Reinforcement Learning for Smart Grids and Stochastic Games

> Sindhu P R Advisor: Shalabh Bhatnagar

Dept. of Computer Science and Automation Indian Institute of Science

September 2, 2016

Overview

Smart Grids

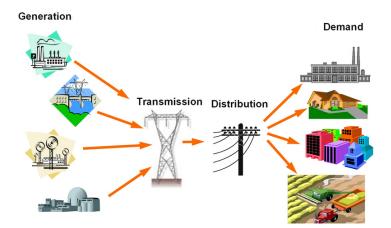
Electricity Market Power Pricing Problem Formulation

Constrained Stochastic Games

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Smart Grid - Vision

Deregulated Markets



 Deregulated architecture: generation and distribution are open to competition

Power Pricing

Objective

Pricing of power in the wholesale and retail markets under generation and demand uncertainty

- Pricing is through day-ahead and spot markets
- Day-ahead market: Trading between sellers and buyers for the delivery of power on the following day

- Spot market: Power is traded for immediate delivery
- Day-ahead power price is determined by market clearing

Power Pricing

Objective

Pricing of power in the wholesale and retail markets under generation and demand uncertainty

- Pricing is through day-ahead and spot markets
- Day-ahead market: Trading between sellers and buyers for the delivery of power on the following day

- Spot market: Power is traded for immediate delivery
- Day-ahead power price is determined by market clearing

Market Clearing in Deregulated Market

- Power trading between multiple generators and retail utilities
- Market clearing price: Determined by auctions
- Auction Process: Matches electricity supply to demand at the lowest possible price point
- Each generator bids a generation capacity at a specific price
- Based on the demand, the lowest-priced combination of offers to meet demand are selected

Market Clearing - Example

Plant	Capacity Offered (MW)	Price (₹/MW)
Wind Farm	200	15
Nuclear Plant	1000	30
Coal Plant #1	500	40
Gas Plant #1	1000	50
Coal Plant #2	500	60
Gas Plant #2	200	200

Table: Price and Generation Bids

- ▶ Demand: 2,000 MW
- Clearing price: ₹50 (Uniform Price Auction), ₹40 (Second Price Auction)

Issues in Restructuring

- Transmission Constraints
- Creation of market power:
 - Single or collection of generators profitably raise the price of power without losing market share
 - Significant market power occurs when prices exceed marginal cost
- Market power depends on:
 - Ease with which smaller generators can expand their output or new generators can enter the market

- Market concentration

Problem Formulation

G: Number of generators, M: Number of consumers

On the t^{th} day,

- ▶ $q_t = (q_t^1, \ldots, q_t^G)$: Realized hourly quantity of power generated by generators on the $(t-1)^{\text{th}}$ day
- $p_t = (p_t^1, \dots, p_t^G)$: Realized hourly prices on the $(t-1)^{\text{th}}$ day
- Assumption: $q_t^i \in Q$ and $p_t^i \in U$ take values in a discrete set

(日) (同) (三) (三) (三) (○) (○)

 \blacktriangleright Generator i bids prices for every hour of the following day, $a^i \in \mathbf{A}^i$

Modeling framework: General-Sum Stochastic game

Problem Formulation

G: Number of generators, M: Number of consumers

On the t^{th} day,

- ▶ $q_t = (q_t^1, \ldots, q_t^G)$: Realized hourly quantity of power generated by generators on the $(t-1)^{\text{th}}$ day
- ▶ $p_t = (p_t^1, \dots, p_t^G)$: Realized hourly prices on the $(t-1)^{\text{th}}$ day
- \blacktriangleright Assumption: $q_t^i \in Q$ and $p_t^i \in U$ take values in a discrete set

(日) (同) (三) (三) (三) (○) (○)

 \blacktriangleright Generator i bids prices for every hour of the following day, $a^i \in \mathbf{A}^i$

Modeling framework: General-Sum Stochastic game

General-Sum Stochastic Games

Definition

Stochastic game with n agents: $\langle S, \mathbf{A}, r, P \rangle$

- State space: $S = (p_t, q_t)$
- Aggregate action space: $\mathbf{A} = \{\mathbf{A}^i\}$, $i = 1, \dots, n$
- Set of actions available in state s: $\mathbf{A}(s) = \bigotimes_{i=1}^{n} \mathbf{A}^{i}(s)$
- \blacktriangleright Probability of transition from state s to s' under action a: $P(s'|s,\mathbf{a})$
- Reward vector of all agents for the (s, \mathbf{a}) tuple: $r(s, \mathbf{a}) = [r^i(s, \mathbf{a}) : i = 1, ..., n]$, $\mathbf{a} \in \mathbf{A}(s)$
- Reward of generator i = quantity of power sold × clearing price

General-Sum Stochastic Games

Dynamics

- ▶ Markov property: Agents independently select actions $\mathbf{a} = (a^1, \dots, a^n)$, based only on the current state
- Actions yield reward $r^i(s, \mathbf{a})$ to agent i

Strategy

- ▶ Stationary randomized strategy of agent i: $\pi^i = [\pi^i(s): s \in S]$, $\pi^i \in \tilde{\Pi}^i$
- ▶ $\pi^i(s) \in H(\mathbf{A}^i(s))$, class of probability distributions over the set $\mathbf{A}^i(s)$
- Stationary strategies of all agents: $\pi = (\pi^1, \dots, \pi^n) \in \tilde{\Pi}$
- ► Transition probability under policy π : $P^{\pi}(s,s') = \mathbb{E}\left[P(s'|s,\mathbf{a})|\pi\right]$

Objective

Expected Sum of Discounted Rewards Agent *i* needs to maximize :

$$v^{i}(s,\pi) = \sum_{t=0}^{\infty} \beta^{t} \mathbb{E}\left[r_{t}^{i} | \pi, s_{0} = s\right]$$

where $0<\beta<1$ is the discount factor

Infinite Horizon Average Reward Agent *i* needs to maximize :

$$v^{i}(s,\pi) = \lim_{T \to \infty} \frac{1}{T} \sum_{t=0}^{T} \mathbb{E}\left[r_{t}^{i} | \pi, s_{0} = s\right]$$

Objective

Expected Sum of Discounted Rewards Agent *i* needs to maximize :

$$v^{i}(s,\pi) = \sum_{t=0}^{\infty} \beta^{t} \mathbb{E}\left[r_{t}^{i} | \pi, s_{0} = s\right]$$

where $0<\beta<1$ is the discount factor

Infinite Horizon Average Reward Agent *i* needs to maximize :

$$v^{i}(s,\pi) = \lim_{T \to \infty} \frac{1}{T} \sum_{t=0}^{T} \mathbb{E}\left[r_{t}^{i} | \pi, s_{0} = s\right]$$

◆□ → ◆昼 → ◆臣 → ◆臣 → ◆□ →

Nash Equilibrium

Best Response Strategies

Tuple of n strategies $\pi_* = (\pi^1_*, \ldots, \pi^n_*)$ such that $\forall s \in S$, $\forall i \in (1, \ldots, n)$ and $\forall \pi^i \in \Pi^i$,

$$v^i(s,\pi^i_*,\pi^{-i}_*) \geq v^i(s,\pi^i,\pi^{-i}_*)$$

Existence of Nash Equilibrium

- Require finite S and \mathbf{A}^i , $\forall i \in \{1, \dots, n\}$
- At least one Nash equilibrium is guaranteed to exist in the space of stationary strategies (ÎI) for discounted and average reward criteria

Nash Equilibrium

Best Response Strategies

Tuple of n strategies $\pi_* = (\pi^1_*, \ldots, \pi^n_*)$ such that $\forall s \in S$, $\forall i \in (1, \ldots, n)$ and $\forall \pi^i \in \Pi^i$,

$$v^i(s, \pi^i_*, \pi^{-i}_*) \ge v^i(s, \pi^i, \pi^{-i}_*)$$

Existence of Nash Equilibrium

- Require finite S and \mathbf{A}^i , $\forall i \in \{1, \ldots, n\}$
- \blacktriangleright At least one Nash equilibrium is guaranteed to exist in the space of stationary strategies $(\tilde{\Pi})$ for discounted and average reward criteria

 Find stationary deterministic pricing strategies for smart grid using iterative tabular model-free algorithms ^{1,2}

- Compute Herfindahl-Hirschman Index (HHI) to determine the market power of the generators
- Cardinality of state-space: $|Q|^{24*M} \times |U|^{24*G}$
- Methods are not scalable
- Scalable algorithms need to be designed function approximation + actor-critic structure

¹Li, Jun, K Ramachandran, and T K. Das. "A Reinforcement Learning (Nash-R) Algorithm for Average Reward Irreducible Stochastic Games." Journal of Machine Learning Research (2007)

- Find stationary deterministic pricing strategies for smart grid using iterative tabular model-free algorithms ^{1,2}
- Compute Herfindahl-Hirschman Index (HHI) to determine the market power of the generators
- Cardinality of state-space: $|Q|^{24*M} \times |U|^{24*G}$
- Methods are not scalable
- Scalable algorithms need to be designed function approximation + actor-critic structure

¹Li, Jun, K Ramachandran, and T K. Das. "A Reinforcement Learning (Nash-R) Algorithm for Average Reward Irreducible Stochastic Games." Journal of Machine Learning Research (2007)

²Hu, Junling, and Michael P. Wellman. "Nash Q-learning for general-sum stochastic games." Journal of machine learning research (2003) (z + z + z) = -2

- Find stationary deterministic pricing strategies for smart grid using iterative tabular model-free algorithms ^{1,2}
- Compute Herfindahl-Hirschman Index (HHI) to determine the market power of the generators
- Cardinality of state-space: $|Q|^{24*M} \times |U|^{24*G}$
- Methods are not scalable
- Scalable algorithms need to be designed function approximation + actor-critic structure

¹Li, Jun, K Ramachandran, and T K. Das. "A Reinforcement Learning (Nash-R) Algorithm for Average Reward Irreducible Stochastic Games." Journal of Machine Learning Research (2007)

²Hu, Junling, and Michael P. Wellman. "Nash Q-learning for general-sum stochastic games." Journal of machine learning research (2003)

- Find stationary deterministic pricing strategies for smart grid using iterative tabular model-free algorithms ^{1,2}
- Compute Herfindahl-Hirschman Index (HHI) to determine the market power of the generators
- Cardinality of state-space: $|Q|^{24*M} \times |U|^{24*G}$
- Methods are not scalable
- Scalable algorithms need to be designed function approximation + actor-critic structure

¹Li, Jun, K Ramachandran, and T K. Das. "A Reinforcement Learning (Nash-R) Algorithm for Average Reward Irreducible Stochastic Games." Journal of Machine Learning Research (2007)

²Hu, Junling, and Michael P. Wellman. "Nash Q-learning for general-sum stochastic games." Journal of machine learning research (2003)

- Find stationary deterministic pricing strategies for smart grid using iterative tabular model-free algorithms ^{1,2}
- Compute Herfindahl-Hirschman Index (HHI) to determine the market power of the generators
- Cardinality of state-space: $|Q|^{24*M} \times |U|^{24*G}$
- Methods are not scalable
- Scalable algorithms need to be designed function approximation + actor-critic structure

¹Li, Jun, K Ramachandran, and T K. Das. "A Reinforcement Learning (Nash-R) Algorithm for Average Reward Irreducible Stochastic Games." Journal of Machine Learning Research (2007)

²Hu, Junling, and Michael P. Wellman. "Nash Q-learning for general-sum stochastic games." Journal of machine learning research (2003)

Smart Grids

Constrained Stochastic Games Background

Constrained Setting

- Agent incurs cost while picking an action
- Need to keep the costs incurred within bounds
- B_i : Total number of cost functions associated with agent i
- ► $c_j^i(s, \mathbf{a})$: j^{th} cost function of agent i when state is $s \in S$ and the vector of actions \mathbf{a} is chosen, $(1 \leq j \leq B_i)$
- Dⁱ_j: Bound on the discounted cost for agent i's jth discounted cost function

Constrained Setting (contd.)

Notation

- ▶ $c^i_j(\pi) = (c^i_j(1,\pi), \dots, c^i_j(|S|,\pi))^\top$: Expected j^{th} cost vector of agent i for policy π
- ► $M_j^i(\pi) = [M_j^i(s,\pi) : s \in S] = (I \beta P^{\pi})^{-1}c_j^i(\pi) :$ Discounted type j cost under policy π
- ▶ $r^i(\pi) = (r^i(1,\pi), \dots, r^i(|S|,\pi))^\top$: Expected Reward vector of agent i for policy π

•
$$v^i(\pi) = (I - \beta P^{\pi})^{-1} r^i(\pi)$$

Feasible Strategies

•
$$h(s)$$
: Initial distribution on states

•
$$\Pi_{f}^{i} = \left\{ \pi \in \tilde{\Pi} : (1 - \beta) \sum_{s \in S} h(s) M_{j}^{i}(s, \pi) \le D_{j}^{i}, 1 \le j \le B_{i}, \right\}$$

•
$$\Pi_{f} = \bigcap_{i=1}^{n} \Pi_{f}^{i}: \text{ Set of all feasible strategies}$$

`

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Nash Equilibrium

$$\pi_* \in \Pi_f \text{ and } \forall i \in \{1, \dots, n\}, \forall [\pi^i, \pi_*^{-i}] \in \Pi_f,$$

$$h^\top v^i(\pi_*) \ge h^\top v^i(\pi^i, \pi_*^{-i})$$

Does Nash equilibrium exist in the set of stationary strategies ?

Feasible Strategies

•
$$\Pi_{f}^{i} = \left\{ \pi \in \tilde{\Pi} : (1 - \beta) \sum_{s \in S} h(s) M_{j}^{i}(s, \pi) \leq D_{j}^{i}, 1 \leq j \leq B_{i}, \right\}$$

•
$$\Pi_{f} = \bigcap_{i=1}^{n} \Pi_{f}^{i}: \text{ Set of all feasible strategies}$$

Nash Equilibrium

$$\pi_* \in \Pi_f \text{ and } \forall i \in \{1, \dots, n\}, \forall [\pi^i, \pi_*^{-i}] \in \Pi_f,$$

$$h^\top v^i(\pi_*) \ge h^\top v^i(\pi^i, \pi_*^{-i})$$

Does Nash equilibrium exist in the set of stationary strategies ?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 Existence³ of Nash equilibrium: Guaranteed under strict inequality constraints on costs

- Equilibrium can be computed if model parameters are known
- ▶ P X, R X, C X
- RL algorithms to find Nash equilibria in constrained general-sum stochastic games
- Explore learning of correlated equilibria

- Existence³ of Nash equilibrium: Guaranteed under strict inequality constraints on costs
- Equilibrium can be computed if model parameters are known
- ▶ P X, R X, C X
- RL algorithms to find Nash equilibria in constrained general-sum stochastic games
- Explore learning of correlated equilibria

- Existence³ of Nash equilibrium: Guaranteed under strict inequality constraints on costs
- Equilibrium can be computed if model parameters are known
- ▶ P 🗡, R 🗡, C 🗡
- RL algorithms to find Nash equilibria in constrained general-sum stochastic games
- Explore learning of correlated equilibria

- Existence³ of Nash equilibrium: Guaranteed under strict inequality constraints on costs
- Equilibrium can be computed if model parameters are known
- ▶ P 🗡, R 🗡, C 🗡
- RL algorithms to find Nash equilibria in constrained general-sum stochastic games
- Explore learning of correlated equilibria

- Existence³ of Nash equilibrium: Guaranteed under strict inequality constraints on costs
- Equilibrium can be computed if model parameters are known
- ▶ P 🗡, R 🗡, C 🗡
- RL algorithms to find Nash equilibria in constrained general-sum stochastic games
- Explore learning of correlated equilibria

Thank You

Questions

<□ > < @ > < E > < E > E のQ @

References I

- J. Filar and K. Vrieze, *Competitive Markov decision processes*. Springer-Verlag, New York, 1997.
- C. Joe-Wong, S. Sen, S. Ha, and M. Chiang, "Optimized day-ahead pricing for smart grids with device-specific scheduling flexibility," *IEEE Journal on Selected Areas in Communications*, vol. 30, no. 6, pp. 1075–1085, 2012.
- M. Rahimiyan and H. R. Mashhadi, "An adaptive Q-learning algorithm developed for agent-based computational modeling of electricity market," *IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews)*, vol. 40, no. 5, pp. 547–556, 2010.

References II

- P. P. Reddy and M. M. Veloso, "Strategy learning for autonomous agents in smart grid markets," in *Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence - Volume Volume Two*, ser. IJCAI'11. AAAI Press, 2011, pp. 1446–1451. [Online]. Available: http://dx.doi.org/10.5591/978-1-57735-516-8/IJCAI11-244
 - M. Peters, W. Ketter, M. Saar-Tsechansky, and J. Collins, "A reinforcement learning approach to autonomous decision-making in smart electricity markets," *Machine learning*, vol. 92, no. 1, pp. 5–39, 2013.

V. Nanduri and T. K. Das, "A reinforcement learning model to assess market power under auction-based energy pricing," *IEEE Transactions on Power Systems*, vol. 22, no. 1, pp. 85–95, Feb 2007.