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Abstract  

This paper is aimed towards providing an introduction to Social Networks and 
t r ies to provide how gam e theory can be an useful tool towards analysis of 
social networks. We are t ry ing to m ake this paper useful for both gam e 
theory and social networks com m unity. This paper wherever necessary will 
provide necessary details of gam e theory and social networks. The course of 
the paper will be  

1. Introduction to Social Networks 
2. Types of Social Networks 
3. Representation of Social Networks 
4. Analysis on Social Networks 
5. Representation of Social Networks as Games 
6. Valuation of nodes of Social Networks 

a. Cooperative Version 
b. Non-Cooperative Version 

7. Analysing network formation in Social networks 
a. Matching problem 

8. Economic Applications of Game Theoretic Analysis of Social Networks 
a. Competing for Customers in Social Network  

Introduction to Social Networks  

A social network is a social st ructure m ade of nodes which are generally 
individuals or organizat ions. The m axim um size of social networks tends to 
be around 150 people (Dunbar's num ber) and the average size around 124 
(Hill and Dunbar, 2002).  

Social network analysis is a m ethod of inquiry that focuses on relat ionships 
between subjects such as individuals, organisat ions or nat ion states. 
However, it has also been applied to analysis relat ionships between objects 
as diverse as the Internet, scientific papers, organisms, and molecules.  

Social network analysis [ SNA] is the m apping and m easur ing of relat ionships 
and flows between people, groups, organizat ions, anim als, com puters or 
other inform at ion/ knowledge processing ent it ies. The nodes in the network 
are the people and groups while the links show relat ionships or f lows 
between the nodes. SNA provides both a visual and a m athem at ical analysis 
of hum an relat ionships. Managem ent consultants use this m ethodology with 
their business clients and call it Organizational Network Analysis.  



A social network is a set of actors (or points, or nodes, or agents) that m ay 
have relat ionships (or edges, or t ies) with one another. On one hand, there 
really isn't anything about social network data that is all that unusual. The 
m ajor difference between convent ional and network data is that convent ional 
data focuses on actors and at t r ibutes; network data focus on actors and 
relat ions. “Convent ional" sociological data consists of a rectangular array of 
m easurem ents. The rows of the array are the cases, or subjects, or 
observat ions. The colum ns consist of scores (quant itat ive or qualitat ive) on 
at t r ibutes, or var iables, or m easures. Each cell of the array then describes 
the score of som e actor on som e at t r ibute. I n som e cases, there m ay be a 
third dim ension to these arrays, represent ing panels of observat ions or 
multiple groups.  

Representation of Social Networks 

Representing Networks with Graphs  

Mathem at icians know the kind of graphic displays by the nam es of "directed 
graphs" “signed graphs" or simply "graphs."  

Let's suppose that we are interested in summarizing who nominates whom as 
being a " fr iend" in a group of four people (Bob, Carol, Ted, and Alice) . We 
would begin by represent ing each actor as a "node" with a label (som et im es 
notes are represented by labels in circles or boxes).  

  

Kinds of Graphs  

Levels of Measurement: Binary, Signed, and Valued Graphs  

But , we could have asked the quest ion a second way: " for each person on 
this list ,  indicate whether you like,dislike, or don't care." We m ight assign a 
+ to indicate " lik ing," zero to indicate "don't care" and - to indicate dislike. 
This kind of data is called "signed" data. 



 
Directed or "Bonded" Ties in the Graph  

I n our exam ple, we asked each m em ber of the group to choose which others 
in the group they regarded as close fr iends. Each person (ego) then is being 
asked about t ies or relat ions that they them selves direct toward others 
(alters) . Each alter does not necessarily feel the sam e way about each t ie as 
ego does: Bob m ay regard him self as a good fr iend to Alice, but Alice does 
not necessarily regard Bob as a good fr iend. I t is very useful to describe 
m any social st ructures as being com posed of "directed" t ies (which can be 
binary, signed, ordered, or valued).   

"Directed" graphs use the convent ion of connect ing nodes or actors with 
arrows that have arrowheads, indicat ing who is direct ing the t ie toward 
whom . This is what we used in the graphs above, where individuals (egos) 
were direct ing choices toward others (alters) . "Co-occurrence" or "co-
presence" or "bonded- t ie" graphs use the convent ion of connect ing the pair 
of actors involved in the relation with a simple line segment (no arrowhead).  

Simplex or Multiplex Relations in the Graph  

A graph that represents a single kind of relation is called a simplex graph.  

Bob ident ifies Ted as kin; Ted ident if ies Bob; and Ted and Alice ident ify one 
another ( the full story here m ight be that Bob and Ted are brothers, and Ted 
and Alice are spouses) . We could add this inform at ion to our graph, using a 
different color or different line style to represent the second type of relat ion 
("is kin of...").  

A graph (som et im es called a sociogram ) is com posed of nodes (or actors or 
points) connected by edges (or relat ions or t ies) . A graph m ay represent a 
single type of relations among the actors (simplex), or more than one kind of 
relat ion (m ult iplex) . Each t ie or relat ion m ay be directed ( i.e. or iginates with 
a source actor and reaches a target actor) , or it m ay be a t ie that represents 
co-occurrence, co-presence, or a bonded- t ie between the pair of actors. 
Directed t ies are represented with arrows, bonded- t ie relat ions are 
represented with line segm ents. Directed t ies m ay be reciprocated (A 
chooses B and B chooses A) ; such t ies can be represented with a double-
headed arrow. The st rength of t ies am ong actors in a graph m ay be nom inal 
or binary ( represents presence or absence of a t ie) ; signed ( represents a 
negat ive t ie, a posit ive t ie, or no t ie) ; ordinal ( represents whether the t ie is 
the st rongest , next st rongest , etc.) ; or valued (m easured on an interval or 
ratio level).  



Using Matrices to Represent Social Relations  

The "Adjacency" Matrix  

   

Som et im es the value of the m ain diagonal is m eaningless, and it is ignored 
(and left blank) . Som et im es, however, the m ain diagonal can be very 
im portant , and can take on m eaningful values. This is part icular ly t rue when 
the rows and columns of our matrix are "super-nodes" or "blocks."  

  

This kind of grouping of cells is often done in network analysis to understand 
how some sets of actors are "embedded" in social roles or in larger entities  

There are var ious operat ions that can be done on social network data which 
is represented as m at r ix. We are present ing few operat ion and its intuit ion of 
what kind of information you can infer from the operations.  

Operation on Matrix Social Network Data   

Inverse of Matrix is sort of like looking at black lettering on white paper 
versus white lettering on black paper: 



 
Matrix Operations : Transpose, Inverse, Addition, Subtraction, Multiplication, 
Correlation, Regression, Boolean Multiplication  

If I had a symmetric matrix that represented the tie "exchanges money" and 
another that represented the relation "exchanges goods" I could add the two 
matrices to indicate the intensity of the exchange relationship.  

I ndividual actors' posit ions in networks are also usefully described by the 
num bers and lengths of pathways that they have to other actors. Actors who 
have m any pathways to other actors m ay be m ore inf luent ial with regard to 
them . Actors who have short pathways to m ore other actors m ay m e m ore 
influent ial or cent ral figures. So, the num ber and lengths of pathways in a 
network are very im portant to understanding both individual's const raints 
and opportunit ies, and for understanding the behavior and potent ials of the 
network as a whole.  

One of the m ost com m on and im portant approaches to indexing the 
distances between actors is the geodesic. The geodesic is useful for 
describing the m inim um distance between actors. The geodesic distances 
between pairs of actors are the m ost com m only used m easure of closeness. 
The average geodesic distance for an actor to all others, the var iat ion in 
these distances, and the num ber of geodesic distances to other actors m ay 
all describe im portant sim ilar it ies and differences between actors in how and 
how closely they are connected to their entire population.  

Analysis of Social Network Analysis  

Quantities in Social Network Analysis  

Betweenness  
Degree an individual lies between other individuals in the network; the 
extent to which a node is direct ly connected only to those other nodes that 
are not direct ly connected to each other; an interm ediary; liaisons; bridges. 
Therefore, it 's the num ber of people who a person is connected to indirect ly 
through their direct links.   

Centrality Closeness   
The degree an individual is near all other individuals in a network (direct ly or 
indirect ly) . I t reflects the abilit y to access inform at ion through the 
"grapevine" of network m em bers. Thus, closeness is the inverse of the sum 
of the shortest distances between each individual and every other person in 
the network.   

Centrality Degree  
The count of the number of ties to other actors in the network.  



 
Centrality Eigenvector  
Eigenvector centrality is a measure of the importance of a node in a network. 
I t assigns relat ive scores to all nodes in the network based on the pr inciple 
that connections to nodes having a high score contribute more to the score of 
the node in question.   

Centralization  
The difference between the n of links for each node divided by m axim um 
possible sum of differences. A cent ralized network will have m uch of its links 
dispersed around one or a few nodes, while a decent ralized network is one in 
which there is little variation between the n of links each node possesses  

Clustering Coefficient  
The clustering coefficient is a measure of the likelihood that two associates of 
a node are associates them selves. A higher cluster ing coefficient indicates a 
greater 'cliquishness'.  

Cohesion  
Refers to the degree to which actors are connected direct ly to each other by 
cohesive bonds. Groups are identified as ‘cliques’ if every actor is directly tied 
to every other actor, ‘social circles’ if there is less st r ingency of direct 
contact , which is im precise, or as st ructurally cohesive blocks if precision is 
wanted.  

Density  
Individual- level density is the degree a respondent 's t ies know one another/ 
proport ion of t ies am ong an individual's nom inees. Network or global- level 
density is the proport ion of t ies in a network relat ive to the total num ber 
possible (sparse versus dense networks).  

Path Length  
The distances between pairs of nodes in the network. Average path- length is 
the average of these distances between all pairs of nodes.  

Radiality  
Degree an individual’s network reaches out into the network and provides 
novel information and influence  

Reach  
The degree any member of a network can reach other members of the 
network. See also reach.  

Structural Equivalence  
Refers to the extent to which actors have a common set of linkages to other 
actors in the system. The actors don’t need to have any ties to each other to 
be structurally equivalent. 



 
Structural Hole  
Stat ic holes that can be st rategically f illed by connect ing one or m ore links to 
link together other points. Linked to ideas of social capital: if you link to two 
people who are not linked you can control their communication.  

There are also other measures such as Constraint, Contagion, Integration 
etc.    

Building Trust in Social Networks – A Game Theoretic Representation

 

Ri > Pi (i=1,2), P1 > S1, T2,1 > R2 and T2,2 < R2  

Repeated gam es can be analyzed as social networks. One type of m odel that 
has found a large num ber of successors is sim ilar to com puter tournam ent in 
which actors are randomly matched together to play certain games. Actors in 
these gam es have prescribed st rategies such as always abusing t rust or 
playing Tit - for-Tat , but there is no network st ructure that facilitates 
inform at ion t ransm ission about past periods am ong actors. Only one global 
property of the network, nam ely, the m inim al outdegree in the network, 
affected the t r igger st rategy equilibr ia. There is a growing literature on 
m odels in which actors are assum ed to be placed on a gr id ( “cellular 
autom ata” ) , which can be interpreted as a social network, and actors play 
with neighbors on the gr id. However, in these m odels all actors have the 
sam e num ber of neighbors and equal probabilit ies of playing with each of 
these neighbors. There are som e analyses in which the num ber of neighbors 



of an actor is var ied. This allows predict ions about  differences between 
networks but not within networks, because all posit ions in the network are 
equivalent . I n m ost real-wor ld networks there are, of course, individual 
differences between actors. Some actors have more contacts than others and 
these contacts may be more intense  

Learning becom es an issue if incom plete inform at ion is int roduced. Analyses 
of the f initely repeated Trust Gam e with incom plete inform at ion yield som e 
appealing results with respect to cont rol and learning effects The problem 
with the finitely repeated ordinary Trust Game  is the following. If the trustee 
has an incent ive to abuse t rust , this im plies that the t rustee will certainly 
abuse trust in the last period. Therefore, the trustor will not place trust in the 
last per iod. Consequent ly, the t rustee will abuse t rust in the last period but 
one, because in the last per iod he will receive anyway. This im plies that the 
trustor also cannot place trust in the last period but one.  

This argum ent cont inues up to the first per iod, which m eans that the t rustor 
can never place t rust . The situat ion changes if there is even a slight 
probabilit y that the t rustee does not have an incent ive to abuse t rust . Then, 
the t rustor m ight want to test whether the t rustee has an incent ive to abuse 
t rust . Therefore, “ som e” t rust is possible if there are “enough” per iods to be 
played in the future. An equilibr ium exists that consists of three phases. I n 
the first phase, all types of t rustees honor t rust and, consequent ly, the 
t rustor places t rust . I f the end of the gam e is approached ( the exact t im ing 
depends on the param eters of the gam e) , the bad t rustee starts to 
random ize between abusing and honor ing t rust . Of course, the good t rustee 
cont inues to honor t rust throughout the gam e. As long as the t rustee 
continues to honor t rust in this random izat ion per iod, the t rustor is m ore and 
m ore convinced that she is playing with a good t rustee and, therefore, 
cont inues to t rust although the end of the gam e com es closer and closer. As 
soon as the t rustee abuses t rust for the first t im e, he reveals him self as 
being a bad trustee and the trustor will never place trust again.   

Recent ly, gam es resem bling the Trust Gam e have been analyzed. I n these 
gam es, one actor cannot observe the type of another actor. Consider a 
buyer-seller relat ionship as a start ing point of their gam e. The seller has the 
possibilit y of selling high-qualit y or low-quality products. The seller has to 
m ake that decision in advance because he has to m ake an ext ra investm ent , 
for exam ple in product ion technology, com m it t ing him self to one of the two 
st rategies. He cannot change that decision later in the gam e. The buyers 
cannot directly observe the choice of the seller. The probability that the seller 
will make the investment depends on the time he expects to be in the market 
with that product and the extent to which buyers are able to evaluate 
whether he is selling high-quality or low-qualit y products. I nterpret ing the 
results in term s of social networks, sellers have a larger incent ive to sell 
high-qualit y products to buyers who obtain m ore inform at ion about the 
behavior of this seller from other buyers.   



Let us lim it the analysis of learning effects to m odeling how fast t rustors can 
obtain information, assuming that trustors who obtain more information learn 
faster. Consequent ly, t rustors who obtain m ore posit ive inform at ion can 
place m ore t rust in the t rustee than other t rustors. Developing and analyzing 
a m odel that com bines social networks with a gam e- theoret ic m odel 
including incom plete inform at ion m ay well be part of future research efforts. 
A first m odel in this direct ion consists of two t rustors who play a finitely 
repeated Trust Gam e with one t rustor and can inform each other between 
periods about the behavior of the trustee.  

More inform at ion can be found on Trust Gam es on the book “Social Networks 
and Game theory” by Buskens found in the reference section.  

Game Theoretic Analysis of Social Networks  

As mentioned in the paper earlier we can logically divide social network 
analysis into two sections. Valuation/evaluation of a node in a social network 
and analyzing how the network could be formed with these evaluated nodes. 
Till this section of the paper we analyses how to value the node. From now 
on wards we will look of network formation based on the evaluated nodes. 
This is also generally referred as matching problem in the social network 
literature.  

Economic Appplications  of Game Theoretic Analysis of Social 
Networks  

The payoff to an individual from an econom ic or social act iv it y depends on 
the network of connect ions am ong individuals. Predict ions can be m ade 
regarding the likelihood that the stochast ic process will lead to any given 
network at som e t im e, where the stochast ic process selects from am ong the 
stat ically stable networks and cycles.  Networks also play fundam ental roles 
in the payoffs earned from bargaining with an organizat ion and in the 
exchange of goods and services. Networks through which financial help or 
insurance is exchanged in developing count r ies. Even standard m atching 
problem s (e.g., the m arr iage and college) are special situat ions where 
network relat ionships are im portant . This determ inist ic dynam ic process m ay 
end at stable networks or in som e cases m ay cycle. To this basic 
determ inist ic dynam ic we add random perturbat ions and exam ine the 
dist r ibut ion over networks as the level of random perturbat ions goes to 0. 
This stochast ic dynam ic process refines the predict ion of the determ inist ic 
process and provides a robustness check to see which networks predicted by 
the deterministic dynamic are most stable in the face of small perturbations.  

To be m ore specif ic, networks are m odeled as graphs, where nodes or 
vert ices represent individuals and links or edges represent connect ions 
between the individuals. Links are non-directed and thus reciprocal. A link 



between two individuals can be form ed only if both individuals agree to add 
the link, while a single individual can sever an exist ing link. Each individual 
receives a payoff or net benefit based on the network configurat ion that is in 
place. This payoff can be interpreted as the ut ilit y or product ion that an 
individual obtains from the social interact ion that occurs through the 
network.   

The prim ary tool that we int roduce to analyze dynam ic network form at ion is 
the concept of a sequence of networks that em erge when individuals form or 
sever links based on the im provem ent the result ing network offers relat ive to 
the current network. Such a sequence, called an ‘‘im proving path,’’ has the 
propert ies that ( i) each network in the sequence differs from the previous 
network by the addit ion or delet ion of a single link, and ( ii) the addit ion or 
delet ion of the link benefits the individual(s) whose consent is necessary for 
the change.  

Myopic behavior is natural in the context of large networks where players 
m ay have lim ited inform at ion about the incent ives of others, and generally 
provides a useful starting point for the study of the evolution of networks.  

The im proving paths em anat ing from any start ing network m ust lead to 
either a pairwise stable network (where no two players want to form a link, 
and no individual player wants to sever a link) or a cycle (where a num ber of 
networks are repeatedly visited) . We show that there always exists either a 
pairwise stable network or a cycle from which there is no exit . We give a 
sim ple t rading network exam ple to show that it is possible for cycles to exist 
while pairwise stable networks fail to exist.  

The process naturally gravitates to pairwise stable networks and cycles, but 
periodically is bumped away by the random errors or mutations. The intuition 
for which networks are visited m ost often com es from the idea of resistance. 
I n the network context , resistance keeps t rack of how m any errors or 
m utat ions are needed to get from som e given network to an im proving path 
leading to another network. Very roughly, networks that are harder to get 
away from and easier to get back to, in term s of resistance, are favored by 
the stochast ic process (although this favor it ism depends on the full 
configuration of resistance among different networks).  

Aum ann and Myerson were the first to take an explicit look at network 
form at ion in a st rategic context where individuals had discret ion over their 
connect ions; these connect ions defined a com m unicat ion st ructure that was 
applied to a cooperat ive gam e. Aum ann and Myerson m odel was later 
extended to a one-stage m odel of link form at ion and payoff div ision. 
However, the analysis in those papers is devoted to issues in cooperat ive 
game theory such as the characterization of value allocations.  

Directed networks allow one individual to connect to another without the 
consent of the second individual, and thus applicat ions are to set t ings such 



as advert ising, the sending of m ail, and such. These are fundam entally 
different applicat ions from the non-directed networks that we consider here 
where both individuals need to consent to form a relat ionship, which applies 
to social relat ionships such as fr iendship and m arr iage, as well as t rading 
relat ionships, insurance networks, job contacts, bargaining networks, etc. 
Second, the directed networks end up having different incentive properties as 
individuals can unilaterally form new links, whereas here we need to consider 
the incent ives of two individuals in form ing a link. Also a repeated gam e has 
been examined, and focused on learning as a way to identify equilibria, which 
is quite different from the stochastic dynamic we examine here.  

Trading Exam ple (Nonexistence of a Pairwise Stable Network) Players benefit 
from t rading with  other players with whom they are linked, and t rade can 
only f low along links. Players begin by form ing a network. Subsequent ly, 
they receive random endowm ents and t rade along chains of the network. 
Trade flows without fr ict ion along any chain and each connected com ponent 
trades to a Walrasian equilibrium. The expected utility for a player of being in 
a given network is calculated by expect ing over the Walrasian equilibr ia that 
result in the player’s connected com ponent as a funct ion of realized 
endowments.   

Let us take an exam ple where, there are two goods. All players have 
ident ical ut ilit y funct ions for the two goods which are sym m etr ic Cobb–
Douglas, U(x, y)= xy. Each player  has a random endowm ent , which is 
independent ly and ident ically dist r ibuted. A player ’s endowm ent is either 
(1,0) or (0, 1) , each with probability 1/ 2, realized after the network is in 
place. For a given network, Walrasian equilibr ia occur on each connected 
com ponent , regardless of the configurat ion of links. For instance, three 
players in a line have the sam e t rades as three players in a circle ( t r iangle) , 
but with a lower total cost of links. Let the cost of a link be equal to 5/ 96 ( to 
each player in the link).  

Social Networks and Matching Problems  

For the m arr iage problem , the set of players N is divided into a set of m en, 
M= { m 1, ... , m j } , and a set of wom en, W= { w1, .. . , wk} . A network, g, is 
feasible if each wom an is linked to at m ost one m an, and each m an is linked 
to at most one woman. 

Hospital-Intern and College Admissions Problems  

For the hospital- intern (or college adm issions) problem , the set of players N 
is divided into a set of hospitals, H={h1 , ..., hj}, and a set of interns, I={i1, 
.. . , ik} . A network, g, is feasible if each intern is linked to at m ost one 
hospital, and each hospital, h, is linked to at most qh interns, where qh > 0 is 
the quota for the hospital; thus each hospital has a fixed number of slots.  



Existence of a Cycle in a Marriage Problem.   

Consider a marriage problem with two men and two women, where 
preferences are as 
follows: 
m1: w1, w2 
m2: w2, w1 
w1: m2, m1 
w2: m1, m2 . 
There exists a cycle under the definition of simultaneous improving path: 
{m1w1} to {m2w1} to {m2w2} to {m1w2} to {m1w1}.  

The existence of a m arr iage cycle was first dem onst rated by Knuth  and is 
also discussed in Roth and Vande Vate. While there are cycles in the 
m arr iage problem there are no closed cycles. That follows from the m ain 
result in Roth and Vande Vate, which in the network language says that from 
each network there is a sim ultaneous im proving path leading to som e core 
stable network. This im plies ( from Lem m a 2 here) that all stochast ically 
stable networks will be core table networks. So a quest ion ar ises as to which 
core stable networks are stochast ically stable. I t is known (since Gale and 
Shapley ) that the set of core stable matchings has nice properties.  

Economic Applications of Game Theoretic Analysis of Social 
Networks 

Competing for Customers in a Social Network  

There are many situations in which a customer’s proclivity to buy the product 
of any firm depends not only on the classical at t r ibutes of the product such 
as its pr ice and qualit y, but also on who else is buying the sam e product . We 
m odel these situat ions as gam es in which firm s com pete for custom ers 
located in a “ social network” . Nash Equilibr ium (NE) in pure st rategies exist 
in general.  

This relation between the connectivity of a customer and the money firms 
spend on him, is transparent when externalities are dominant.   

Let us take the following setting in linear environment.          

players of ProfileStrategy  
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The nash equilibrium for such a game can be defined as      

Such a nash equilibrium will exist when   

 

The cost function is continuous, convex and strictly increasing 

 

The benefit function is continuous, convcave and increasing 

 

The externality function is continuous 

 

Customer has two distinct competing firms and customer 
responds to marketing of both the firms, and whose values on 
the customer strictly increases   

Similarly in quasi- linear model, there exists a unique nash equilibrium 
satisfying the first order conditions that maximizes payoff as follows  

  

This unique nash equilibrium can be characterized as  

  

Where firms 1…k will spend money on the customer i as represented above 
in the nash equilibrium.  

This paper further discusses about the impact of competition and anonymous 
valuation on the multiple nash equilibrium and also analyses a markov chain 
perspective when externalities become dominant.  

Conclusion  

Gam e theory can be applied in the var ious perspect ives of social networks. 
Gam e theory and m echanism design can be used as the tool to analyse the 
value of node in the social network. These tools can also be used to consider 
for the network form at ion in the social network.  Value Theory and social 
theory is the two areas to look at for understanding how to value a node in 
the network. There has been work in the area of applying cooperat ive gam e 
theory (such as shapley value) in the valuat ion of a node in the social 
network. Also Orkut is using a m echanism design technique to value players 
in orkut. 

IRmmmm ),()(



 
Mechanism Design and Gam e theory can be used to analyzing and building 
excit ing applicat ion on top of social networks. This could be chosen as a 
possible area for research.  Data m ining and gam e theory can be applied 
together to solve many exciting problems of social network.  

Building application with game theory and mechanism design on social 
network is a promising area. Hence Game theory and mechanism design will 
be used a tool to analyse social networks.
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