
 1

Abstract: Recommender systems are quite famous in any

business happening in the web. Few classical examples are

Amazon’s recommender system, Netflix movie recommender

systems, Orkut’s community recommender systems etc. As part of

this report we are trying to explore the traditional recommender

systems, current recommender systems, and extend to our model

of exploring FP-Tree for generating association rules. We are also

presenting our experimental analysis and giving the future

directions in this area.

I. CURRENT LITERATURE

We try to explore few of the current literature in recommender

systems.

A. Traditional Collaborative Filtering

A traditional collaborative filtering algorithm represents a

customer as an N-dimensional vector of items, where N is the

number of distinct catalog items. The components of the

vector are positive for purchased or positively rated items and

negative for negatively rated items. To compensate for best-

selling items, the algorithm typically multiplies the vector

components by the inverse frequency (the inverse of the

number of customers who have purchased or rated the item),

making less well-known items much more relevant. For almost

all customers, this vector is extremely sparse.

The algorithm generates recommendations based on a few

customers who are most similar to the user. It can measure the

similarity of two customers, A and B, in various ways; a

common method is to measure the cosine of the angle between

the two vectors

B. Cluster Models

To find customers who are similar to the user, cluster

models divide the customer base into many segments and treat

the task as a classification problem. The algorithm’s goal is to

assign the user to the segment containing the most similar

customers. It then uses the purchases and ratings of the

customers in the segment to generate recommendations. The

segments typically are created using a clustering or other

unsupervised learning algorithm, although some applications

use manually determined segments. Using a similarity metric,

a clustering algorithm groups the most similar customers

together to form clusters or segments. Because optimal

Clustering over large data sets is impractical, most applications

use various forms of greedy cluster generation. These

algorithms typically start with an initial set of segments, which

often contain one randomly selected customer each. They then

repeatedly match customers to the existing segments, usually

with some provision for creating new or merging existing

segments. For very large data sets — especially those with

high dimensionality — sampling or dimensionality reduction is

also necessary.

Once the algorithm generates the segments, it computes the

user’s similarity to vectors that summarize each segment, then

chooses the segment with the strongest similarity and classifies

the user accordingly. Some algorithms classify users into

multiple segments and describe the strength of each

relationship

C. Search-Based Methods

Search- or content-based methods treat the

recommendations problem as a search for related items. Given

the user’s purchased and rated items, the algorithm constructs

a search query to find other popular items by the same author,

artist, or director, or with similar keywords or subjects. If a

customer buys the Godfather DVD Collection, for example,

the system might recommend other crime drama titles, other

titles starring Marlon Brando, or other movies directed by

Francis Ford Coppola.

If the user has few purchases or ratings, search based

recommendation algorithms scale and performs well. For users

with thousands of purchases, however, it’s impractical to base

a query on all the items. The algorithm must use a subset or

summary of the data, reducing quality. In all cases,

recommendation quality is relatively poor. The

recommendations are often either too general (such as best-

selling drama DVD titles) or too narrow (such as all books by

the same author). Recommendations should help a customer

find and discover new, relevant, and interesting items. Popular

items by the same author or in the same subject category fail to

achieve this goal.

D. Item-to-Item Collaborative Filtering (Amazon’s

Recommendation Model) [1]

Rather than matching the user to similar customers, item-to-

item collaborative filtering matches each of the user’s

purchased and rated items to similar items, then combines

those similar items into a recommendation list. To determine

the most-similar match for a given item, the algorithm builds a

Collaborative Filtering Recommender Systems

using Association Rule Mining

 2

similar-items table by finding items that customers tend to

purchase together. Build a product-to-product matrix by

iterating through all item pairs and computing a similarity

metric for each pair. However, many product pairs have no

common customers, and thus the approach is inefficient in

terms of processing time and memory usage. The following

iterative algorithm provides a better approach by calculating

the similarity between a single product and all related

products:

For each item in product catalog, I1

For each customer C who purchased I1

For each item I2 purchased by customer C

Record that a customer purchased I1 and I2

For each item I2

Compute the similarity between I1 and I2

It’s possible to compute the similarity between two items in

various ways, but a common method is to use the cosine

measure described earlier, in which each vector corresponds to

an item rather than a customer, and the vector’s M dimensions

correspond to customers who have purchased that item.

E. Recommendation using association rules [2]

Recommendation using association rules is to predict

preference for item k when the user preferred item i and j, by

adding confidence of the association rules that have k in the

result part and i or j in the condition part. Sarwar[2] used the

rule with the maximum confidence, but we used the sum of

confidence of all rules in order to give more weight to the item

that is associated with more rules.

Recommendation using association rules describes as

follows. Let P be the preference matrix of n users on m items.

In this matrix, pij is 1 if the user i has preference for the item j,

and 0 otherwise. Let A be an association matrix containing

confidence of association rules of m items to each other. The

matrix A is computed from P. In this matrix, aij is confidence

of association rule i ⇒ j. Then the recommendation vector r

for the target user can be computed from the association

matrix A and the preference vector u of the target user as

equation (1). The top-N items are recommended to the target

user based on the values in r.

r = u ⋅ A .

The above discussed algorithms does not address sparsity in

the recommender systems.

II. PROBLEM DESCRIPTION

Recommendation systems can be classified based on what

characteristics of the data they are considering. Typically, they

can be categorized into three groups:

1. Pure Static Recommendation System: Here only the

rating triplet (user, item, rating) or count data (user,

item, count) or just binary transaction data (user, item)

is considered. No additional information is made use

of.

2. Hybrid Static Recommendation System: Here apart

from the above mentioned data, the recommendation

system also utilized additional features related to the

user or the item itself.

3. Dynamic Recommendation System: Here the

recommendation system assumes that the user’s

preferences change over time and hence processes the

data in chronological order.

There can be some more variations based on how the

algorithm itself processes the data, for example, some

recommendation systems assume hidden variables, for

example, User’s Personality profile as a hidden variable and

try to estimate this from the given data and use it for

prediction.

Our problem description corresponds to the pure static

recommendation problem, which is most common in literature.

However, instead of using the rating triplet as it is we convert

the data into binary transaction format (user, item) and work

on this data. We do this by converting the ordinal rating data

into a binary format (likes, dislikes). If the user had rated an

item as 4 or 5 the item is marked as likes (1) and if it is less

than 4 it is marked as dislikes (0). Thus, the problem is

reduced to an association rule mining problem, where each

row represents a user and the columns represent the movies

that the user likes/dislikes.

Unlike what is found in literature, we do not use the all-but-

1 approach for testing or prediction. In the all-but-1 approach,

the algorithm is trained on all but one of the ratings given by a

user and the algorithm is expected to predict the rating for the

single item that is held out.

In our approach we assume that only one item rating is

available for the user under consideration and try to predict the

remaining items that the user would have rated high.

III. DATA

We planned to try our approach on very large datasets.

Couple of datasets that we experimented with are: (a)

Netflix data and (b) Movie Lens Data.

NETFLIX DATA

The Netflix data consists of 1GB of data contained in

 3

17770 files, one per movie. The first line of each file

contains the movie id followed by a colon. Each subsequent

line in the file corresponds to a rating from a customer and

its date in the following format:

CustomerID, Rating, Date

• MovieIDs range from 1 to 17770 sequentially.

• CustomerIDs range from 1 to 2649429, with

gaps. There are 480189 users.

• Ratings are on a five star (integral) scale from 1

to 5.

• Dates have the format YYYY-MM-DD.

The training data consists of 100 million ratings and the test

data consists of 3 million ratings.

MOVIE LENS DATA

The movie lens data consists of 15MB of data. The data

is in the format below:

UserID, MovieID, Rating, TimeStamp

• UserID ranges from 1 to 943 sequentially without

any gaps.

• MovieID ranges from 1 to 1682 without any gaps.

• Ratings are on a five star (integral) scale from 1 to 4.

• The time stamps are Unix seconds since 1/1/1970

UTC.

The total data comprises of 100,000 ratings. The data set is

split into five 80%/20% disjoint splits into training and test

data. This is used for 5-fold cross validation.

IV. ASSUMPTIONS

The algorithm would depend on the following assumptions:

• Rating is ordinal and not continuous. However, it is

ok to have ordinal or continuous rating prediction.

• A user rates an item only once.

• A user may not rate all the items and might be

rating only a very small subset of the entire list of

items.

• Items not rated by a user are given an ordinal rating

of 0.

• Data preprocessing is not done. Assumption is that

the data is not skewed, i.e., users have rated the

items impartially.

• Typical cases, assume all-but-1 approach where all

but one rating of the user is given and we have to

predict the rating for the left one. In our approach

we assume that only one rating has been observed

and we have to predict the rating for rest of the

items.

V. ALGORITHM

We utilized the FP-Growth algorithm to construct and mine

the association rules. However, the mining time and

classification time using the standard algorithm grew

exponentially as can be seen from the table below.

%

Support

%

Conf

Mining

Time

(secs)

of

Rules

%

Accuracy

Classfn

Time (secs)

4 100 1.97 610 2.03 1.06

4 90 2.33 13019 5.51 29.27

4 80 9.7 39328 12.5 178.66

4 70 88.31 79030 18.5 667.63

4 60 361.97 135074 24.59 2074.94

4 50 1018.9 201756 32.14 5759.14

VI. CONTRIBUTION & OBSERVATIONS

The key contribution in our approach is to make the mining

and classification time to be a constant, O(1), for a given

number of ratings. This is done based on the assumption that

the in association rule such as, {X} -> {Y} the subsets in {X}

are independent of each other and each subset of {X} -> {Y}.

This assumption can be shown to be true in all cases, when the

confidence level is set to 0%.

In the original approach the rules are stored in a linked list

which required lot of memory and processing time as and

when a rule in inserted. By the assumption made above we can

do rule mining and classification using a two-dimensional

square matrix structure such as (movie x movie), which

reduces the space and time requirements drastically.

Other contributions and observations based on our approach is

listed below:

• Our approach requires a user to just rate one movie

and based on this it can predict other movies that the

user would like or dislike. However, typical

recommender systems require a minimum number of

ratings to be done by a user for example, a user has

to rate at least 20 movies to make any prediction for

the user. However,

• Our recommendation is based on impersonal

querying or universal querying. Since user

similarities aren't computed. Whereas typical

recommender systems are specific to a user.

• If the prediction is correct increase the reward, if the

prediction doesn’t match penalize the score.

• There is a tradeoff between quality of prediction and

accuracy of prediction. As confidence is lowered,

the quality of prediction goes down, but the accuracy

of prediction goes up.

 4

VII. EXPERIMENTAL ANALYSIS

Using divide and conquer strategy, we converted the 1GB of

Netflix data into a format that can be used by the association

rule mining algorithm. However, due to limitations in Java

Virtual Machine, we couldn’t even build the FP-tree. Hence,

we worked on the Movie Lens Data and the results of which

are given in the figures below.

Considering the fact that almost all the recommender

systems in the literature doesn’t provide any measure on the

quality of prediction, the best result that we got using our

approach with 0% confidence and 3% support is 64% (on

average using 5-fold cross validation). A comparison with

results (based on Movie Lens data) declared in literature is

given below:

 % Accuracy

ARM Based Approach 64%

NNC 55%

Naïve Bayes Classifier 52%

K-Medians Clustering 56%

Mining Time Vs. Confidence

0

2

4

6

8

10

12

1
0
0
.0

0
%

9
0
.0

0
%

8
0
.0
0
%

7
0
.0
0
%

6
0
.0
0
%

5
0
.0
0
%

4
0
.0
0
%

3
0
.0
0
%

2
0
.0
0
%

1
0
.0
0
%

0
.0

0
%

Confidence

M
in

in
g

 T
im

e

Classification Time Vs. Confidence

0.3

0.32

0.34

0.36

0.38

0.4

1
0
0
.0

0
%

9
0
.0

0
%

8
0
.0
0
%

7
0
.0
0
%

6
0
.0

0
%

5
0
.0
0
%

4
0
.0
0
%

3
0
.0
0
%

2
0
.0
0
%

1
0
.0
0
%

0
.0

0
%

Confidence

C
la

s
s
if

ic
a
ti

o
n

 T
im

e

Accuracy Vs. Confidence

0.00%

20.00%

40.00%

60.00%

80.00%

1
0
0
.0

0
%

9
0
.0
0
%

8
0
.0

0
%

7
0
.0
0
%

6
0
.0

0
%

5
0
.0
0
%

4
0
.0
0
%

3
0
.0
0
%

2
0
.0
0
%

1
0
.0
0
%

0
.0

0
%

Confidence

A
c
c
u

ra
c
y

Num Rules Vs Confidence

0

1000000

2000000

3000000

4000000

5000000

6000000

1
0
0
.0

0
%

9
0
.0
0
%

8
0
.0
0
%

7
0
.0
0
%

6
0
.0
0
%

5
0
.0

0
%

4
0
.0
0
%

3
0
.0
0
%

2
0
.0
0
%

1
0
.0
0
%

0
.0

0
%

Confidence

N
u

m
b

e
r

o
f

R
u

le
s

VIII. DISADVANTAGES OF THIS APPROACH

ARM based recommendation system is not equivalent to

collaborative filtering based recommendation system.

Specifically, co-occurrence or transaction based

recommendation system is not equivalent to rating triplet

based recommendation system. The reason being, not all the

three parameters are utilized in the transaction based system.

In ARM based approach only two-dimensions (user, rating) or

(movie, rating) are utilized. In our approach we have utilized

only the (movie, rating) pair.

Accuracy is improved by lowering the confidence. This

result in generation of exponential number of rules most of

those are often not interesting.

IX. FUTURE WORK

We are classifying the future work in two directions: Future

work on the application and data mining techniques to be

probed.

A. Application specific tasks

• Currently, we only ran on (user, likes) pair, we can

use the same approach and try to predict what

movies the user might dislike using the (user,

dislikes) data.

• Learning based on feedback – increase or decrease

the weight of a rule based on whether it correctly

predicts or not.

• Personified recommendation by including user

 5

details in the algorithm, i.e., by considering the

complete data, the rating triplet given by (user,

item, rating).

• Do dynamic profiling of users through sequential

processing by utilizing the time of rating. This

would be required in cases where a user initially

liked cartoon movies and later developed a liking

to action movies (as the user’s age increases).

• Preprocessing of data to eliminate cases that could

skew the data or doesn’t add value. For example,

we need not consider the data related to a user who

always gives a rating of 3. In other words, retain

only those data that has variance or interestingness.

• Recommending a sequence of items rather than just

predicting the rating for a single item. For example,

recommend a sequence of research articles

(introduction, survey, etc.) to learn about a field.

B. Data Mining Techniques to be explored

• Prune rules during generation itself based on

novelty or some other measure of interestingness.

• Improve accuracy by considering all the

(preprocessed) data by having a support of 0%. To

do this, utilize compressed data representation, to

overcome the memory constraints.

• To handle missing data, generate synthetic

patterns, by utilizing additional features such as

genre of movies, age of user, etc.

• Use an ensemble algorithm similar to weighted

majority voting.

• Use SVD to reduce the dimensionality of the

ratings matrix.

• Use subspace clustering to reduce the

dimensionality.

REFERENCES

[1] G Linden, B Smith, J York, “Amazon. com

recommendations: item-to-item collaborative filtering”,

Internet Computing, IEEE, 2003

[2] B.M. Sarwar et al., “Item-Based Collaborative Filtering

Recommendation Algorithms,” 10th Int’l World Wide

Web Conference, ACM Press, 2001, pp. 285-295.

[3] L. Ungar and D. Foster, “Clustering Methods for

Collaborative Filtering,” Proc. Workshop on

Recommendation Systems, AAAI Press, 1998

[4] W Lin, SA Alvarez, C Ruiz, “ Efficient Adaptive-Support

Association Rule Mining for Recommender Systems”,

Data Mining and Knowledge Discovery, 2002

[5] D Fisher et al., “SWAMI: a framework for collaborative

filtering algorithm development and evaluation”, CS

Report Berkley available at
http://guir.berkeley.edu/projects/swami/swami-paper/paper2.html

[6] Movielens data - http://www.grouplens.org/

[7] Neflix prize - http://www.netflixprize.com/

[8] B. Marlin. Collaborative filtering: A machine learning

perspective. Master's thesis, University of Toronto, 2004.

