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Animal Foraging

» Capability of taking decisions under different scenarios seen in
animals and especially birds

» Example: Bird foraging
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Rationality: An “entity” takes decisions to maximize a
pre-defined utility
» Aim: Find a sequence of decisions to achieve the goal

Can we mimic this capability in algorithms 7
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Mathematical Framework

Problem Modeling

» Agent (learner): Entity that
observes and acts

» Components:
> Set of states (or
configurations) s € S
> Feasible actions (or
decisions) a(s) € A in
every state s
» Dynamics:
» Action changes state
» Obtain reward for every
action, R(s,a, Snext)

Agent

Sensars

Actuators

Percepts

Actions

juaWuoAUg



Example: Chess

State s State s9

R (sl, “Down'’, 82) = -1
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Optimal Decision making under uncertainty

Example:

> Maze-like problem:
> Agent lives in a grid
» Wall blocks the agent’s path
» Noisy movement: actions do
not always go as planned:
> 90% of the time action North
takes the agent north
» 10% of the time, North takes
the agent west

> Agent receives small rewards
each time step and big rewards
at the end

» Goal: Maximize expected sum
of rewards



Markov Decision Process

» Model sequential decision making
problem under uncertainty as a
Markov Decision Process (MDP)

» MDP = < set of states S, actions A,
reward function R and a transition
function P >

> P(s,a, Spest): Probability of moving
to state Spez¢ from state s under
action a




Policy

> In deterministic problems, we want
a sequence of actions from start to
goal

» For MDP, we want an optimal
policy 7* : § — A

» Policy m gives an action for each
state at each time

. . . . Figure: Optimal policy when
» Optimal Policy: Gives maximum Rg: _3 ch))r Al Sp Y

expected sum of rewards (if
followed)



Value Functions

(=) =) =)

So,ao 517111 82,(12

» State Value Function V7: indicates how good or bad a state
is under policy 7

V7™ (s0) = E [R(s0, m(s0)) + yR(s1,7(s1)) + 7> R(s2,7(s2)) + .. .]

» Action Value Function Q™: indicates how good or bad an
action is for a state when policy 7 is followed

Q" (s0,a0) = E [R(s0,a0) +yR(s1,7(s1)) + v’ R(s2, w(s2)) + .. ]

» Optimal Value Function: V™ : § - R



Dynamic Programming

» V™. Computed using iterative dynamic programming
principle
At iteration k, we get an estimate Vj, of V7™

v

Vi(s) = max P(s,a, Spext) [R(5,a,8") + Vi (Sneat)]

a

— max Qu(s.a)

v

Vk+1(8) — Vk(S) Vs e S
Vi > V™ as k — 0o

v

v

Why discounting ()?: Prefer rewards now to rewards later
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Reinforcement Learning

Twist: P X, R X

» We do not know which
states are good

> No knowledge what actions
do

Basic Idea:

» Observe the state and take
an action

> Receive feedback in the form
of rewards

» Must (learn to) act so as to
maximize expected sum of
discounted rewards

——>

State

Reward

Action
Paiciaaall
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Reinforcement Learning

v

Learning is based on observed samples of outcomes !
Still assume a Markov Decision Process:

» A set of states s € S
A set of actions a € A

States evolve according to P(s,a, s’)
Agent receives reward according to R(s,a,s’)

v
v VvYyy

v

Still looking for a policy 7(-)

v

Trial-and-error: Must try actions at all states to learn



Learning without P and R

Vi(s) = max P(s arsnear) |BLs7a78) + 7Vi(Sneat)]

a

» Idea: Obtain R from samples

> Receive sample (s, a, Spext,T)
Training:

> Initialize Qo(s,a) =0, Y(s,a) pairs

» Compute estimate Q;, of Q™ iteratively using many such
samples

Qr(s,a) = (1 — a)Qi(s,a) + a [r+ ’ymélek(snem, b)

» As k — 00, Q) — QT

» Good action for a state s is one that has highest @) value



RL in Action - Miniature Helicopter Control

Challenges in Helicopter Control

» Unstable
» Complicated dynamics - air flow, blade dynamics

» Noisy(inexact) estimates of position, orientation, velocity

MDP Modeling

» State s = (Position, orientation, velocity, angular velocities)
» Action a = (Movement direction,acceleration)

» Reward function is quadratic based on change in position and
orientation



Summary

v

RL is used for optimal sequential decision making under
uncertainty

Control without human intervention

v

v

Applications: Engineering, Artificial Intelligence

v

Some other applications: Traffic light control, control of
drones



Thank You




