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Checkmate !



Animal Foraging

I Capability of taking decisions under different scenarios seen in
animals and especially birds

I Example: Bird foraging



Sequential Decision Making

Features

I Decision making in stages

I Step taken affects future stages

I Rationality: An “entity” takes decisions to maximize a
pre-defined utility

I Aim: Find a sequence of decisions to achieve the goal

Can we mimic this capability in algorithms ?
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Mathematical Framework

Problem Modeling

I Agent (learner): Entity that
observes and acts

I Components:
I Set of states (or

configurations) s ∈ S
I Feasible actions (or

decisions) a(s) ∈ A in
every state s

I Dynamics:
I Action changes state
I Obtain reward for every

action, R(s, a, snext)
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Example: Chess

State s1 State s2

“Down”

R
(
s1, “Down′′, s2

)
= −1



Optimal Decision making under uncertainty

Example:

I Maze-like problem:
I Agent lives in a grid
I Wall blocks the agent’s path

I Noisy movement: actions do
not always go as planned:

I 90% of the time action North
takes the agent north

I 10% of the time, North takes
the agent west

I Agent receives small rewards
each time step and big rewards
at the end

I Goal: Maximize expected sum
of rewards
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Markov Decision Process

I Model sequential decision making
problem under uncertainty as a
Markov Decision Process (MDP)

I MDP = < set of states S, actions A,
reward function R and a transition
function P >

I P (s, a, snext): Probability of moving
to state snext from state s under
action a

s0

s1

s2

0.4

0.3

a



Policy

I In deterministic problems, we want
a sequence of actions from start to
goal

I For MDP, we want an optimal
policy π∗ : S → A

I Policy π gives an action for each
state at each time

I Optimal Policy: Gives maximum
expected sum of rewards (if
followed)

Figure: Optimal policy when
R = −3 for all s



Value Functions

s0 s1 s2 s3

R(s0, a0)

a0

R(s1, a1)

a1

R(s2, a2)

a2

I State Value Function V π: indicates how good or bad a state
is under policy π

V π(s0) = E
[
R(s0, π(s0)) + γR(s1, π(s1)) + γ2R(s2, π(s2)) + . . .

]
I Action Value Function Qπ: indicates how good or bad an

action is for a state when policy π is followed

Qπ(s0, a0) = E
[
R(s0, a0) + γR(s1, π(s1)) + γ2R(s2, π(s2)) + . . .

]
I Optimal Value Function: V π∗

: S → R



Dynamic Programming

I V π∗
: Computed using iterative dynamic programming

principle

I At iteration k, we get an estimate Vk of V π∗

Vk(s) = max
a

P (s, a, snext)
[
R(s, a, s′) + γVk(snext)

]
= max

a
Qk(s, a)

I Vk+1(s)← Vk(s) ∀s ∈ S
I Vk → V π∗

as k →∞
I Why discounting (γ)?: Prefer rewards now to rewards later



Reinforcement Learning

Twist: P 7, R 7

I We do not know which
states are good

I No knowledge what actions
do

Basic Idea:

I Observe the state and take
an action

I Receive feedback in the form
of rewards

I Must (learn to) act so as to
maximize expected sum of
discounted rewards

Agent

Environment

Reward

Action

State
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Reinforcement Learning

I Learning is based on observed samples of outcomes !
I Still assume a Markov Decision Process:

I A set of states s ∈ S
I A set of actions a ∈ A
I States evolve according to P (s, a, s′)
I Agent receives reward according to R(s, a, s′)

I Still looking for a policy π(·)
I Trial-and-error: Must try actions at all states to learn
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Learning without P and R

Vk(s) = max
a
((((

(((P (s, a, snext)
[
���

��R(s, a, s′) + γVk(snext)
]

I Idea: Obtain R from samples

I Receive sample (s, a, snext, r)
Training:

I Initialize Q0(s, a) = 0, ∀(s, a) pairs

I Compute estimate Qk of Qπ
∗

iteratively using many such
samples

Qk(s, a) = (1− α)Qk(s, a) + α

[
r + γmax

b
Qk(snext, b)

]
I As k →∞, Qk → Qπ

∗

I Good action for a state s is one that has highest Q value



RL in Action - Miniature Helicopter Control

Challenges in Helicopter Control

I Unstable

I Complicated dynamics - air flow, blade dynamics

I Noisy(inexact) estimates of position, orientation, velocity

MDP Modeling

I State s = (Position, orientation, velocity, angular velocities)

I Action a = (Movement direction,acceleration)

I Reward function is quadratic based on change in position and
orientation



Summary

I RL is used for optimal sequential decision making under
uncertainty

I Control without human intervention

I Applications: Engineering, Artificial Intelligence

I Some other applications: Traffic light control, control of
drones



Thank You


