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Smart Grid - Vision



Deregulated Markets

I Deregulated architecture: generation and distribution are open
to competition



Power Pricing

Objective

Pricing of power in the wholesale and retail markets under
generation and demand uncertainty

I Pricing is through day-ahead and spot markets

I Day-ahead market: Trading between sellers and buyers for the
delivery of power on the following day

I Spot market: Power is traded for immediate delivery

I Day-ahead power price is determined by market clearing
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Market Clearing in Deregulated Market

I Power trading between multiple generators and retail utilities

I Market clearing price: Determined by auctions

I Auction Process: Matches electricity supply to demand at the
lowest possible price point

I Each generator bids a generation capacity at a specific price

I Based on the demand, the lowest-priced combination of offers
to meet demand are selected



Market Clearing - Example

Plant Capacity Offered (MW) Price (|/MW)

Wind Farm 200 15
Nuclear Plant 1000 30
Coal Plant #1 500 40
Gas Plant #1 1000 50
Coal Plant #2 500 60
Gas Plant #2 200 200

Table: Price and Generation Bids

I Demand: 2, 000 MW

I Clearing price: |50 (Uniform Price Auction), |40 (Second
Price Auction)



Issues in Restructuring

I Transmission Constraints
I Creation of market power:

- Single or collection of generators profitably raise the price of
power without losing market share

- Significant market power occurs when prices exceed marginal
cost

I Market power depends on:

- Ease with which smaller generators can expand their output or
new generators can enter the market

- Market concentration



Problem Formulation

G: Number of generators, M : Number of consumers

On the tth day,

I qt = (q1t , . . . , q
G
t ): Realized hourly quantity of power

generated by generators on the (t− 1)th day

I pt = (p1t , . . . , p
G
t ): Realized hourly prices on the (t− 1)th day

I Assumption: qit ∈ Q and pit ∈ U take values in a discrete set

I Generator i bids prices for every hour of the following day,
ai ∈ Ai

Modeling framework: General-Sum Stochastic game
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General-Sum Stochastic Games

Definition
Stochastic game with n agents: 〈S,A, r, P 〉

I State space: S = (pt, qt)

I Aggregate action space: A = {Ai}, i = 1, . . . , n

I Set of actions available in state s: A(s) =
n

×
i=1

Ai(s)

I Probability of transition from state s to s′ under action a:
P (s′|s,a)

I Reward vector of all agents for the (s,a) tuple:
r(s,a) = [ri(s,a) : i = 1, . . . , n], a ∈ A(s)

I Reward of generator i = quantity of power sold × clearing
price



General-Sum Stochastic Games

Dynamics

I Markov property: Agents independently select actions
a = (a1, . . . , an), based only on the current state

I Actions yield reward ri(s,a) to agent i

Strategy

I Stationary randomized strategy of agent i:
πi = [πi(s) : s ∈ S], πi ∈ Π̃i

I πi(s) ∈ H(Ai(s)), class of probability distributions over the
set Ai(s)

I Stationary strategies of all agents: π = (π1, . . . , πn) ∈ Π̃

I Transition probability under policy π:
P π(s, s′) = E [P (s′|s,a)|π]



Objective

Expected Sum of Discounted Rewards

Agent i needs to maximize :

vi(s, π) =

∞∑
t=0

βtE
[
rit|π, s0 = s

]
where 0 < β < 1 is the discount factor

Infinite Horizon Average Reward

Agent i needs to maximize :

vi(s, π) = lim
T→∞

1

T

T∑
t=0

E
[
rit|π, s0 = s

]
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Nash Equilibrium

Best Response Strategies

Tuple of n strategies π∗ = (π1∗, . . . , π
n
∗ ) such that ∀s ∈ S,

∀i ∈ (1, . . . , n) and ∀πi ∈ Πi,

vi(s, πi∗, π
−i
∗ ) ≥ vi(s, πi, π−i∗ )

Existence of Nash Equilibrium

I Require finite S and Ai, ∀i ∈ {1, . . . , n}
I At least one Nash equilibrium is guaranteed to exist in the

space of stationary strategies (Π̃) for discounted and average
reward criteria
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Future Directions

I Find stationary deterministic pricing strategies for smart grid
using iterative tabular model-free algorithms 1,2

I Compute Herfindahl-Hirschman Index (HHI) to determine the
market power of the generators

I Cardinality of state-space: |Q|24∗M × |U |24∗G

I Methods are not scalable

I Scalable algorithms need to be designed - function
approximation + actor-critic structure

1Li, Jun, K Ramachandran, and T K. Das. ”A Reinforcement Learning
(Nash-R) Algorithm for Average Reward Irreducible Stochastic Games.”
Journal of Machine Learning Research (2007)

2Hu, Junling, and Michael P. Wellman. ”Nash Q-learning for general-sum
stochastic games.” Journal of machine learning research (2003)
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Constrained Setting

I Agent incurs cost while picking an action

I Need to keep the costs incurred within bounds

I Bi: Total number of cost functions associated with agent i

I cij(s,a): jth cost function of agent i when state is s ∈ S and
the vector of actions a is chosen, (1 ≤ j ≤ Bi)

I Di
j : Bound on the discounted cost for agent i’s jth discounted

cost function



Constrained Setting (contd.)

Notation

I cij(π) = (cij(1, π), . . . , cij(|S|, π))> : Expected jth cost vector
of agent i for policy π

I M i
j(π) = [M i

j(s, π) : s ∈ S] = (I − βP π)−1cij(π) :
Discounted type j cost under policy π

I ri(π) = (ri(1, π), . . . , ri(|S|, π))> : Expected Reward vector
of agent i for policy π

I vi(π) = (I − βP π)−1ri(π)



Feasible Strategies

I h(s): Initial distribution on states

I Πi
f =

{
π ∈ Π̃ : (1− β)

∑
s∈S

h(s)M i
j(s, π) ≤ Di

j , 1 ≤ j ≤ Bi,
}

I Πf =
n⋂
i=1

Πi
f : Set of all feasible strategies

Nash Equilibrium

π∗ ∈ Πf and ∀i ∈ {1, . . . , n}, ∀[πi, π−i∗ ] ∈ Πf ,

h>vi(π∗) ≥ h>vi(πi, π−i∗ )

Does Nash equilibrium exist in the set of stationary strategies ?
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Future Directions

I Existence3 of Nash equilibrium: Guaranteed under strict
inequality constraints on costs

I Equilibrium can be computed if model parameters are known

I P 7, R 7, C 7

I RL algorithms to find Nash equilibria in constrained
general-sum stochastic games

I Explore learning of correlated equilibria

3Vinayaka G. Yaji, Shalabh Bhatnagar,“ Necessary and sufficient conditions
for optimality in constrained general sum stochastic games”, Systems &
Control Letters, Volume 85, November 2015
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Thank You

Questions
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