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Abstract: Recommender systems are quite famous in any 

business happening in the web. Few classical examples are 

Amazon’s recommender system, Netflix movie recommender 

systems, Orkut’s community recommender systems etc. As part of 

this report we are trying to explore the traditional recommender 

systems, current recommender systems, and extend to our model 

of exploring FP-Tree for generating association rules. We are also 

presenting our experimental analysis and giving the future 

directions in this area. 

 

I. CURRENT LITERATURE 

 

We try to explore few of the current literature in recommender 

systems. 

 

A. Traditional Collaborative Filtering 

 

A traditional collaborative filtering algorithm represents a 

customer as an N-dimensional vector of items, where N is the 

number of distinct catalog items. The components of the 

vector are positive for purchased or positively rated items and 

negative for negatively rated items. To compensate for best-

selling items, the algorithm typically multiplies the vector 

components by the inverse frequency (the inverse of the 

number of customers who have purchased or rated the item), 

making less well-known items much more relevant. For almost 

all customers, this vector is extremely sparse.  

 

The algorithm generates recommendations based on a few 

customers who are most similar to the user. It can measure the 

similarity of two customers, A and B, in various ways; a 

common method is to measure the cosine of the angle between 

the two vectors 

 

B. Cluster Models 

 

To find customers who are similar to the user, cluster 

models divide the customer base into many segments and treat 

the task as a classification problem. The algorithm’s goal is to 

assign the user to the segment containing the most similar 

customers. It then uses the purchases and ratings of the 

customers in the segment to generate recommendations. The 

segments typically are created using a clustering or other 

unsupervised learning algorithm, although some applications 

use manually determined segments. Using a similarity metric, 

a clustering algorithm groups the most similar customers 

together to form clusters or segments. Because optimal 

Clustering over large data sets is impractical, most applications 

use various forms of greedy cluster generation. These 

algorithms typically start with an initial set of segments, which 

often contain one randomly selected customer each. They then 

repeatedly match customers to the existing segments, usually 

with some provision for creating new or merging existing 

segments. For very large data sets — especially those with 

high dimensionality — sampling or dimensionality reduction is 

also necessary. 

 

Once the algorithm generates the segments, it computes the 

user’s similarity to vectors that summarize each segment, then 

chooses the segment with the strongest similarity and classifies 

the user accordingly. Some algorithms classify users into 

multiple segments and describe the strength of each 

relationship 

 

C. Search-Based Methods 

 

Search- or content-based methods treat the 

recommendations problem as a search for related items. Given 

the user’s purchased and rated items, the algorithm constructs 

a search query to find other popular items by the same author, 

artist, or director, or with similar keywords or subjects. If a 

customer buys the Godfather DVD Collection, for example, 

the system might recommend other crime drama titles, other 

titles starring Marlon Brando, or other movies directed by 

Francis Ford Coppola. 

 

If the user has few purchases or ratings, search based 

recommendation algorithms scale and performs well. For users 

with thousands of purchases, however, it’s impractical to base 

a query on all the items. The algorithm must use a subset or 

summary of the data, reducing quality. In all cases, 

recommendation quality is relatively poor. The 

recommendations are often either too general (such as best-

selling drama DVD titles) or too narrow (such as all books by 

the same author). Recommendations should help a customer 

find and discover new, relevant, and interesting items. Popular 

items by the same author or in the same subject category fail to 

achieve this goal. 

 

D. Item-to-Item Collaborative Filtering (Amazon’s 

Recommendation Model) [1] 

 

Rather than matching the user to similar customers, item-to-

item collaborative filtering matches each of the user’s 

purchased and rated items to similar items, then combines 

those similar items into a recommendation list. To determine 

the most-similar match for a given item, the algorithm builds a 
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similar-items table by finding items that customers tend to 

purchase together. Build a product-to-product matrix by 

iterating through all item pairs and computing a similarity 

metric for each pair. However, many product pairs have no 

common customers, and thus the approach is inefficient in 

terms of processing time and memory usage. The following 

iterative algorithm provides a better approach by calculating 

the similarity between a single product and all related 

products: 

 

For each item in product catalog, I1 

For each customer C who purchased I1 

For each item I2 purchased by customer C 

Record that a customer purchased I1 and I2 

For each item I2 

Compute the similarity between I1 and I2 

 

It’s possible to compute the similarity between two items in 

various ways, but a common method is to use the cosine 

measure described earlier, in which each vector corresponds to 

an item rather than a customer, and the vector’s M dimensions 

correspond to customers who have purchased that item. 

 

E. Recommendation using association rules [2] 

 

Recommendation using association rules is to predict 

preference for item k when the user preferred item i and j, by 

adding confidence of the association rules that have k in the 

result part and i or j in the condition part. Sarwar[2] used the 

rule with the maximum confidence, but we used the sum of 

confidence of all rules in order to give more weight to the item 

that is associated with more rules. 

 

Recommendation using association rules describes as 

follows. Let P be the preference matrix of n users on m items. 

In this matrix, pij is 1 if the user i has preference for the item j, 

and 0 otherwise. Let A be an association matrix containing 

confidence of association rules of m items to each other. The 

matrix A is computed from P. In this matrix, aij is confidence 

of association rule i ⇒ j. Then the recommendation vector r 

for the target user can be computed from the association 

matrix A and the preference vector u of the target user as 

equation (1). The top-N items are recommended to the target 

user based on the values in r. 

 

r = u ⋅ A . 

 

 

The above discussed algorithms does not address sparsity in 

the recommender systems. 

 

 

 

II. PROBLEM DESCRIPTION 

 

Recommendation systems can be classified based on what 

characteristics of the data they are considering. Typically, they 

can be categorized into three groups: 

1. Pure Static Recommendation System: Here only the 

rating triplet (user, item, rating) or count data (user, 

item, count) or just binary transaction data (user, item) 

is considered. No additional information is made use 

of. 

2. Hybrid Static Recommendation System:  Here apart 

from the above mentioned data, the recommendation 

system also utilized additional features related to the 

user or the item itself. 

3. Dynamic Recommendation System: Here the 

recommendation system assumes that the user’s 

preferences change over time and hence processes the 

data in chronological order. 

 

There can be some more variations based on how the 

algorithm itself processes the data, for example, some 

recommendation systems assume hidden variables, for 

example, User’s Personality profile as a hidden variable and 

try to estimate this from the given data and use it for 

prediction. 

 

Our problem description corresponds to the pure static 

recommendation problem, which is most common in literature. 

However, instead of using the rating triplet as it is we convert 

the data into binary transaction format (user, item) and work 

on this data. We do this by converting the ordinal rating data 

into a binary format (likes, dislikes). If the user had rated an 

item as 4 or 5 the item is marked as likes (1) and if it is less 

than 4 it is marked as dislikes (0).  Thus, the problem is 

reduced to an association rule mining problem, where each 

row represents a user and the columns represent the movies 

that the user likes/dislikes. 

 

Unlike what is found in literature, we do not use the all-but-

1 approach for testing or prediction. In the all-but-1 approach, 

the algorithm is trained on all but one of the ratings given by a 

user and the algorithm is expected to predict the rating for the 

single item that is held out.  

 

In our approach we assume that only one item rating is 

available for the user under consideration and try to predict the 

remaining items that the user would have rated high. 

III. DATA 

We planned to try our approach on very large datasets. 

Couple of datasets that we experimented with are: (a) 

Netflix data and (b) Movie Lens Data. 

 

NETFLIX DATA 

The Netflix data consists of 1GB of data contained in 
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17770 files, one per movie.  The first line of each file 

contains the movie id followed by a colon.  Each subsequent 

line in the file corresponds to a rating from a customer and 

its date in the following format: 

CustomerID, Rating, Date 

 

• MovieIDs range from 1 to 17770 sequentially. 

• CustomerIDs range from 1 to 2649429, with 

gaps. There are 480189 users. 

• Ratings are on a five star (integral) scale from 1 

to 5. 

• Dates have the format YYYY-MM-DD.  

 

The training data consists of 100 million ratings and the test 

data consists of 3 million ratings. 

 

MOVIE LENS DATA 

The movie lens data consists of 15MB of data. The data 

is in the format below: 

UserID, MovieID, Rating, TimeStamp  

 

• UserID ranges from 1 to 943 sequentially without 

any gaps. 

• MovieID ranges from 1 to 1682 without any gaps. 

• Ratings are on a five star (integral) scale from 1 to 4. 

• The time stamps are Unix seconds since 1/1/1970 

UTC. 

 

The total data comprises of 100,000 ratings. The data set is 

split into five 80%/20% disjoint splits into training and test 

data. This is used for 5-fold cross validation.  

 

IV. ASSUMPTIONS 

The algorithm would depend on the following assumptions:  

 

• Rating is ordinal and not continuous. However, it is 

ok to have ordinal or continuous rating prediction. 

• A user rates an item only once.  

• A user may not rate all the items and might be 

rating only a very small subset of the entire list of 

items. 

• Items not rated by a user are given an ordinal rating 

of 0. 

• Data preprocessing is not done. Assumption is that 

the data is not skewed, i.e., users have rated the 

items impartially. 

• Typical cases, assume all-but-1 approach where all 

but one rating of the user is given and we have to 

predict the rating for the left one. In our approach 

we assume that only one rating has been observed 

and we have to predict the rating for rest of the 

items.  

 

V. ALGORITHM 

 

We utilized the FP-Growth algorithm to construct and mine 

the association rules. However, the mining time and  

classification time using the standard algorithm grew 

exponentially as can be seen from the table below. 

 

% 

Support 

% 

Conf 

Mining 

Time 

(secs) 

# of 

Rules 

% 

Accuracy 

Classfn 

Time (secs) 

4 100 1.97 610 2.03 1.06 

4 90 2.33 13019 5.51 29.27 

4 80 9.7 39328 12.5 178.66 

4 70 88.31 79030 18.5 667.63 

4 60 361.97 135074 24.59 2074.94 

4 50 1018.9 201756 32.14 5759.14 

 

VI. CONTRIBUTION & OBSERVATIONS 

The key contribution in our approach is to make the mining 

and classification time to be a constant, O(1), for a given 

number of ratings. This is done based on the assumption that 

the in association rule such as, {X} -> {Y} the subsets in {X} 

are independent of each other and each subset of {X} -> {Y}. 

This assumption can be shown to be true in all cases, when the 

confidence level is set to 0%.  

 

In the original approach the rules are stored in a linked list 

which required lot of memory and processing time as and 

when a rule in inserted. By the assumption made above we can 

do rule mining and classification using a two-dimensional 

square matrix structure such as (movie x movie), which 

reduces the space and time requirements drastically. 

 

Other contributions and observations based on our approach is 

listed below: 

• Our approach requires a user to just rate one movie 

and based on this it can predict other movies that the 

user would like or dislike. However, typical 

recommender systems require a minimum number of 

ratings to be done by a user for example, a user has 

to rate at least 20 movies to make any prediction for 

the user. However,  

• Our recommendation is based on impersonal 

querying or universal querying. Since user 

similarities aren't computed. Whereas typical 

recommender systems are specific to a user. 

• If the prediction is correct increase the reward, if the 

prediction doesn’t match penalize the score. 

• There is a tradeoff between quality of prediction and 

accuracy of prediction.  As confidence is lowered, 

the quality of prediction goes down, but the accuracy 

of prediction goes up.  
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VII. EXPERIMENTAL ANALYSIS 

Using divide and conquer strategy, we converted the 1GB of 

Netflix data into a format that can be used by the association 

rule mining algorithm. However, due to limitations in Java 

Virtual Machine, we couldn’t even build the FP-tree. Hence, 

we worked on the Movie Lens Data and the results of which 

are given in the figures below.  

 

Considering the fact that almost all the recommender 

systems in the literature doesn’t provide any measure on the 

quality of prediction, the best result that we got using our 

approach with 0% confidence and 3% support is 64% (on 

average using 5-fold cross validation).  A comparison with 

results (based on Movie Lens data) declared in literature is 

given below: 

 

 

 % Accuracy 

ARM Based Approach 64% 

NNC 55% 

Naïve Bayes Classifier 52% 

K-Medians Clustering 56% 
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Classification Time Vs. Confidence
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Num Rules Vs Confidence
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VIII. DISADVANTAGES OF THIS APPROACH 

 

ARM based recommendation system is not equivalent to 

collaborative filtering based recommendation system. 

Specifically, co-occurrence or transaction based 

recommendation system is not equivalent to rating triplet 

based recommendation system. The reason being, not all the 

three parameters are utilized in the transaction based system. 

In ARM based approach only two-dimensions (user, rating) or 

(movie, rating) are utilized. In our approach we have utilized 

only the (movie, rating) pair.  

 

Accuracy is improved by lowering the confidence. This 

result in generation of exponential number of rules most of 

those are often not interesting. 

 

IX. FUTURE WORK 

 

We are classifying the future work in two directions: Future 

work on the application and data mining techniques to be 

probed. 

 

A. Application specific tasks 

• Currently, we only ran on (user, likes) pair, we can 

use the same approach and try to predict what 

movies the user might dislike using the (user, 

dislikes) data.  

• Learning based on feedback – increase or decrease 

the weight of a rule based on whether it correctly 

predicts or not. 

• Personified recommendation by including user 
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details in the algorithm, i.e., by considering the 

complete data, the rating triplet given by (user, 

item, rating). 

• Do dynamic profiling of users through sequential 

processing by utilizing the time of rating. This 

would be required in cases where a user initially 

liked cartoon movies and later developed a liking 

to action movies (as the user’s age increases). 

• Preprocessing of data to eliminate cases that could 

skew the data or doesn’t add value. For example, 

we need not consider the data related to a user who 

always gives a rating of 3. In other words, retain 

only those data that has variance or interestingness. 

• Recommending a sequence of items rather than just 

predicting the rating for a single item. For example, 

recommend a sequence of research articles 

(introduction, survey, etc.) to learn about a field. 

B. Data Mining Techniques to be explored 

• Prune rules during generation itself based on 

novelty or some other measure of interestingness. 

• Improve accuracy by considering all the 

(preprocessed) data by having a support of 0%. To 

do this, utilize compressed data representation, to 

overcome the memory constraints. 

• To handle missing data, generate synthetic 

patterns, by utilizing additional features such as 

genre of movies, age of user, etc. 

• Use an ensemble algorithm similar to weighted 

majority voting. 

• Use SVD to reduce the dimensionality of the 

ratings matrix. 

• Use subspace clustering to reduce the 

dimensionality. 
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