
Reversible Digital Watermarking using Integer
Wavelet Transform

Sambaran Bandyopadhyay
Department of Computer Science and Engineering

Institute of Engineering and Management
Kolkata, India–700091

Email: sam krish89@rediffmail.com

Ruchira Naskar and Rajat Subhra Chakraborty
Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur
Kharagpur, India–721302

Email: {ruchira,rschakraborty}@cse.iitkgp.ernet.in

Abstract—Digital Watermarking is a well–known class of tech-
niques for digital content protection. Recently, Reversible Digital
Watermarking techniques have drawn a lot of interest, where
after the watermark has been extracted, the original content
can be retrieved with zero distortion. In this paper we present
a novel high capacity reversible digital watermarking technique
based on integer wavelet transforms. Our simulation results fare
reasonably well when compared to state–of–the–art reversible
watermarking techniques of similar principle published in the
literature.

Index Terms—Reversible integer transform, reversible data
embedding, PSNR, embedding capacity.

I. INTRODUCTION

Digital watermarking is a class of popular techniques
whereby hard–to–detect information (called the “signature” or
“payload”) is embedded in digital content (audio, image or
video) for purposes of content authentication and intellectual
property (IP) protection. Since only the creator or distributor of
the digital content has knowledge about the hidden information
and how to retrieve it, she can prove her ownership in case
of litigation. In many application domains such as medical
and military imaging, the original information is extremely
sensitive and recovery of the original information in an unal-
tered form is of utmost importance. In such cases, reversible
watermarking techniques have been found useful where by the
very nature of the watermarking scheme, the original content
can be retrieved exactly with zero distortion [1]–[3].

In this paper we present a high quality, high capacity
reversible watermarking scheme for images. We use integer
wavelet transform [1] to convert the original image into a set
of average and difference numbers, and then repeat the same
procedure for the reduced matrix. In our scheme each row of
the original image matrix [4] is replaced by a single average
number and multiple difference numbers. Since usually the
difference numbers can be encoded in relatively fewer number
of bits, through our technique we create space to embed larger
number of payload bits in the difference numbers. The visual
quality of the watermarked image compared to the original
image is also found to be satisfactory, and is reflected in the
calculated peak signal-to-noise ratio (PSNR).

The rest of the paper is organized as follows: in Section II
we provide the mathematical formulation of integer wavelet

transform based reversible watermarking. In Section III, we
describe the methodology proposed in this paper. In Section
IV, we present experimental results of applying the proposed
algorithm to an example image. We conclude in Section V.

II. BACKGROUND

A. Reversible Integer Wavelet Transform

The integer wavelet transform maps integers to integers, and
allows for perfect invertibility with finite precision arithmetic.
Also, the integer wavelet transform can be implemented with
only three operations – addition, subtraction and shift, on a
digital computer. This feature makes it attractive compared to
other discrete wavelet transforms. For example, for the Haar
wavelet filter, the integer wavelet transforms are:

li =

⌊
x2i + x2i+1

2

⌋
, hi = x2i − x2i+1 (1)

where bc implies the “floor function” which means the ”great-
est integer less than or equal to”. The corresponding inverse
transforms are:

x2i = li +

⌊
hi + 1

2

⌋
, x2i+1 = li −

⌊
hi

2

⌋
(2)

B. Watermarking based on Integer Wavelet Transform

Reversible watermarking is based on applying the above
integer wavelet transform on the pixel encoded values, and
utilizing the high spatial redundancy in pixel values in natural
images. Let (x, y) be two pixel values in a grayscale image
utilizing 8–bit binary encoding, where x, y ∈ [0, 255]. Then,
the following values are computed:

l =

⌊
x+ y

2

⌋
, h = x− y (3)

Due to the high redundancy in natural images, the differ-
ence values h are usually comparatively smaller, and can be
encoded using less than eight bits. The space saved can be thus
utilized to embed the bits of the signature to be embedded.
As an example, consider x = 205, y = 200, l = 202,
h = 5 = 1012. Suppose a bit b = 0 of information to be
embedded at the location right after the most significant bit
(MSB) in the binary representation of h. Then, the modified

value of h becomes h
′
= 10012 = 9. Thus, the new grayscale

values are:

x
′
= l +

⌊
h

′
+ 1

2

⌋
= 207, y

′
= x

′
− h

′
= 198

From the embedded pair (x
′
, y

′
), the watermark detector can

extract the embedded bit b and get back the original pair (x, y)
by:

l
′
=

⌊
x

′
+ y

′

2

⌋
= 202, h

′
= x

′
− y

′
= 9 = 10012

Note that the values of l and l
′

are the same. With the
knowledge of the location of the inserted watermark bit, the
original difference value h = 5 = 1012 can be extracted from
h

′
, and with the average number l

′
and the difference number

h, the original values (x, y) can be re-calculated using the
inverse integer transform. The above procedure of embedding
the digital watermark by expanding the difference values is
generally termed as difference expansion.

Difficulty arises when the value of h is large, which can
lead to underflow or overflow conditions with the values to
be embedded. For example, let x = 105, y = 22, then l =
63, h = x − y = 83 = 10100112. If we embed a bit “0” in
h, the new value is h

′
= 100100112 = 147. This leads to the

embedded values x
′
= 137 and y

′
= −10. This will cause

an underflow problem as grayscale values are restricted in the
range [0, 255]. To restrict the overflow or underflow conditions,
the following conditions must be satisfied:

0 ≤ l +

⌊
h+ 1

2

⌋
≤ 255, 0 ≤ l −

⌊
h

2

⌋
≤ 255

which is equivalent to

|h| ≤ min(2(255− l), 2l + 1) (4)

The least significant bit (LSB) of the difference h is usually
selected as the embedding area. Since

h =

⌊
h

2

⌋
· 2 + LSB(h)

for LSB(h) = 0 or 1, the difference number h is changeable
if ∣∣∣∣⌊h2

⌋
· 2 + b

∣∣∣∣ ≤ min(2(255− l), 2l + 1) (5)

for both b = 0 and 1.
Note that modifying changeable h (without compression)

does not provide additional storage space. The extra storage
space is gained from expandable difference numbers. For
a grayscale pixel pair (x, y), its difference number h is
expandable if

|2 · h+ b| ≤ min(2(255− l), 2l + 1) (6)

for both b = 0 and 1. For each expandable difference number,
we get at least one bit of space to embed the watermark.

The information about the pixel locations and bit positions
in the binary values of the pixels where the bits of the

watermark are to be inserted is stored in a location map.
The location map of the expanded difference numbers is
usually in the form of a “bi-level image”, where the pixel
value is “1” at each location where it is expanded, and
“0” otherwise. It is usually losslessly compressed using a
compression technique such as JBIG2 or run–length coding.
Similarly, the concatenation of the LSBs of the changeable
difference numbers can be further compressed using arithmetic
coding or Huffman coding. Optionally, a secure hash of the
original digital image can be created by an algorithm such as
SHA–256. All of the above bitstreams are then combined into
a final bitstream and transmitted. In this work, for simplicity,
we have not embedded the location map or hash information
in the image, and have not applied any lossless compression
algorithm to further compress these information.

III. METHODOLOGY

A. Multi-bit Hiding

Till now we have been concerned about embedding one
extra bit of the watermark per difference number. But, we
can go further by checking whether more than one bit can be
embedded into a single difference number. We can check it
with the help of the hiding ability of the difference number h.
For a given difference number h, let k be the largest integer
such that

|k · h+ b| ≤ min(2(255− l), 2l + 1) (7)

for all 0 ≤ b ≤ k − 1, where b is not necessarily a single
bit any more. In such a case, we say that the hiding ability
of h is log2 k. Hiding ability gives us the information of
how many bits we can embed into the difference number
without causing an underflow or overflow. Higher the value of
hiding ability, better the embedding capacity. In most practical
images, the hiding capacity of a difference term (calculated for
two adjacent pixel values) is greater than one. For a difference
number to be expandable, the value of hiding ability must be
at least one (as log2 2=1).

Hiding ability also indirectly helps us to select the expand-
able difference numbers for data embedding. For each row of
the reduced image matrix (which is in the form of a collection
of average–difference value pairs), we examine the pairs of
average values and replace them by another average value–
difference value pair. We repeat this procedure for the reduced
average–difference matrix to have multiple difference values
(not necessarily expandable) and a single average value for
each row. Since a large fraction of the set of difference values
are expandable, a large number of bits of the payload can be
embedded in them. Thus, in effect, the embedding capacity
of the image can be improved which increases the signal–to–
noise ratio for larger payload sizes. This observation is the
main contribution of this work.

In the next section we describe the proposed watermark
embedding and extraction for multi–bit hiding.

Algorithm 1 Procedure EMBED WATERMARK
Embed the given watermark payload in a given grayscale
image
Inputs: An image matrix X (m× n), watermark payload
vector msg (1× p) to be embedded
Outputs: Watermarked image matrix X (m× n), location
map vector loc (1× 2p)

1: /* Perform integer wavelet transform and embed payload*/
2: Initialize each element of avgdiff to zero
3: t← log2 n /*Assuming n to be a power of 2*/
4: le← 1
5: for t1 = 0 to (t− 1) do
6: for i = 1 to m do
7: j ← 1
8: k ← 2t1 + 1
9: while j ≤ n and k ≤ n do

10: avgdiff(i, j)←
⌊
X(i,j)+X(i,k)

2

⌋
11: avgdiff(i, k)← X(i, j)−X(i, k)
12: if avgdiff(i, k) is expandable under the integer

value avgdiff(i, j) and le ≤ p then
13: avgdiff(i, k)← 2 · avgdiff(i, k) +msg(le)
14: Enter the location of the term avgdiff(i, k) into

the location map loc
15: le← le+ 1
16: end if
17: j ← j + 2(t1+1)

18: k ← k + 2(t1+1)

19: end while
20: end for
21: X ← avgdiff
22: end for
23: /*Calculate pixel values of the watermarked image*/
24: for t1 = (t− 1) downto 0 do
25: for i = 1 to m do
26: j ← 1
27: k ← 2t1 + 1
28: while j ≤ n and k ≤ n do
29: X(i, j)← avgdiff(i, j) +

⌊
avgdiff(i,k)+1

2

⌋
30: X(i, k)← avgdiff(i, j)−

⌊
avgdiff(i,k)

2

⌋
31: j ← j + 2(t1+1)

32: k ← k + 2(t1+1)

33: end while
34: end for
35: avgdiff ← X
36: end for

B. Watermark Embedding

Algorithm 1 shows the steps of the proposed watermark
embedding algorithm. Step 2–22 performs the integer wavelet
transform to embed the payload in the image, and creates the
location map. Steps 24–36 calculates the pixel values of the
watermarked image. The above can embed at most (n − 1)

Algorithm 2 Procedure EXTRACT WATERMARK
Extract the given watermark payload in a given grayscale
image
Inputs: Watermarked image matrix X (m× n), location
map vector loc (1× 2p)
Outputs: Original image matrix X (m× n), watermark
payload msg (1× p)

1: Set avgdiff ← (m× n) null matrix
2: /* Extract payload from watermarked image*/
3: t← log2 n /*Assuming n to be a power of 2*/
4: for t1 = 0 to (t− 1) do
5: for i = 1 to m do
6: j ← 1
7: k ← 2t1 + 1
8: while j ≤ n and k ≤ n do
9: avgdiff(i, j)←

⌊
X(i,j)+X(i,k)

2

⌋
10: avgdiff(i, k)← X(i, j)−X(i, k)
11: j ← j + 2(t1+1)

12: k ← k + 2(t1+1)

13: end while
14: end for
15: X ← avgdiff
16: end for
17: k ← 1
18: while k ≤ length(loc) do
19: i← loc(k)
20: j ← loc(k + 1)
21: msg

(
k+1
2

)
← X(i, j)%2 /*Get LSB*/

22: X(i, j)←
⌊
X(i,j)

2

⌋
23: k ← (k + 2)
24: end while
25: /*Retrieve pixel values of the original image*/
26: avgdiff ← X
27: for t1 = (t− 1) downto 0 do
28: for i = 1 to m do
29: j ← 1
30: k ← 2t1 + 1
31: while j ≤ n and k ≤ n do
32: X(i, j)← avgdiff(i, j) +

⌊
avgdiff(i,k)+1

2

⌋
33: X(i, k)← avgdiff(i, j)−

⌊
avgdiff(i,k)

2

⌋
34: j ← j + 2(t1+1)

35: k ← k + 2(t1+1)

36: end while
37: end for
38: avgdiff ← X
39: end for

bits per row of the image matrix X , where each row has n
columns. Hence, the embedding capacity of the algorithm is
quite large and the visual quality is satisfactory because of high
signal–to–noise ratio, as found in our experiment. The above
algorithm can also be applied on an image already containing

an embedded watermark to embed further sets of watermarks.
The data embedding capacity of the above algorithm can be
improved further by directly embedding multiple bits of the
payload in the difference values as guided by their hiding
ability.

As a simple example, consider a 4×8 “image matrix” (with
the pixel values in decimal):

X =

84 80 72 67 88 90 70 63
70 75 78 80 82 76 59 51
76 74 77 82 64 55 47 44
74 79 92 104 55 42 40 41

 (8)

Suppose, we want to embed the payload bitstream msg =
11011001110110100111. When X and msg are input to the
watermark embedding algorithm, the first loop (steps 5–22)
runs log2 8 = 3 times. The transformation of the avgdiff
matrix (at step 21) over the iterations is as follows:
1st iteration:

avgdiff (1) =

82 9 69 11 89 −4 66 15
72 −9 79 −4 79 12 55 17
75 5 79 −9 59 18 45 7
76 −9 98 −24 48 27 40 −2

2nd iteration:

avgdiff (2) =

75 9 26 11 77 −4 47 15
75 −9 −13 −4 67 12 49 17
77 5 −4 −9 52 18 14 7
87 −9 −22 −24 44 27 8 −2

3rd iteration:

avgdiff (3) =

76 9 26 11 −2 −4 47 15
71 −9 −13 −4 8 12 49 17
64 5 −4 −9 25 18 14 7
65 −9 −22 −24 43 27 8 −2

The final watermarked image matrix output by the algorithm
is:

Xwm =

93 84 68 57 99 103 62 47
65 74 80 84 98 86 52 35
78 73 75 84 68 50 49 42
72 81 86 110 62 35 39 41

C. Watermark Extraction

The watermark extraction algorithm shown in Algorithm 2
works in exactly the reverse way compared to the embedding
algorithm. Steps 3–24 extracts the embedded payload from the
watermarked image, steps 26–39 retrieves the original image.

IV. RESULTS

The above methodology was implemented in MATLAB and
applied to a 256×256, 8 bits per pixel (bpp) grayscale version
of the “Lena” image. Fig. 1 shows the original version of the
image. Watermark payloads of different sizes varying from
0.1 bpp to 0.8 bpp were embedded in the image. Fig. 2 shows
the watermarked image with a 32768–bit (0.5bpp) embedded
payload. From these two images, it is evident that the proposed
approach has minimal adverse effect on the visual quality of

Fig. 1. Original 256× 256, 8bpp grayscale “Lena” image.

Fig. 2. Reversibly watermarked “Lena” with a 32768–bit (0.5bpp) embedded
payload, and PSNR=35.93dB.

Fig. 3. Plot of PSNR vs. embedded payload size.

the image. To calculate the PSNR, first the mean square error
(MSE) was calculated as:

MSE =

m∑
i=1

n∑
j=1

(Xorg(i, j)−Xwm(i, j))
2

m · n
(9)

where Xorg(i, j) is the (i, j)–th pixel of the original image,
and Xwm(i, j) is the (i, j)–th pixel of the watermarked image,
and m and n are the dimensions of the image (here each is

256). Then, PSNR is calculated as:

PSNR = 10 log10

(
MAX2

I

MSE

)
= 10 log10

(
2552

MSE

)
(10)

where MAXI is the maximum possible pixel value of the
image, which is 255 in this case because of the 8–bit grayscale
nature of the image.

Fig. 3 shows a plot of the peak signal–to–noise ratio (PSNR,
in dB) of the watermarked image against the embedded
payload size (in bits per pixel). These results are comparable
with state–of–the–art techniques such as [1], [6].

V. CONCLUSION

Reversible watermarking is an important class of techniques
for digital content protection and authentication where it is
possible to retrieve the original content with zero distortion.
In this paper, we have proposed a high capacity reversible
digital watermarking technique for images, where the spatial
redundancy of images are utilized in embedding the wa-
termark. The novelty of the proposed technique lies in the
repeated application of the principle of difference expansion
to decrease the number of average terms to a single average
term and increase the number of difference terms, so that
more bits of the payload can be embedded in the difference
terms. This effectively increases the embedding capacity of
the watermarked image. Experimental results on the common
benchmark image “Lena” shows that the technique is capable
of achieving good PSNR values even at large payload sizes.

REFERENCES

[1] J. Tian, “Wavelet–based reversible watermarking for authentication”,
Security and Watermarking of Multimedia Contents IV, vol. 4675, pp.
679–690, 2002.

[2] Z. Ni, Y. Q. Shi, N. Ansari and W. Su, “Reversible data hiding”, Pro-
ceedings of the IEEE International Symposium of Circuits and Systems,
2003.

[3] A. R. Calderbank, I. Daubechis, W. Sweldens and B. L. Yeo, “Wavelet
Transforms that map integers to integers”, Applied and Computational
Harmonic Analysis vol. 5, pp. 332-369, 1998.

[4] R. C. Gonzalez and R. E. Woods, “Digital Image Processing (3rd
edition)”, Pearson education, 2009.

[5] R. C. Gonzalez, R. E. Woods and S. L. Eddins, “Digital Image Processing
using MATLAB”, Pearson Education, 2004.

[6] L. Luo, Z. Chen, M. Chen, X. Zeng and Z. Xiong, “Reversible
image watermarking using interpolation technique”, IEEE Transactions
on Information Forensics and Security vol. 5, no. 1, pp. 187–193, Mar.
2010.

