
Static Race Detection for Periodic Programs
Varsha P Suresh

IIITB
Bangalore, India

varsha.suresh@iiitb.ac.in

Deepak D’Souza
IISc

Bangalore, India
deepakd@iisc.ac.in

Rekha Pai
IISc

Bangalore, India
rekhapai@iisc.ac.in

Meenakshi D’Souza
IIITB

Bangalore, India
meenakshi@iiitb.ac.in

Sujit Kumar Chakrabarti
IIITB

Bangalore, India
sujitkc@iiitb.ac.in

Abstract—We consider the problem of statically detecting data
races in periodic real-time programs that use locks, and run on
a single processor platform. We propose a technique based on a
small set of rules that exploits the priority, periodicity, locking,
and timing information of tasks in the program. One of the key
requirements is a response time analysis for such programs, and
we propose an algorithm to compute this for the case of non-
nested locks. We have implemented our analysis for real-time
programs written in C in a tool called PEPRACER and evaluated
its performance on a small set of benchmarks from the literature.

Index Terms—Real-Time systems, periodic programs, static
analysis, data races, WCRT Analysis

I. INTRODUCTION

Periodic real-time applications (or simply periodic pro-
grams) are a class of real-time systems that comprise a set
of tasks, each of which comes with an associated priority
and periodicity, and are executed according to a scheduling
policy like priority-based preemptive scheduling, on a real-
time operating system. Many of these systems are safety-
critical in nature, being widely employed in avionics, robotics,
and autonomous systems.

These systems are also essentially concurrent in nature
(even if we consider single processor platforms), since a
running task may be preempted by a higher priority task,
causing them to interleave in time. With concurrency come the
attendant problems of data-races: it is not difficult to imagine
a scenario where a low priority task is updating a shared data-
structure or even a multi-word variable like a long int,
when it is preempted by a higher priority task that goes on
to access the potentially inconsistent shared data. Thus it is
common for real-time application developers to use synchro-
nization mechanisms like locks to protect accesses to shared
data structures or resources (like an LCD display). Real-
Time operating systems typically provide a variety of lock
mechanisms from standard locks or semaphores to priority-
inheritance based locks [1].

Our focus in this paper is on giving a way to statically
(that is by analyzing the source code of the application, rather
than running it) detect races in periodic programs that use
standard locks. The emphasis in static analysis techniques is on
soundness: we do not eliminate a pair of conflicting accesses
unless we can prove that they do not race. The other side of
the coin is precision: how close is the set of potential races
reported to the actual set of races in the program. The basic
technique used in the programming languages community to

statically detect races is a lockset analysis, which computes
the set of locks that are must-held at each statement in a task,
and declares two statements to be non-racy if they hold a
common lock. More recent techniques [2], [3] exploit priority
information to declare accesses to be non-racy: for instance a
high-priority task does not need to protect its accesses from
lower priority tasks.

However, none of these techniques seek to exploit the
inherent periodic nature or execution times of the tasks in these
programs. For example, a simple observation is that if two
tasks have the same period and don’t take any locks, they can
never overlap in time. Exploiting timing information is also
key to improving the precision of a race analysis technique
for these programs. The notion of worst-case response time
(WCRT) of a task measures the maximum time an instance
of the task may take to complete its execution starting from
the beginning of its period. As an example of how we can
use conservative WCRT estimates, if we can conclude from
the WCRT information that a low-priority task always finishes
execution before the next arrival of a high-priority task, we can
declare them to be non-racy.

While computing the WCRT of tasks in periodic programs is
well-studied in the real-time systems community, starting from
[4], [5] for periodic programs without locks, and for periodic
programs with priority-inheritance-based locks [1], as far as
we are aware there are no techniques available for periodic
programs with standard locks. One of the contributions of this
paper is to extend the classical technique of [5] to compute
WCRT estimates for programs with non-nested locks, given
worst-case execution time (WCET) estimates of tasks and
lock-unlock blocks (or critical sections).

We then go on to give a set of six rules (in the spirit of the
ideas described above) to soundly eliminate pairs of conflicting
accesses, leading to a sound, efficient, and fairly precise race-
detection technique for such programs.

We have implemented our analysis in a tool called
PEPRACER for detecting races in such programs written in C.
One of the inputs to the tool is a WCET analysis for different
blocks in the program tasks, which we obtain using the WCET
analysis tool Heptane [6]. We have run our tool on several
benchmarks, including robot controllers from the nxtOSEK
project [7]. Our tool runs in a fraction of a second on these
benchmarks, and on the average eliminates 97% of conflicting
access pairs as non-racy.

An overview of our technique is presented in the next



Section on a benchmark example. Periodic programs and
their execution semantics are given in Section III. Section IV
formally defines the notions of conflicting accesses and data
races. Algorithms for computing safe bounds on response
times of periodic programs with locks are presented in Sec-
tion V-B. Section VI gives the rules for disjointedness of
tasks and the race detection algorithm for periodic programs.
Our experiments on benchmark examples are detailed in
Section VII, followed by conclusion.

II. OVERVIEW

We provide an overview of our technique with an illustrative
example adapted from the “lego osek” robot controller, based
on the OSEK operating system, from [7]. Fig. 1 shows
some excerpts from this example. The controller’s job is to
control the motion of the two-wheeled robot to follow a
line (that it detects using light sensors) but also to detect
obstacles along the way (using a sonar sensor) and avoid
them by braking and moving to the left. The controller has
two tasks TaskControl and TaskObstAvoid that do
the line-following control and obstacle detection and avoid-
ance respectively. TaskControl has high priority (higher
value indicates higher priority) and runs every 10ms, while
TaskObstAvoid has low priority and runs every 30ms. The
two tasks access some shared locations, including structures
for actuating the left and right wheel motors, an LCD display,
and a Boolean “obstacle-detected” flag. TaskControl reads
two light sensor values, does some computation with them, and
writes them to the LCD display. The access to the LCD display
is protected by acquiring and releasing the lcd_lock lock.
Finally it computes the new speed and brake values that are
then written to the wheel motor structures, after checking that
the obstacle flag is not set. The TaskObstAvoid task
reads the sonar and left light sensors, does some computation
on them, sets the obstacle flag based on these values, and
displays them on the LCD (making sure to take a lock on it
first). If the obstacle flag was set, it goes on to write to
the left wheel structure to brake and turn the robot to the left.

We note that there are several conflicting accesses to the
shared variables, including lines 13 and 33 to lcd, lines 16
and 29 and 16 and 31 on obstacle, and lines 19–20 and 36–
37 on left_wheel. Apart from the accesses to lcd which
are protected by a lock, the other accesses appear to be racy at
first glance. For instance, while TaskObstAvoid is updating
the left wheel structure, it could be preempted by the higher
priority TaskControl which goes on to write to the same
structure, potentially leading to a harmful race.

Our key idea is to exploit the priority, periodicity, and worst
case response times of the tasks, to show that these accesses
cannot race. Fig. 2 shows the periodic execution of the two
tasks. Notice that if the low priority task is guaranteed to finish
its execution before the next instance of the higher priority task
is scheduled, there can be no interleaving of the two tasks,
and we can declare all the conflicting accesses as non-racy.
However, concluding this in the presence of locks is not easy,
and our first contribution is a way of computing an estimate

1. // Shared structures and variables
2. struct motor right_wheel;
3. struct motor left_wheel;
4. struct display lcd;
5. bool obstacle;

6. void TaskControl() { // Period 10, Priority 2 (high)
7. int sensor_right, sensor_left;
8. // Read and calibrate sensor values
9. sensor_right = get_light_sensor(right);
10. sensor_left = get_light_sensor(left);
11. // display sensor values in LCD
12. lock(lcd_lock);
13. show_var(sensor_right, sensor_left); // writes to lcd;
14. unlock(lcd_lock);
15. // PWM-based motor control, uses sensor values
16. if (!obstacle) {
17. right_wheel.speed = ...;
18. right_wheel.brake = 0;
19. left_wheel.speed = ...;
20. left_wheel.brake = 0;
21. }
22. }

23. void TaskObstAvoid() { // Period 30, Priority 1 (low)
24. int sonar_value, sensor_left;
25. // Read and calibrate sensor values
26. sonar_value = get_sonar_sensor(sonar_sensor);
27. sensor_left = get_light_sensor(left);
28. if (...)
29. obstacle = 1;
30. else
31. obstacle = 0;
32. lock(lcd_lock);
33. show_var(sonar_value, sensor_left); // writes to lcd
34. unlock(lcd_lock);
35. if (obstacle) { // avoid by moving left
36. left_wheel.speed = ...;
37. left_wheel.brake = 1;
38. }
39. }

Fig. 1: An example periodic program adapted from Lego-
OSEK

TH

WCRT est. of taskL
TL

Fig. 2: Task timelines for Lego-OSEK example

of the worst case response times for tasks that take non-nested
locks (like in the example program). Using raw WCET times
of the tasks and its lock blocks (like lines 12–14) for the
platform the robot controller is to be run on, we use Algo. 2
(described in Sec. V) to compute an estimate of the response
time of TaskObstAvoid. Rule 3 (described in Sec. VI) then
allows us to eliminate all the pairs of conflicting accesses as
non-racy.

We note that techniques such as [2], [3] that consider task
priorities and locks (but not periodicities and response times)
would not be able to eliminate any of the conflicting acccess
pairs, except the accesses to lcd which are protected by a
lock.



TABLE I: Periodic Program Commands CmdV

Statement Description
start Make all the tasks ready for execution.
begin Start executing the task.
end Finish executing the task.
skip Do nothing.
x := e Assign the value of expression e to x.
assume(b) Enabled only if expression b evaluates to true;

does nothing.
lock(l) Current task takes lock l if available;

otherwise blocks till l becomes available.
unlock(l) Current task releases lock l.

III. PERIODIC PROGRAMS

A periodic program is a collection of tasks. Each task has an
associated function, period, and priority. There is a designated
init task which is the only task that is ready to run initially.
An execution of the program begins with running the initf
function, associated with the init task, which initializes shared
variables and then makes other tasks ready to run using the
start command. The init task runs only once.

The execution of the tasks is orchestrated by a priority-based
preemptive scheduler. It is important to point out here that
we are assuming a single processor platform. The scheduler
selects one of the enabled tasks for execution on a highest-
priority-first basis. A task with period T is enabled every T
time units. If there are more than one tasks of the highest
priority ready to run, the longest waiting task is picked for
execution. This is also known as First-Come-First-Served or
FCFS scheduling.

The task functions operate on a set of shared variables V us-
ing assignment statements and accesses to the shared variables
can be synchronized using the lock-unlock commands. The
commands CmdV used in a periodic program are shown in
Table I.

Formally, a periodic program P is a tuple (V,L, T ) where
V is a finite set of shared variables, L is a finite set of locks,
and T = {τ1, . . . , τk} is a finite set of tasks. A task τ ∈ T
is a tuple (Gτ ,Tτ , pτ ), where Gτ is the task function, Tτ is
the period between two invocations of the task, and pτ is its
priority. The task function Gτ is represented as a Control Flow
Graph (CFG) Gτ = (Locτ , Iτ , entτ , extτ ), where Locτ is the
finite set of locations of Gτ , Iτ ⊆ Locτ × CmdV × Locτ is
the set of instructions in Gτ , and entτ , extτ ∈ Locτ are the
entry and exit locations respectively in Gτ . Sets LocP and
IP are the locations and instructions, respectively, in program
P . We will drop the subscripts in the notations whenever the
context is clear.

An example periodic program and the CFG representation
of the ObsDect function are shown in Fig. 3. The periodic
program has two tasks that implements a simple robotic
controller, apart from the default init task. The ObsDect task
function detects an obstacle based on the sensor input in the sIn
variable and makes a corrective action. The MoveForward
task function directs the robot to move forward if there is
no obstacle. The ObsDect task has high priority and runs

init:
1. obstacle := 0;
2. forward := 0;
3. sIn := 0;
4. start;

// Period = 100, Prio = 2
ObsDect:
10. obstacle := 0;
11. if (sIn <= 10) {
12. obstacle := 1;
13. forward := -100;
14. }
15.

// Period = 200, Prio = 1
MoveForward:
20. if (!obstacle)
21. forward := 100;
22.

(a) An example program

10

11

12

13

14

15

obstacle:=0

assume(sIn>10)assume(sIn<=10)

forward:=−100

obstacle:=1

skip

(b) CFG of the ObsDect function

Fig. 3: Example program and the CFG representation

frequently at every 100 time units while the MoveForward
task has low priority and runs every 200 time units. Both the
tasks access the shared variables obstacle and forward. We use
the convention that a higher value indicates higher priority.

We now define the semantics of a periodic program P =
(V,L, T ) as a labeled transition system SP = 〈S, sin,⇒〉
where S is the set of states, sin ∈ S is the initial state, and⇒
is the transition relation, as defined below. In the following,
Tq denotes a set of task priority queues and ε denotes an
empty queue. We also assume that the tasks can have priorities
in P = {1, . . . , k}. For an integer expression e, Boolean
expression b, and an environment φ for V , we denote by [[e]]φ
the integer value that e evaluates to in φ, and [[b]]φ denotes
the Boolean value that b evaluates to in φ. For a function
f : X → Y , and elements x ∈ X and y ∈ Y , we use the
notation f [x 7→ y] to denote the function f ′ : X → Y given
by f ′(x) = y and for all z different from x, f ′(z) = f(z).

A state s ∈ S is a tuple (R,W,A,B, pc, φ, tick , r) where

1) R is a priority queue of tasks that are ready to run,
2) W ⊆ T is the set of tasks that are waiting to be

scheduled,
3) A ∈ L ⇀ T is a partial map that gives, for each lock,

the task that has acquired the lock,
4) B ∈ L → Tq is a map that gives, for each lock, the

priority queue of tasks that are blocked on the lock,
5) pc ∈ T → LocP gives the current location of the task,
6) φ ∈ V → Z is a variable to value map,
7) tick ∈ Z+ is the time units elapsed since the program

started, and
8) r ∈ T is the currently running task.

The initial state
sin = (ε, {τ2, . . . , τk}, ∅, ∅, λτ.entfτ , λx.0, 0, init) denotes
that initially the init task (which is τ1) is the running task
while no other tasks are ready to run and instead are waiting
to be scheduled, none of the tasks have acquired locks and
hence they are not blocked, all the tasks are at their entry
locations, all the variables are initialized to zero, and so is the



tick counter.
We now define the transition relation ⇒ ⊆ S × IP × S

as follows. For a state s = (R,W,A,B, pc, φ, tick , r), a task
τ , and an instruction ι = (l, c, l′) in Gτ , we have s ⇒ι s

′

iff one of the rules in Fig. 4 is satisfied. If for a command
c, the conditions on state s specified in the antecedent (the
ones mentioned above the line) holds then s ⇒ι s

′ in the
consequent (the one below the line) also holds.

The START rule, for the start command executed by
the init task, enqueues all the tasks in W that are waiting
to be scheduled onto the ready queue R. This might require
a rescheduling of tasks. Hence the current running task r is
also enqueued onto R but ahead of those tasks with the same
priority as that of r. It then picks the highest priority task,
which is at the head of the updated ready queue, to be the
next running task.

The rule uses the ENQ(Q,S) function which when given a
priority queue Q of tasks and a set S of tasks, enqueues each
task in S onto the queue Q. The function enqb(Q, s) adds the
task s onto to the priority queue Q ahead of the elements with
the same priority as that of s. The function deq(Q) returns the
queue with the head element removed. The function head(Q)
when given a priority queue Q of tasks returns the task with
the highest priority, which is at the head of Q.

The END rule is defined for the end command to signal
completion of the running task. Hence the task is inserted into
the wait listW . Moreover, the highest priority task in the ready
queue R, which is at its head, is removed from R and made
the running task. The rule requires that the ready queue R be
non-empty.

The ALOCK rule is defined for the lock(m) command. If
the running task r requests for a lock m which is not acquired
by any task (as given by A(m) = undef ) then the running
task proceeds with acquiring the lock. The BLOCK rule is
defined for the lock(m) command when the running task
cannot acquire the lock. If the running task r requests for a
lock m which is acquired by a task τ ′ (as given byA(m) = τ ′)
then the running task r is blocked by enqueuing it onto the
blocked queue B(m). Further, the highest priority task from
the non-empty ready queue R is made the running task. The
enq(Q, e) function, used in the rule, when given a priority
queue Q of tasks enqueues e onto Q, as is standard in the
literature.

The UNLOCK rule is defined for the unlock(m) com-
mand. If the running task requests for the release of the lock
m which it was holding or it was the case that no task was
holding the lock (as given by A(m) = τ ∨ A(m) = undef )
then the running task can proceed with releasing the lock.
Further, if there are no tasks blocked on this lock m (as given
by B(m) = ε) then the current task continues to be the running
task. The UNLOCK-WK rule is defined for the unlock(m)
command when a low priority task is blocked on the lock. If
the running task requests for the release of the lock m which it
was holding and a task τ ′, at the head of the blocked priority
queue B(m), is blocked on the lock, of priority lower than
the running task, then τ ′ is unblocked by dequeing it from its

blocked priority queue B(m) and enqueuing it onto the ready
queue R. Here, the task τ ′ is inserted onto the priority based
ready queue R ahead of the other tasks with the same priority
as that of τ ′, using the function enqb. Task r continues to
be the running task. The UNLOCK-CS rule is defined for the
unlock(m) command when a high priority task is blocked
on lock m. If the running task requests for the release of the
lock m which it was holding and a high priority task τ ′ is
blocked on the lock then τ ′ is unblocked by dequeing it from
its blocked queue B(m). The task τ ′, being of higher priority,
is selected as the next running task while the current running
task r is enqueued onto the ready queue R.

The SCHED rule is selected non-deterministically. If upon
incrementing the tick counter, by one, in the current state s
some of the tasks, inW , that are waiting to be scheduled may
become ready to be scheduled, due to their periods. In that case
such tasks are moved to the ready queue R, while removing
them from the wait list W . This might trigger a rescheduling
of tasks which is essentially to pick a new high priority task
as the next running task. Hence the current running task r is
also enqueued onto the ready queue, ahead of those tasks with
the priority same as that of r. The highest priority task in the
updated ready queue, which is at its head, is selected as the
next running task.

The SKIP, BEGIN, ASSIGN, and ASSUME rules for the
skip, begin, assignment statement, and assume command,
respectively are easy to understand.

An execution of a periodic program P is a finite sequence
of transitions ρ = δ1, . . . , δn (n ≥ 1), such that there exists a
sequence of states s0, . . . , sn of S, with each δi ∈ ⇒ of the
form (si−1, ιi, si) for some ιi, and s0 = sin.

The semantics we have defined so far abstracts away the
“real-time” aspect of a periodic program. We can obtain the
real-time semantics of a periodic program by considering a
concrete execution environment which fixes the execution time
of each instruction (say in a bounded interval of time), and
restricting ourselves to executions where the tick interrupt is
driven by a real-time clock and is consistent with the time
taken to execute instructions between two ticks. Henceforth
we fix such an environment and focus on the induced subset
of executions of a periodic program.

IV. DATA RACES

Let P = (V,L, T ) be a periodic program. In an execution of
P , tasks are executed periodically and hence during the course
of execution of P several instances of a task gets executed.

Consider two tasks τ1 and τ2 in T , and two non-empty
paths π and π′ in Gτ1 and Gτ2 , respectively. We say π and π′

may happen in parallel in P if there is an execution ρ of P ,
and instances of τ1 and τ2 in ρ, in which the paths π and π′

interleave (that is, either π′ begins after π has begun but not
yet ended; or vice-versa).

We now define when two statements s1 and s2 (correspond-
ing, to instructions ι1 = (l1, c1, l

′
1) and ι2 = (l2, c2, l

′
2)) in

tasks τ1 and τ2, respectively, may happen in parallel. Consider
the program P ′ obtained from P by enclosing the statements



SKIP

ASSIGN ASSUME

BEGIN

START

END

ALOCK

BLOCK

UNLOCK

UNLOCK−WK

UNLOCK−CS

SCHED

s⇒ι (R,W,A,B, pc[τ 7→ l′], φ, tick , r)

c = skip pc(τ) = l τ = r

s⇒ι (R,W,A,B, pc[τ 7→ l′], φ[x 7→ [[e]]φ], tick , r)
c = x := e pc(τ) = l τ = r c = assume(b) pc(τ) = l τ = r [[b]]φ = true

s⇒ι (R,W,A,B, pc[τ 7→ l′], φ, tick , r)

s⇒ι (R,W,A,B, pc[τ 7→ l′], φ, tick , r)

c = begin pc(τ) = l τ = r

c = start pc(τ) = l τ = r = init

s⇒ι (deq(ENQ(enqb(R, r),W)), ∅,A,B, pc[τ 7→ l′], φ, tick ,head(ENQ(enqb(R, r),W)))

s⇒ι (deq(R),W ∪ {r},A,B, pc[τ 7→ l′], φ, tick ,head(R))
c = end pc(τ) = l τ = r R 6= ε

c = lock(m) pc(τ) = l τ = r A(m) = undef

s⇒ι (R,W,A[m 7→ τ ],B, pc[τ 7→ l′], φ, tick , r)

s⇒ι (deq(R),W,A,B[m 7→ enq(B(m), r)], pc, φ, tick ,head(R))
c = lock(m) pc(τ) = l τ = r A(m) = τ ′ R 6= ε

c = unlock(m) pc(τ) = l τ = r (A(m) = τ ∨ A(m) = undef) B(m) = ε

s⇒ι (R,W,A[m 7→ undef ],B, pc[τ 7→ l′], φ, tick , r)

c = unlock(m) pc(τ) = l τ = r A(m) = r Q = B(m) 6= ε head(Q) = τ ′ pτ ′ ≤ pr
s⇒ι (enqb(R, τ ′),W,A[m 7→ undef ],B[m 7→ deq(Q)], pc[τ 7→ l′], φ, tick , r)

c = unlock(m) pc(τ) = l τ = r A(m) = r Q = B(m) 6= ε head(Q) = τ ′ pτ ′ > pr
s⇒ι (enqb(R, r),W,A[m 7→ undef ],B[m 7→ deq(Q)], pc[τ 7→ l′], φ, tick , τ ′)

s⇒∗ (deq(ENQ(enqb(R, r), S)),W \ S,A,B, pc, φ, v,head(ENQ(enqb(R, r), S)))
v = inc(tick) S = {s ∈ W | n ∈ N ∧ n.Ts = v}

Fig. 4: Transition relation capturing the execution semantics of a periodic program

s1 and s2 in skip statements. Formally, we obtain P ′ by
replacing the instruction ι1 by the instructions (l1,skip,m1),
(m1, c1,m

′
1), and (m′1,skip, l

′
1), where m1 and m′1 are new

locations in Locτ1 ; and similarly for ι2. Let π1 be the path
l1

skip→ m1
c1→ m′1

skip→ l′1 in Gτ ′
1
, and similarly π2 in Gτ ′

2
. We

now say s1 and s2 may happen in parallel in P , if the paths
π1 and π2 may happen in parallel in the program P ′.

Two statements are called conflicting if they are read/write
accesses to the same variable, and at least one of them is a
write. We say two statements s1 and s2 in P are involved in a
data race (or are simply racy) if they are conflicting accesses
that may happen in parallel.

Finally, we define what it means for a “block” of code
to happen in parallel with another. A block of code in P
is specified by a pair (l,X), where for some task τ in P ,
l is a location in Locτ and X ⊆ Locτ is a subset of
locations reachable from l, in task τ . An initial path in a
block B = (l,X) of a task τ in P , is a non-empty path in Gτ
that begins at l and stays within the set of locations X , except
possibly for the last location in the path. We say a statement
s = (m, c,m′) in P belongs to block B = (l,X) if m belongs
to the set X . We say two blocks B1 and B2 of P may happen
in parallel if there are two initial paths π1 in B1 and π2 in
B2, which may happen in parallel with each other. Otherwise,

B1 and B2 are disjoint.

V. RESPONSE TIME AND ITS COMPUTATION

Our aim in this section is to give a way of computing a safe
bound on the response time of tasks in a periodic program with
locks. We begin by recalling some of the basic notions.

Consider a sequential piece of compiled code B executing
on a given hardware platform. Assume that the code does not
have to compete for the processor time with other processes
(in particular there is no preemption, and lock statements
succeed without blocking). The execution time of B may still
vary depending on reads of input and other shared locations,
which are assumed to return non-deterministic values during
the execution. If we consider the supremum of these execution
times we obtain the worst-case execution time (WCET) of
B on the given platform. There are many static analysis
techniques and tools that help us obtain conservative estimates
on the WCET of a program on a given platform. We refer the
reader to [8] for a survey of these techniques and tools.

Let us now consider a periodic program P = (V,L, T )
which we want to execute in a given execution environment.
Let τ be a task in T . Consider an execution ρ of P in this
environment. There could be many instances of τ executing
in ρ. Let us consider one such instance, where at time t, τ



unlock(l)

0.5 1.5 1

1 1 1

lock(l) unlock(l)

lock(l)

1 0.5 0.5

unlock(l)lock(l)

τ3

τ1

τ2
B2

B1

B3

Fig. 5: Block WCETs of tasks of example program

39 40 41 42 43 44 45 46 47 48 49 50 51 52

τ3

τ1

τ2

` u

` u

u`

` u

Fig. 6: Illustrating response time

moves into the ready queue with the program counter pointing
to its start location. Let t′ be the time at which this instance
completes (that is τ executes its end instruction). Then the
response time of this instance of τ is t′− t. We are interested
in the worst case response time (WCRT) of τ which is defined
to be the supremum of the response times of instances of τ
over all instances of τ and all executions of P in the given
environment.

In a similar way we can define the WCRT of a block of
code B in τ , where we take the initial time t to be time the
instance of τ is in the ready queue with the program counter
pointing to the beginning of B, and t′ to be the time the last
instruction of B completes.

We note that the response time of a task (or a block of code)
may exceed its WCET, as the task may lose processor time
due to preemption by higher priority tasks, or due to blocking
lock attempts. To illustrate this, consider a periodic program
with three tasks τ1 (priority 1, period 20), τ2 (priority 2, period
13), and τ3 (priority 3, period 8). Suppose the tasks have a
simple structure comprising straight-line code, and each of
them takes and releases a common lock l. Let the WCET for
each segment of the tasks be as shown in Fig. 5. Consider a
portion of a possible execution of P shown in Fig. 6. We note
that τ2, which has a WCET of 3, is ready to run at time 39 but
completes execution only at time 44. Thus its response time in
this instance is 5. This was due to the 2 units of processor time
taken away by task τ3 in its interruption during τ2’s execution.
Notice also that the top priority task τ3 is delayed by 1 unit of
time waiting for τ2 to release the lock it had acquired before
it was preempted.

We say a periodic program P is schedulable if the WCRT
of each task is less than or equal to its period. However, since
it is difficult to know the exact WCRT, we will look for a

conservative WCRT estimate which is less than or equal to the
period of the task, to declare that a program is schedulable.

A. Computing Response time without Locks

In the classical setting of periodic programs without locks
a conservative estimate of the WCRT for each task can be
computed using Eq (1) below [5], [4]. Let P = (V,L, T ) be
a periodic program. We assume for convenience in the rest of
this section that P has tasks τ1, . . . , τn with distinct priorities.
WLOG we assume τi has priority i. Further, each task τi has
a WCET estimate Ci. Consider the equation below from [5]
which in turn is based on the analysis in [4]:

Ri = Ci +
∑
j>i

(dRi/Tje · Cj) (1)

Theorem 1 ([5], [4]). The least solution to Eq 1, whenever it
exists, is an upper bound on the WCRT of task τi.

Proof. Let L be any solution to Eq (1). We argue that L must
upper bound the response time of any instance of task τi.
Consider an instance of task τi that is enabled (enters the
ready queue) at time t. Consider the time point t + L. If we
ask ourselves how much processor time can be taken away in
the interval [t, t+L] by a higher priority task τj , it is clearly
bounded by dRi/Tje·Cj . Thus, the total time that can be taken
away by all higher priority tasks put together is bounded by∑
j>i(dRi/Tje·Cj). This leaves at least Ci time for task τi to

execute, and hence it must complete execution by t+ L.

Algo. 1 below, which is similar to the recursive procedure
proposed in [5], computes the least solutions to Eq (1) to
compute conservative estimates of the WCRT of tasks, and
thereby tell whether a periodic program is schedulable or not.

Algorithm 1: Check Schedulability (No Locks)
Data: Periodic program P without locks, WCET

estimates Ci for τi
Result: P schedulable or not, and if so WCRT

estimate for each task
foreach task τi do

Li := Ci;
while (Li is not a solution to Eq (1) and Li < Ti)

do
Li := Li +

∑
j>i(dLi/Tje · Cj);

end
if (Li does not satisfy Eq (1) or Li > Ti) then

return “Unschedulable”;
end

end
return “Schedulable”, L1, . . . , Ln;

B. Computing Response Time with Locks

Thm. 1 no longer holds (and Algo. 1 is no longer sound)
when tasks are allowed to take locks. This can be seen from
the example program and sample execution in Figs. 5 and 6,



where for instance task τ3 has a response time of 3, but the
least solution to the corresponding Eq (1) is 2. However, as
we show below, it is possible to extend the classical approach
to handle non-nested locks.

Before we consider the general case, it will be instructive to
first consider the example program of Fig. 5. Let C1, C2, C3

stand for the WCET estimates for tasks τ1, τ2, τ3 respec-
tively, and C1

l , C
2
l , C

3
l for the WCET estimates of the blocks

B1, B2, B3 respectively. Let us first begin by asking what
is the response-time of the block B1. Recall that this is the
portion of code between the lock(l)-unlock(l) statements
in τ1. Since B1 does not contain any lock statements, the
response time for this follows Eq (1), and we can write Eq (6)
to capture its response time. In a similar way the response
time of the block B2 is given by Eq. (5).

Next, we consider the top priority task τ3. The only extra
time it may spend is in waiting for its lock(l) instruction to
succeed. This may happen because one of the lower priority
tasks has acquired lock l and is yet to release it. Suppose this
task is τ2. Then τ2 must be somewhere in block B2. But how
long can it be before τ2 releases l? This is at most the response
time for B2. In a similar way, if τ1 has taken the lock, τ3 may
end up waiting for at most the response time of B1. Note
also that τ3 may have to wait for at most one of τ2 or τ1 to
complete its lock block, never both. Thus, its response time is
given by Eq (2).

Now let us consider task τ2. It may be delayed either (a)
waiting for its lock(l) statement to succeed because τ1 has
taken the lock l; or (b) because τ3 takes away some time by
preempting it. The former is bounded by the response-time of
B1, while the latter is bounded by the number of times τ3 can
interrupt it times the WCET of τ3. Thus the response time of
τ2 is captured by Eq (3).

R3 = C3 +max(U2
l , U

1
l ) (2)

R2 = C2 + U1
l + dR2/T3e · C3 (3)

R1 = C1 + dR1/T3e · C3 + dR1/T2e · C2 (4)

U2
l = C2

l + dU2
l /T3e · C3 (5)

U1
l = C1

l + dU1
l /T3e · C3 + dU1

l /T2e · C2 (6)

To find the least solution to Eqs (2–6), we can apply the
analogue of Algo. 1 to first compute U2

l = 3.5 and U1
l = 6

using Eqs (5–6). We can now use these values to compute the
values R1 = 8, R2 = 13, and R3 = 8. Since these are within
the respective time periods of the tasks, we declare that the
program is schedulable.

We can now tackle the general case. Consider a periodic
program P = (V,L, T ) satisfying the following assumptions
(in addition to distinct priorities):
• P does not use nested locks. In particular, each task τi

has a finite number of lock(l)-blocks Bil,1, . . . , B
i
l,nl,i

,
with nl,i ≥ 0, for each lock variable l ∈ L. These blocks
are pairwise disjoint.

• There is a bound N i
l on the number of times τi takes

lock l in any of its executions.

• The WCET of each task τi is Ci, and of each block Bil,k
is Cil,k.

The equations below capture the WCRT of the tasks and
lock blocks of P:

Ri = Ci +
∑
l∈L

(N i
l ·max

j<i
U jl,k) +

∑
j>i

(dRi/Tje · Cj)

(7)

U il,k = Cil,k +
∑
j>i

(dU il,k/Tje · Cj) (8)

Theorem 2. The least solution to the system of Eqs (7,8),
whenever it exists, is an upper bound on the corresponding
WCRT of tasks τi and the blocks Bil,k.

Proof. Once again we show that any solution to the sytems
of equations (7) and (8) is an upper bound on the WCRT of
the tasks and lock blocks of P . Let L1, . . . , Ln and Lil,k (for
i ∈ {1, . . . , n}, l ∈ L, and k ∈ {1, . . . , nl,i}) be a solution
to the equations above. We first argue that the WCRT of a
block Bil,k is bounded by Lil,k. Since the block is free of lock
statements, this is like the classical case and a similar argument
to Thm. 1 applies to conclude that Lil,k is an upper bound on
the WCRT of Bil,k.

To argue that the WCRT of task τi is bounded by Li,
consider an execution of an instance of task τi where it is
made ready at time t. Consider the time interval t to t + Li.
We claim that τi must finish its execution before t+Li. Task
τi may lose time because of two reasons: (a) it is blocked
on one of its lock(l) instructions because some other task
τ has taken the lock l. Now it must be the case that τ is a
lower priority task than τi. Suppose τ had a higher priority
than i. Then either it must have got blocked after acquiring l
and before releasing it, or it was preempted by a still higher
priority task τ ′. The former case is ruled out since we don’t
allow nested locks. We can now apply similar reasoning to τ ′,
and so on; but the buck must stop at the highest priority task.
Since it cannot be preempted, it must be blocked waiting to
acquire another lock; this is a contradiction to our no nested
lock assumption. Thus, the total time that can be taken away
due to τi waiting for a lock is bounded by the second term
in Eq. (7). The second reason τi may lose time is (b) because
of preemption by higher priority tasks. Like before, this is
bounded by the third term in Eq. (7). Thus, there must remain
at least Ci amount of time in the interval t to t + Li for
τi to execute, and hence it must complete execution before
t+ Li.

Algo. 2 is an algorithm to compute the least solution to the
system of Eqs. (7,8), and check schedulability of a periodic
program with non-nested locks.

VI. RULES FOR DISJOINTNESS

In this section we describe a set of rules which tell us when
two tasks of a periodic program are disjoint (that is, can never
happen in parallel). We will then use these rules to propose a
race-detection algorithm for periodic programs.



Algorithm 2: Check Schedulability With Locks
Data: Periodic program P with locks, WCET

estimates Ci for τi and Cil,k for lock block Bil,k
Result: P schedulable or not; if schedulable, WCRT

estimates for each task
foreach block Bil,k do

Lil,k := Cil,k;
while (Lil,k does not satisfy Eq (8) and Lil,k < Ti)
do
Lil,k := Lil,k +

∑
j>i(dLil,k/Tje · Cj);

end
if (Lil,k does not satisfy Eq (8) or Lil,k > Ti) then

return “Unschedulable”;
end

end
foreach task τi do

Li := Ci +
∑
l∈L(N

i
l ·maxj<i L

j
l,k) ;

while (Li does not satisfy Eq (7) and Li < Ti) do
Li := Li +

∑
j>i(dRi/Tje · Cj) ;

end
if (Li does not satisfy Eq (7) or Li > Ti) then

return “Unschedulable”;
end

end
return “Schedulable”, L1, . . . , Ln;

A. Disjoint Block Rules
Let P = (V,L, T ) be a periodic program that (a) satisfies

the no-nested-lock condition of Sec. V-B, and (b) has WCRT
estimates Rτ for each task τ satisfying Rτ ≤ Tτ (that is, P
is schedulable). The rules below tell us when two whole task
bodies, or two blocks within them, are disjoint.
• Rule 1 (Same-Priority): Let τ and τ ′ be two distinct tasks

in T such that:
– τ and τ ′ have the same priority (i.e. pτ = pτ ′ ); and
– Neither τ nor τ ′ shares a lock with a lower priority

task.
Then τ and τ ′ are disjoint.

• Rule 2 (Same-Period): Let τ and τ ′ be two distinct tasks
in T such that:

– τ and τ ′ have the same period (i.e. Tτ = Tτ ′ ); and
– Neither τ nor τ ′ shares a lock with a lower priority

task.
Then τ and τ ′ are disjoint.

• Rule 3 (Low-Multiple-of-High): Let τl and τh be two
tasks in T such that:

– τl has a lower priority than τh; (i.e. pτl < pτh );
– The period of τl is a multiple of the period of τh (i.e.

Tτl = k · Tτh for some k ∈ N);
– τh does not share a lock with a task of lower priority

than τl; and
– The WCRT estimate Rτl of τl is at most the period

of τh (i.e. Rτl ≤ Tτh ).

Rl (WCRT est. of τl)

Th

Tl

Th

Tl
Rl (WCRT est. of τl)

Fig. 7: Illustrating Rules 3 (above) and 5 (below)

Then τl and τh are disjoint.
• Rule 4 (High-Multiple-of-Low): Let τl and τh be two

tasks in T such that:
– τl has a lower priority than τh;
– The period of τh is a multiple of the period of τl;

and
– τh does not share a lock with a task of lower priority

than τl.
Then τl and τh are disjoint.

• Rule 5 (Low-WCRT): Let τl and τh be two tasks in T
such that:

– τl has a lower priority than τh;
– τl and τh have periods such that neither is a multiple

of the other.
– τh does not share a lock with a task of lower priority

than τl.
– Let m be the minimum strictly positive value in the

set {(k · Tτh) mod Tτl | k ∈ N} (note that such
an m must exist by the second condition above). The
WCRT estimate Rτl of τl is at most m (i.e. Rτl ≤ m).

Then τl and τh are disjoint.
• Rule 6 (Lock): Let Bl and B′l be two lock(l)-unlock(l)

blocks in distinct tasks τ and τ ′ respectively. Then Bl and
B′l are disjoint.

Fig. 7 illustrates Rules 3 and 5.
We now claim that Rules 1–6 are sound in that:

Theorem 3. Consider a periodic program P , with no nested
locks, and WCRT estimates which make it schedulable. Con-
sider two blocks which satisfy the premise of one of the rules;
then the identified blocks are indeed disjoint in P .

Proof. Let us fix a periodic program P without nested locks,
and with WCRT estimates Rτ for each task τ in P , which
witness the schedulability of P . Now suppose τ and τ ′ are two
tasks in P satisfying the premise of Rule 1, namely that they
have the same priority and neither of them shares a lock with a
lower priority task. Now if there were no higher priority tasks
and τ and τ ′ took no locks at all, then clearly τ and τ ′ can
never overlap in their execution instances, since neither can



preempt the other. However, even if there was a higher priority
task say τ ′′, note that by our scheduling semantics, if τ ′′ were
to interrupt τ during its execution, τ would resume execution
ahead of any other tasks of the same priority that may be
ready. So τ and τ ′ cannot interleave due to the preemption by
a higher priority task. The other possible cause for interleaving
could be because say τ gets blocked while trying to take a
lock l that is already held by some other task of higher or
lower priority. However, as argued earlier, a higher priority
task holding l is ruled out. The case of a lower priority task
holding l is ruled out by the premise of Rule 1. Thus it follows
that τ and τ ′ cannot overlap in any execution. The soundness
of Rule 2 follows a similar argument.

For Rule 3, suppose the period of τl is a multiple of τh.
Let us say τl is made ready at some time t (which must be a
multiple of its period Tτl ). Now either t is also a multiple of
Tτh , in which case τh will begin execution before τl, or τh
is next scheduled at some time t′ > t. In the former case, the
only reason τh may not complete before τl gets to execute, is
that τh is blocked on aquiring a lock. As in earlier arguments,
this lock can only have been acquired by a task of priority
lower than τl. But this is ruled out by the premise of the rule.
In the latter case, by the premise of the rule, t + Rτl ≤ t′.
Hence τl will complete its execution before τh can preempt it
at t′.

For Rule 4, suppose Tτh is a multiple of Tτl . Consider a
time t when τl is made ready. If τh is not also enabled at t, then
by schedulability, τl must complete before t + Tτl , which is
before the time τh is enabled next. Hence they cannot overlap
in this case. If τh is also enabled along with τl at t, then it
must begin execution before τl does. The only reason it may
not complete before τl is allowed to begin execution, is that
it is blocked on a acquiring a lock l held by a task of lower
priority than τl. But this is ruled out by the premise of the
rule.

For Rule 5, again consider τl and τh satisfying the premise
of the rule. Let t be a time point where τl is made ready. Either
t is a multiple of Tτh , in which case τh is also made ready at
the same time; or it is not, and arrives at some time t′ later
than t. The former case is similar to the situation considered
in earlier cases, and the instances of τl and τh cannot overlap.
In the latter case, by the premise of the rule, we must have
t+Rτl ≤ t+m ≤ t′, and hence τl would finish its execution
by t′, and the two tasks cannot overlap. The soundness of
Rule 6 is standard.

B. Computing the value m in Rule 5

Rule 5 requires us to compute the value m which is the
smallest positive remainder that we can get by dividing an
integral multiple of Tτh by Tτl . It is not difficult to see that
all possible remainders must occur in the interval [0,T ] where
T is the LCM of Tτl and Tτh . Thus it is sufficient to look at
the multiples of Tτh upto T , and set m to be the minimum
positive remainder we get by dividing these by Tτl .

C. Race Detection Algorithm

We now present the algorithm to detect races in periodic
programs. Algo. 3 first identifies the set of shared variables
accessed in the program and then lists all the conflicting access
pairs, which are all assumed to be potentially racy initially. The
algorithm, using the rules in Sect. VI and the lockset analysis,
described next, then prunes out the pairs of accesses found to
be non-racy.

An iterative lockset analysis computes the set of locks held
at each statement in a program P . At the program entry, it is
assumed that no locks are held. For the lock(l) command,
locks held are the set of locks held before this command along
with the lock l. For the unlock(l) command, locks held are
the set of locks held before this command with the lock l
removed. For any other command, the lockset remains the
same as held in the previous command. The join operation, in
this analysis, is the intersection of locksets.

The algorithm uses the notion of covers which needs further
explanation. Let τ1 and τ2 be two tasks in a periodic program
P and s1 and s2 be two statements in P . We say the pair of
tasks (τ1, τ2) covers the pair of statements (s1, s2) if either s1
is a statement in task Gτ1 and s2 is a statement in task Gτ2
or vice versa (i.e. s1 in Gτ2 and s2 in Gτ1 ).

Algorithm 3: Race Detection
Data: Periodic program P
Result: List of potential races PR
Identify the set of shared variables V ;
Find the list CA of conflicting accesses on V ;
PR := CA;
Find list DT of disjoint tasks using rules in Sec. VI;
foreach pair (s1, s2) of conflicting accesses in PR do

if there is a pair (τ1, τ2) of tasks in DT , such that
(τ1, τ2) covers (s1, s2) then

// (s1, s2) are non-racy
PR := PR − {(s1, s2)};

end
end
Perform lockset analysis on each task in P;
foreach pair (s1, s2) of conflicting accesses in PR do

let L1 be the lockset at s1 and L2 be that at s2;
if L1 ∩ L2 6= ∅ then

// (s1, s2) are non-racy
PR := PR − {(s1, s2)};

end
end
return PR; // Set of potential races

VII. EXPERIMENTAL EVALUATION

In this section, we first describe the implementation of
Algo. 3 to detect races in periodic programs. We then explain
the benchmarks used to evaluate the implementation followed
by a discussion of the results.



PR List

Analyzer
WCET

CA
Generator

WCRT
Analyzer

Rules
Checker

Analyzer

Lockset

Inlined 
Program

Times

List
CA PR’ List

TimesResp.

Inliner
Program

Exec.

Fig. 8: Schematic of PEPRACER

A. Implementation

We implemented Algo. 3 in the tool PEPRACER as shown in
Fig. 8. The tool has a preprocessor, which inlines the functions
in the input program, a time analyzer which computes WCET
of tasks using Heptane [6], and then their WCRT using
Algo. 2. The CA generator identifies the shared variables,
which are essentially global variables, in the program and then
lists the conflicting access pairs. The Rules Checker identifies
disjoint task pairs using the response times and eliminates con-
flicting accesses that are non-racy. The rules are successively
applied, in the order listed in Sect. VI, on to the conflicting
accesses to eliminate non-racy pairs. The Lockset Analyzer
computes the locks held at each statement in the program and
further eliminates the remaining conflicting accesses that are
non-racy. The tool finally displays the potentially racy pairs.

We implemented PEPRACER in the OCaml based C Inter-
mediate Language (CIL) static analysis framework [9]. The
Inliner step in PEPRACER uses the built-in inline pass
in CIL while the lockset algorithm and Rules Checker are
implemented as new passes in CIL. The implementation of
the WCET Analyzer is explained next.

a) WCET Analysis: WCET analysis was carried out on
the benchmarks using the Heptane [6] tool. Heptane accepts
inputs in the form of C programs. To prepare the benchmark
programs the following modifications were made to them: All
non-C constructs were translated to suitable C constructs, e.g.
TASK in OSEK programs were converted to correspondingly
named functions. All code was merged into a single C file.
Some benchmark programs did not have the source for some
of their parts. Heptane needs the source code for the entire
program being analysed. Hence, all code for which source
code was not available was replaced with minimal stubs. Loop
bounds were provided using ANNOT_MAXITER as required
by Heptane. These loop bounds were computed by manual
inspection.

For each benchmark, WCET was separately computed for
each of its task entry functions. Heptane supports WCET
analysis for ARM and MIPS architectures. Where possible,
WCET was run using default settings for both architectures.
The difference between the WCET results for both architec-
tures were found to average around 4%, never exceeding 20%.

Some aspects which may lead to our WCET estimates not
being conservative are as follows:

1) Stub functions were used for those parts of the code
whose source was not available. This accounts for < 1%
of the total code analysed.

2) Loop bounds were defined using manual inspection.
3) A small number of lines of code had to be masked to

prevent Heptane from crashing.
For more accurate WCET analysis, data corresponding to

the specific target architecture being considered should be
used. Several WCET analysis tools are available [8] both in the
commercial and academic domain. The choice of the analysis
tool would influence the accuracy of the WCET analysis.

B. Benchmarks

We tested the implementation on few benchmark periodic
programs shown in Table II. The programs are taken from
nxtOSEK benchmark set, lego-osek-master project, ev3OSEK
benchmark set, nxt-osek-sumo-master project, and examples
in [10] and [11]. These programs are designed to run on
OSEK real time operating system and we have abstracted
the program to make it suitable for the analysis. For ex-
ample, we have abstracted shared data structures as simple
variables and hence accesses to any field in the structure is
considered as an access to its corresponding simple variable.
The non-periodic tasks in some of the programs are taken
to be tasks with arbitrarily high period. We have inlined the
helper functions called in the tasks along with the calls to
library functions. This will bring out the accesses to shared
structures in the library. For example, the ecrobot library
function ecrobot_set_motor_speed, which is called in
lego osek.c, accesses the shared write NXT PORT A port.
The GetResource, ReleaseResource functions used
to take and release locks, respectively, are taken to be the
lock, unlock command in our analysis. We have annotated
the program with task attributes like periodicity, priority, and
WCET time, along with details of locks held.

C. Results

We ran our tool on the benchmark programs on an Intel
Quad Core i7-3770 3.40GHz machine running Ubuntu 18.04.4.
Table II shows the results of running our tool. The “Tasks”
column gives the number of tasks in the program, “Sched.”
gives whether the program is schedulable or not (by Algo. 2),
the number of conflicting accesses in a program is listed under
the “CA” column, and the count of potentially racy pairs are
given under the “PR” column. The “%Elim.” column gives the
percentage of conflicting accesses that are found to be non-
racy. The last column gives the time taken by the tool, which
was calculated using the Linux time command.

Our tool detects that the tasks in avionicsN.c program
to be non-schedulable which is also detected by [11]. Rules
3, 4, and 5 depend on the response times of the tasks and we
bypassed the application of these rules for avionicsN.c.
The “PR” column in the table for avionicsN.c gives the
count of potentially racy pairs detected due to the application



TABLE II: Results

Program LoC Tasks Sched. CA PR %
Elim.

Time
(sec)

fse obstacle.c 24 2 Y 3 0 100 0.12
avionicsN.c 588 15 N 51 42 82 0.13
biped robot.c 314 3 Y 1 0 100 0.12
sumo.c 799 4 Y 468 0 100 0.14
nxtgt.c 209 4 Y 15 0 100 0.13
lego osek.c 807 2 Y 220 0 100 0.12
objectfollower.c 473 3 Y 16 0 100 0.12

of other rules. Our tool is able to filter out a large part of the
conflicting access (CA) pairs as non-racy (on an average of
97% of CA pairs are eliminated).

Table III gives the coverage of the rules (Rule 1 - Rule 6).
Here each rule is independently applied on to the conflicting
accesses to demonstrate the value of each rule. Column “R1”
gives the count of CA pairs flagged as non-racy, independent
of the application of other rules. The case is similar with other
columns. Recall that the non-trivial rules like Rules 3-5 use
periodicity and/or response time to declare CA pairs as non-
racy. A careful analysis of the count for these in Table III
reveals their usefulness in flagging non-racy pairs. Some pairs
are detected by these rules while not covered by the other
simpler rules. It is even worthwhile observing that the CA pairs
detected as non-racy by Rule 6 (the one based on locks) are
covered by other rules. The developers can use this information
to decide on whether to use expensive constructs like lock-
unlock to ensure mutual exclusion when the task periodicity
and response time can ensure it.

TABLE III: Rule Coverage

Program CAs R1 R2 R3 R4 R5 R6
fse obstacle.c 3 0 0 3 0 0 0
avionicsN.c 51 0 9 - - - 0
biped robot.c 1 0 0 0 0 1 1
sumo.c 468 0 202 202 468 0 464
nxtgt.c 15 0 0 0 15 0 0
lego osek.c 220 0 0 220 0 0 216
objectfollower.c 16 0 0 11 11 16 2

VIII. RELATED WORK

We begin with work related to computing response times
and schedulability analysis. Apart from the work of [4], [5]
already mentioned, feasibility analysis for real-time periodic
tasks without locks have been studied by Baruah et al [12]
and Pellizzoni and Lipari [13]. Baruah [14] studies schedubil-
ity under Earliest Deadline First and Stack Resource Policy
(EDF+SRP) and gives an efficient algorithm for checking
schedulability. Bertogna et al [15] study resource holding times
(how long a task may hold on to a lock/resource) and give
algorithms for computing and minimizing these times.

In closely-related classical work on real-time systems that
use locks, Sha et al [1] consider a very general setting
of priority-based preemptive scheduling, with FCFS among
waiting tasks of the same priority (similar to our setting),
with arbitrarily nested locks, and give sufficient conditions for

schedulability of programs under these conditions. However
the locks they consider are priority inheritance based locks
which elevate the priority of a task if it is in a critical section
to a level based on the priorities of the tasks waiting for (or that
might acquire) this resource. Programs with such locks have
the useful property that the blocking time of a task is bound
by the longest WCET of a lock block (critical section) of a
lower priority task. This facilitates their analysis and bounds
on response time. In our setting of standard locks (though
restricted to be non-nested) it is not clear if such properties
can be exploited.

Related work on verification of periodic programs can be
broadly classified into two categories: Verification of periodic
programs using techniques like model checking, symbolic exe-
cution etc., and detecting data races in programs for embedded
applications similar to periodic programs, using static analysis
techniques.

Periodic programs with tasks prioritized in a rate mono-
tonic fashion and communicating using shared variables, have
been verified against safety properties using bounded model
checking with different kinds of locks in [16], [17] and [18].
In their first paper of the series [16], the authors provide
a time-bounded verification of safety properties where the
sequentializations of programs are considered with respect to
number of jobs of each task within the time bound. Priority
and preemption locks are considered in [16] and the work is
extended to include Priority Inheritance Protocol (PIP) locks in
[18]. [17] proposes a new sequential composition mechanism
to reduce the number of sequentializations and make the
bounded verification scalable. However, the verification is
bounded to a certain depth, and in general cannot be used
to soundly detect all data races.

PLC programs are very similar to our periodic programs and
are widely used in embedded safety critical software. Symbolic
execution of PLC programs is developed in [10] where the
authors convert PLC programs into C programs and use
their rate-monotonic, priority-based, preemptive scheduling
semantics to reduce the number of inter-leavings considered.
The only way to use their symbolic execution to detect data
races would be for the developer to introduce a counter for
each shared variable and increment and decrement this counter,
and then check for violations of assertion that encode a racy
accesses to these variables. This technique is unlikely to be
scalable.

Static analysis based techniques for detecting data races
embedded software kernels and applications have been of
recent research interest [2], [19], [3]. Schwarz et al [2] provide
an algorithm to detect data races in multi-task programs with
priority ceiling locks. Additional synchronization mechanisms
including dynamic threads, suspend-resume of scheduler and
tasks etc. are considered in [3]. Both these works exploit
priorities and locks, but do not consider periodicity and WCRT
information like we do, and would lead to less precise results
on the class of periodic programs considered in this paper.



IX. CONCLUSION

In this work we have proposed a technique for statically
detecting data races in periodic real-time programs with locks.
Our contribution includes a response time analysis for such
programs when the locks are used in a non-nested manner.
Going forward, some interesting directions include using the
insights in this paper to perform precise and efficient data-
flow analysis for such programs; improving the tightness of
the response time analysis; and extending the technique for
detecting high-level races for the class of such programs and
for periodic programs with other scheduling policies.



REFERENCES

[1] L. Sha, R. Rajkumar, and J. P. Lehoczky, “Priority inheritance protocols:
An approach to real-time synchronization,” IEEE Trans. Computers,
vol. 39, no. 9, pp. 1175–1185, 1990.

[2] M. D. Schwarz, H. Seidl, V. Vojdani, P. Lammich, and M. Müller-
Olm, “Static analysis of interrupt-driven programs synchronized via the
priority ceiling protocol,” POPL SIGPLAN Not., vol. 46, no. 1, p. 93104,
Jan. 2011.

[3] R. Tulsyan, R. Pai, and D. D’Souza, “Static race detection for RTOS
applications,” in 40th IARCS Annual Conference on Foundations of
Software Technology and Theoretical Computer Science, FSTTCS, ser.
LIPIcs, vol. 182. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2020, pp. 57:1–57:20.

[4] C. L. Liu and J. W. Layland, “Scheduling algorithms for multi-
programming in a hard-real-time environment,” Journal of the ACM,
vol. 20, no. 1, p. 4661, Jan. 1973.

[5] M. Joseph and P. Pandya, “Finding Response Times in a Real-Time
System,” The Computer Journal, vol. 29, no. 5, pp. 390–395, 01 1986.

[6] D. Hardy, B. Rouxel, and I. Puaut, “The heptane static worst-case
execution time estimation tool,” in 17th International Workshop on
Worst-Case Execution Time Analysis, WCET 2017, June 27, 2017,
Dubrovnik, Croatia, ser. OASICS, J. Reineke, Ed., vol. 57. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2017, pp. 8:1–8:12.

[7] “nxtOSEK/JSP: RTOS for Lego MindStorms NXT,” 2013. [Online].
Available: http://lejos-osek.sourceforge.net/

[8] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. B.
Whalley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller,
I. Puaut, P. P. Puschner, J. Staschulat, and P. Stenström, “The worst-case
execution-time problem - overview of methods and survey of tools,”
ACM Trans. Embed. Comput. Syst., vol. 7, no. 3, pp. 36:1–36:53, 2008.

[9] G. Necula, “CIL – infrastructure for C Program Analysis and Transfor-
mation (v. 1.3.7),” http://people.eecs.berkeley.edu/ necula/cil/, 2002.

[10] S. Guo, M. Wu, and C. Wang, “Symbolic execution of programmable
logic controller code,” in Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering, ser. ESEC/FSE 2017. ACM,
2017, p. 326336.

[11] C. D. Locke, L. Lucas, and G. J. B., “Generic avionics software
specification,” Technical Report CMU/SEI-90-TR-8, 1990.

[12] S. K. Baruah, L. E. Rosier, and R. R. Howell, “Algorithms and
complexity concerning the preemptive scheduling of periodic, real-time
tasks on one processor,” Real Time Syst., vol. 2, no. 4, pp. 301–324,
1990.

[13] R. Pellizzoni and G. Lipari, “Feasibility analysis of real-time periodic
tasks with offsets,” Real Time Syst., vol. 30, no. 1-2, pp. 105–128, 2005.

[14] S. K. Baruah, “Resource sharing in edf-scheduled systems: A closer
look,” in Proceedings of the 27th IEEE Real-Time Systems Symposium
(RTSS 2006), 5-8 December 2006, Rio de Janeiro, Brazil. IEEE
Computer Society, 2006, pp. 379–387.

[15] M. Bertogna, N. Fisher, and S. K. Baruah, “Resource holding times:
computation and optimization,” Real Time Syst., vol. 41, no. 2, pp. 87–
117, 2009.

[16] S. Chaki, A. Gurfinkel, and O. Strichman, “Time-bounded analysis of
real-time systems,” ser. FMCAD ’11. Austin, Texas: FMCAD Inc,
2011, p. 7280.

[17] S. Chaki, A. Gurfinkel, S. Kong, and O. Strichman, “Compositional
sequentialization of periodic programs,” in Verification, Model Checking,
and Abstract Interpretation, R. Giacobazzi, J. Berdine, and I. Mastroeni,
Eds. Springer Berlin Heidelberg, 2013, pp. 536–554.

[18] S. Chaki, A. Gurfinkel, and O. Strichman, “Verifying periodic programs
with priority inheritance locks,” in 2013 Formal Methods in Computer-
Aided Design, 2013, pp. 137–144.

[19] N. Chopra, R. Pai, and D. D’Souza, “Data races and static analysis
for interrupt-driven kernels,” in Programming Languages and Systems,
L. Caires, Ed. Cham: Springer International Publishing, 2019, pp. 697–
723.


