÅX�(§	��2 6§ YaiZj �+�f§�¨T6<9
9.2 Simulation Results

We stop algorithms ACA- ª and DPAFA- ª when _ ª¾ª¾¦©��459:6 . This is achieved within §Ô2 B59 B ß 6.4 j
policy updates for both ACA- ª and DPAFA- ª . Note that for the given settings, maximum possible _ ª¾ª<¦

22

is Tt9 T�R . In Figure 1, we plot the converged rates for Om2kR¼�76c4 and 69R respectively for ACA-2. We

observe that for given O , the source rates are inversely related to the queue length values since the cost

function imposes a high penalty for states away from l Y . Further, the difference between the highest and

lowest rates decreases as O increases since for lower values of O , the controller has better control over

the system dynamics than when O is large.

In Figure 2, we show the convergence plot for the source rates corresponding to states 4d�76mR¼��B�R¼�ZY�R
and R<4 for ACA-2 with OÔ2nR . In Figure 3, we plot the source rates with highest probability of selection

as given by the converged randomized policy computed by RPAFA-2 for O�2nR5�76.4 and 6mR respectively.

The value of _ ª¾ªc¦��Ô4d9;6 is achieved within 689 Y ß 6.4] policy updates for both RPAFA- 6 and RPAFA- B .
In Figure 4, we show the convergence plot for the probability of selection of source rates corresponding

to state B	R for RPAFA- B with Oi2oR . In Figure 5 we plot the converged rates for OG2pR5�76c4 and69R respectively for DPAFA- B . Similar behaviour was observed in the case of algorithms that use one

simulation.

We also compute the optimal policy for the case where there are multiple sources feeding the bot-

tleneck node. In a simulation where three controlled sources feed the node instead of one, Figure 6

depicts the optimal policy of one among the sources, computed using ACA- B . The action sets D������ for

all three sources are taken as ñ 4d9 4d69R5�76<9 [ó . Figure 7 plots the net arrival rate (from all three sources) into

the bottleneck node. This rate, being the sum of contributions from each of the sources, takes values in

ñ 4d9 4	T�R¼�aR¼9 T ó . The individual source rates show here a trend that is similar to the single-source case, but

the policy graph obtained is not as smooth. This is because the algorithm cannot detect contributions to

the net source rate from individual sources. However, as expected, the plot for the net source rate (sum

of the source rates from all three sources in an interval) in Figure 7, is similar to that of the single-source

case (Figure 1).

The optimal differential-cost function �Pq<����� , obtained using the converged policies, is shown in

Figures 8, 9 and 10 using algorithms ACA- B , RPAFA- B and DPAFA- B respectively, for O^2rR¼�.6.4 and69R in each. The function is computed as follows: After convergence of the policy vector in (4), the inner

recursion (5) is run with ÅX��§	��2 W¦ , for B ß 6c4] iterations using source rates obtained from the converged

23

policy �Jq found earlier. The �Pq curves for RPAFA-2 and DPAFA-2 have higher values than ACA-2

because of the significantly broader range of actions using which the latter algorithm operates.

The long run average costs computed using the converged policies of all three algorithm types, for

three values of T, are indicated in Table 1. Note that the average costs for the discrete action setting are

higher than those for the compact action case, again due to the wider range of actions in the compact

action case. Further, among the algorithms with discrete action sets, DPAFA- ª algorithms have lower

average costs compared to RPAFA- ª .
Next we compare the performance of algorithms DPAFA- ª and RPAFA- ª with the average-cost

actor-critic policy iteration algorithms given by (Konda & Borkar, 1999). In Table 2, AC-4, AC-5,

and AC-6 stand for the relevant algorithms 4, 5 and 6 respectively, of (Konda & Borkar, 1999). The

critic recursion employed for all the (above) three algorithms is (32) which resembles (5) except that

its estimates �	�(§	� approximate the differential-cost function for the policy estimate ����§	� rather than

the perturbed policies � « �(§	� and do not perform the additional ±�� step averaging. Also, the ���(§	� are

randomized policies in AC- T , AC- R , and AC- V , respectively. The actor recursions vary for each algo-

rithm, they are (33) for AC-4, (34) for AC-5 and (35) for AC-6, respectively. In these recursions, _ 4 a is

an � a � dimensional unit vector with 6 in the 5�� th place and the
�� valued random variable
¬¼¦Z���I��J 4 a �
represents the state to which the system transits when action J 4 a is taken in state � . Note that algorithms

AC-5 and AC-6 require apriori choices of certain parameters used in the policy updates. In particular,

AC-5 (cf. (34)) needs a zero-mean noise required to push the estimates away from the boundary of the

simplex - s 4a - which in this case is chosen to be the uniform distribution D����!459UR¼��459UR<� . Simulation re-

sults for AC-5 under a somewhat different noise condition have been presented by (Borkar & Konda,

2004) for the discounted cost case. Similarly, AC-6 operates by sampling the discrete action set using a

Boltzmann distribution scheme in which the inverse-temperature weights, � 4a ��§	� , represent the policy. In

this experiment, these weights are projected to within ñ �&6.4d9 4d�76.4d9 4 ó via the operator ½ .

� a ��§ � 6¾�Ä2 ��6!�£Å>��§	���0� a ��§	� � ÅX�(§	�N�(#����I�� .¦V���I��� a �(§	�����0¬<¦Z�(���0 7¦V���I�0� a ��§	���0����Æ� a:É �(§	� � � Ê Ì µ a(Ð Ñ Ì µ a(Ð v � µ ¦>¶�¶(¶ ��§	��� (32)

24

¡� a �(§ � 6¾� 2 ¡½��7¡� a �(§	� � À>��§	� {��� 4 � W �Ç#p�(���0J U a �
¬ ¦ �(�I��J U a ���Q�£#p�(�I��J 4 a �
¬ ¦ ���I��J 4 a �0�� ��tÊ Ì µ a(Ð
 É� ¶ ��§Z±r�*�£� tÊ Ì µ a(Ð
�u� ¶ ��§Z±r��� _ 4 a � (33)

¡� a ��§ � 6¾�Ä2 ¡½��7¡� a ��§	� � À>��§	� {��� 4 � W �M�Ç� a:É ��§Z±r� � � a �(§Z±l�Q�£#p�(�I��J 4 a �
¬<¦V�(�I��J 4 a ����£� tÊ Ì µ a(Ð
�u� ¶ ��§Z±r���>¡� 4a � s 4a ��§	�I� _ 4 a � (34)

� a ��§ � 6¾��2P½�� {��� 4 � W � 4a ��§	� � À>��§	�7�Ç� a É ��§Z±r� � � a �(§Z±l�Q�£#p�(�I��J 4 a �
¬ ¦ �(�I��J 4 a ���e�£� tÊ Ì µ a(Ð
mu� ¶ ��§Z±r��� _ 4 a � (35)

We compute certain steady-state performance metrics for comparison. We denote ½�� ñ l Y ��68� l Y � 6 ó �
as the stationary probability of the queue being in the states �vl Y �'68�	l Y ��l Y � 6>� . Also, wZY indicates

the variance of the queue size about the mean queue length
� ñ �¾¦ ó , given that the system is operating

under the converged policy. The quantity _ ª¾ªX¦ is also tabulated. Note that the maximum possible _ ª¾ªX¦
in the discrete action setting is x �j6M� � �¾�©6M�d2�6<9 Td6<T . The varying number of policy updates for each

algorithm is justified as follows: we run AC- ª , ª32yTd�ZR5��V for ± ß 6.4] 2 6.4�z updates, so as to match

RPAFA-1 in the number of function evaluations. For the same reason, RPAFA-2 (resp. DPAFA-2) is run

for half the number of policy updates as RPAFA-1 (resp. DPAFA-1), resulting in RPAFA-1 and RPAFA-

2 (resp. DPAFA-1 and DPAFA-2) taking roughly the same time to perform the prescribed number of

policy updates.

It is observed that both DPAFA- ª and RPAFA- ª display lower average cost (uLq) than the three AC- ª
algorithms, although the value of _ ª¾ª ¦ is lower (in fact, �T6.4 � Y) for the latter algorithms. As borne out in

the earlier results (cf. Table 1), DPAFA- ª performs better than RPAFA- ª . The computation times shown

are measured on a Pentium III computer. Though comparable in the number of function evaluations and

simulation of the critic recursion (32), the three AC- ª algorithms take more than an order of magnitude

time than all our algorithms. This difference is contributed to by the additional simulation effort needed

in the policy update step of the AC- ª algorithms, i.e., in simulating the
¬�¦V��
:�7
�� terms in each one of (33),

(34) and (35), respectively. Note that the w	Y values obtained using AC- T and AC- R are comparable to

the values obtained using our algorithms. However, this is mainly because the mean queue lengths in

our algorithms are higher as these are closer to their target means than those of the AC- ª algorithms.

25

Inspite of the above, AC- V has a significantly higher w	Y (as compared to our algorithms). Moreover, our

algorithms show significantly better performance in terms of all other performance metrics described.

Next, we increase the size of the state space and use the O�Ö��(48� variant of ACA-2. Table 3 indi-

cates, for the K 2{R>484 case, the average costs obtained after 500 updates of the policy vector, using

a polynomial function approximation of order #k�Ô6 to the differential-cost i.e.,) ­ �����²2 ÿ �	�F� U� U � ­ ,4s�'è �R#@�n6 . The times required for each algorithm are also indicated. The computation times are

seen to be roughly linear in # but in general higher than ‘exact’ ACA-2 since the function-approximation

procedure is computationally intensive. In particular, every step of the critic’s computation (cf. (29)) in-

volves a size- # vector addition and dot-product on top of the simulation effort required in simulating

transitions out of each state. The advantage of the approximation method, however, lies in the diminished

storage requirement. Since the policy vector is also of size K , differential-cost function approximation

operates using roughly one-third of the memory space required for the ‘exact’ algorithms.

Using #x2oT and K 2 B<4<484 , R>4<484 and 6c45��4<4<4 , respectively, the average cost obtained using

polynomial approximation of differential-cost in ACA-2 is indicated in Table 4. This is compared with

the cost obtained using ‘exact’ ACA-2. The average cost in these cases is found to be higher, since the

policy obtained uses only approximations of the � function for gradient-finding. The number of iterations

and time required for convergence of all the algorithms, when implemented using the approximation

method with #»2|T and K 2nR<4 , is shown in Table 5.

10 Conclusions

In this paper we developed two timescale gradient search based actor-critic algorithms for solving infinite

horizon MDPs with finite state space under the average cost criterion. The action spaces considered were

both compact and discrete action sets, respectively. All our algorithms update the actor recursion on

the slower timescale using appropriate SPSA based policy gradient estimates. On the faster timescale,

the differential cost function values for perturbed policies were estimated with an additional ± -step

averaging. The algorithms were theoretically shown to converge to a locally optimal policy. A memory

efficient implementation of the critic recursion using off-line TD(0) learning was also discussed. We

26

showed numerical experiments using a continuous time queueing model for rate based flow control and

compared the performance of the algorithms for the discrete action case with those of (Konda & Borkar,

1999). We observed that our algorithms show almost an order of magnitude better performance than the

algorithms of (Konda & Borkar, 1999).

Using simulation-based algorithms with similar coupled stochastic approximation as (4)-(5) it would

be possible to implement the value iteration algorithm of DP (cf. (Bertsekas, 1995, section 8.2)) as well.

The fast convergence of the proposed algorithms in this work could be theoretically established using

rate-of-convergence studies of SPSA-based gradient estimates vis-a-vis actor-critic algorithms that use

other policy gradient methods as of (Konda & Borkar, 1999). In this context, further improvement

in performance of the proposed algorithms can be expected by using efficient simulation-based higher

order SPSA algorithms that estimate the Hessian in addition to the gradient along the lines of (Bhatnagar,

2005). Also, in (29) a strict lexicographic sampling is not necessary. Moreover, the order of states need

not be stored by the (distributed) critic, that would result in a promising implementation more in line with

the bounded rationality assumption of agents performing policy updates in an asynchronous manner.

References

Bertsekas, D. 1995. Dynamic Programming and Optimal Control, Volume I. Belmont, MA: Athena

Scientific.

Bertsekas, D.P., & Tsitsiklis, J.N. 1996. Neuro-Dynamic Programming. Belmont, MA: Athena Scien-

tific.

Bhatnagar, S. 2005. Adaptive multivariate three–timescale stochastic approximation algorithms for sim-

ulation based optimization. ACM Transactions on Modeling and Computer Simulation, 15(1), 74–107.

Bhatnagar, S., & Abdulla, M.S. 2006. An Actor-Critic Algorithm for Finite Horizon Markov Decision

Processes. Submitted for initial review, IEEE CDC06.

Bhatnagar, S., & Kumar, S. 2004. A Simultaneous Perturbation Stochastic Approximation–Based Actor–

27

Critic Algorithm for Markov Decision Processes. IEEE Transactions on Automatic Control, 49(4),

592–598.

Bhatnagar, S., Fu, M.C., Marcus, S.I., & Fard, P.J. 2001a. Optimal structured feedback policies for ABR

flow control using two–timescale SPSA. IEEE/ACM Transactions on Networking, 9(4), 479–491.

Bhatnagar, S., Fu, M.C., Marcus, S.I., & Bhatnagar, S. 2001b. Two timescale algorithms for simulation

optimization of hidden Markov models. IIE Transactions (Pritsker special issue on simulation), 3,

245–258.

Bhatnagar, S., Fu, M.C., Marcus, S.I., & Wang, I-J. 2003. Two–timescale simultaneous perturbation

stochastic approximation using deterministic perturbation sequences. ACM Transactions on Modeling

and Computer Simulation, 13(4), 180–209.

Borkar, V.S., & Konda, V.R. 2004. Actor–critic algorithm as multi–time scale stochastic approximation.

Sadhana, 22, 525–543.

Borkar, V.S., & Meyn, S.P. 2000. The ODE method for convergence of stochastic approximation and

reinforcement learning. SIAM Journal on Control and Optimization, 38(2), 447–469.

Gerencser, L., Hill, S.D., & Vago, Z. 1999. Optimization over discrete sets via SPSA. Pages 1791–1794

of: Proceedings of the 38th IEEE Conference on Decision and Control–CDC99, Phoenix, Arizona,

USA.

Konda, V.R., & Borkar, V.S. 1999. Actor–Critic Type Learning Algorithms for Markov Decision Pro-

cesses. SIAM Journal on Control and Optimization, 38(1), 94–123.

Konda, V.R., & Tsitsiklis, J.N. 2003. Actor–Critic Algorithms. SIAM Journal on Control and Optimiza-

tion, 42(4), 1143–1166.

Kushner, H.J., & Clark, D.S. 1978. Stochastic Approximation Methods for Constrained and Uncon-

strained Systems. New York: Springer-Verlag.

28

Perko, L. 1998. Differential Equations and Dynamical Systems, 2nd ed., Texts in Applied Mathematics,

Vol.7. New York: Springer Verlag.

Puterman, M.L. 1994. Markov Decision Processes: Discrete Stochastic Dynamic Programming. New

York: John Wiley.

Spall, James C. 1992. Multivariate Stochastic approximation using a simultaneous perturbation gradient

approximation. IEEE Transactions on Automatic Control, 37(1), 332–341.

Spall, James C. 1997. A One–Measurement Form of Simultaneous Perturbation Stochastic Approxima-

tion. Automatica, 33(1), 109–112.

Tsitsiklis, J.N., & Van Roy, B. 1997. An Analysis of Temporal–Difference Learning with Function

Approximation. IEEE Transactions on Automatic Control, 42(5), 674–690.

Tsitsiklis, J.N., & Van Roy, B. 1999. Average Cost Temporal–Difference Learning. Automatica, 35(11),

1799–1808.

Van Roy, B. 2001. Handbook of Markov Decision Processes: Methods and Applications. In: E. Fein-

berg and A. Shwartz (ed), Neuro–Dynamic Programming: Overview and Recent Trends. Dordrecht:

Kluwer International.

29

11 Tables

Algorithm }J~ (T=5s) }�~ (T=10s) }�~ (T=15s)

ACA-2 3.98 5.08 6.18

ACA-1 4.0 5.09 6.17

DPAFA-2 4.58 5.95 7.38

DPAFA-1 4.88 5.96 7.38

RPAFA-2 5.68 6.29 9.48

RPAFA-1 5.62 7.17 9.03

Table 1: Average Cost }�~ as computed by the proposed algorithms

Metric/Algorithm DPAFA-2 DPAFA-1 RPAFA-2 RPAFA-1 AC4 AC5 AC6�
policy updates ���n����� ����� ���-����� ����� ����� ����� �����}J~ 4.87 4.88 5.69 5.57 11.29 9.90 11.72�?�d�Q� ��� ��� � �,� �9��� 0.22 0.22 .18 .18 .04 .07 .06�,� ��� � 23.2 23.2 22.1 23.0 13.7 15.0 14.6� � 41.1 41.42 46.55 42.45 40.54 40.50 73.02

Time in seconds 376 402 648 653 15932 12093 16111����� .001 0.025 .01 .15 �����e� � � ���c� � �����c� �
Table 2: Comparison of DPAFA- � and RPAFA- � with Actor-Critic Policy Iteration

30

Metric/Polynomial order Exact 3 4 5 6 7¡ ~ 5.68 16.0 14.7 13.8 18.4 18.4

Time in seconds 176 175 190 204 211 216

Table 3:
¡ ~ using Differential-Cost Approximation for ¢G£¤�����

¢ }L~ (Look-up Table) }�~ (¥¦£¨§)
2000 6.3 8.7

5000 7.5 29.1

10000 8.3 60.1

Table 4: }�~ using © -approximation for large ¢ and ¥¦£¨§

Algorithm
�

Iterations Time in seconds }ª~
RPAFA-1 14500 586 10.7

RPAFA-2 1620 135 10.6

DPAFA-1 9550 406 9.7

DPAFA-2 750 70 6.9

ACA-1 9300 384 8.14

ACA-2 700 79 5.4

Table 5: Comparison of Convergence using © -approximation for ¢G£¤��� and ¥¦£¨§
31

12 Figures

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 5 10 15 20 25 30 35 40 45 50

S
ou

rc
e

R
at

e

States

ComSPAC-2: Converged Policies

T=5s
T=10s
T=15s

Figure 1: Converged Policy computed by ACA-2

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 100 200 300 400 500 600 700 800 900 1000

S
ou

rc
e

R
at

es
 fo

r S
ta

te
s

Iterations

Convergence of Policy for ComSPAC-2

0
15
25
35
50

Figure 2: Convergence Behaviour for ACA-2

32

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 5 10 15 20 25 30 35 40 45 50

S
ou

rc
e

R
at

e

States

Optimal Policy

T=5s
T=10s
T=15s

Figure 3: Randomized Stationary Policy computed using RPAFA-2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000 6000

P
ro

ba
bi

lit
ie

s
of

 S
ou

rc
e

R
at

e
Le

ve
ls

Iterations

Convergence of Policy in DisSPAC-2 for state 25

rate=0.05
=1.1625

=2.275
=3.3875

=4.5

Figure 4: Convergence Behaviour for RPAFA-2

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 5 10 15 20 25 30 35 40 45 50

S
ou

rc
e

R
at

es

States

DFASPAC-2 Optimal Policies

T=5s
T=10s
T=15s

Figure 5: Policy computed using DPAFA-2

33

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 5 10 15 20 25 30 35 40 45 50

S
ou

rc
e

R
at

es

States

Optimal Policy for Source 1

Source 1

Figure 6: Optimal Policy for Source 1

 0

 1

 2

 3

 4

 5

 6

 0 5 10 15 20 25 30 35 40 45 50

S
ou

rc
e

R
at

es

States

Optimal Policy

Total Rate

Figure 7: Optimal Policy - Sum of Source Rates

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 5 10 15 20 25 30 35 40 45 50

D
iff

er
en

tia
l C

os
t

States

ComSPAC-2: Differential Cost

T=5s
T=10s
T=15s

Figure 8: Differential-Cost Function computed using ACA-2

34

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30 35 40 45 50

D
iff

er
en

tia
l C

os
t

States

DisSPAC-2: Differential Cost Function

T=5s
T=10s
T=15s

Figure 9: Differential Cost Function computed using RPAFA-2

Figure 10: Differential Cost Function computed using DPAFA-2

35

