
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Static Executes-Before Analysis for Event Driven Programs

ANONYMOUS AUTHOR(S)

The executes-before relation between tasks is fundamental in the analysis of Event Driven Programs.
We present a sound, efficient, and effective static analysis technique to compute executes-before
pairs of tasks for a general class of event driven programs. The analysis is based on a small but
comprehensive set of rules evaluated on a novel structure called the task post graph of a program.
We show how to use the executes-before information to identify disjoint-blocks in event driven
programs and further use them to improve the precision of data race detection for these programs.
We have implemented our analysis in the Flowdroid framework in a tool called AndRacer and
evaluated it on several Android apps, bringing out the scalability, recall, and improved precision of
the analyses.

Additional Key Words and Phrases: static analysis, executes-before, event driven programming,

race detection, asynchronous calls, Android applications

1 INTRODUCTION

The Event-Driven Programming (EDP) model has become a popular contemporary paradigm,
widely used in the development of mobile apps, graphical user interfaces, and web applications,
among others. These programs are multi-threaded programs in which each thread has
associated with it a queue of program units called “tasks” that are “posted” to it by other
threads, and that it executes sequentially in a FIFO manner. The posting of tasks is typically
triggered by “events” like button clicks, completion of background tasks, etc. While EDP is
an an efficient paradigm, control flow in these programs can be complex and non-standard,
and pose a challenge to the developer to guard against common concurrency issues like
data races and atomicity violations. The non-standard concurrency model also makes it
challenging to carry out static analysis in a sound, precise and efficient manner.

A key notion that has proved useful in analyzing EDP programs is the “executes-before”
relation on the tasks of a program. A task 𝑎 executes-before another task 𝑏 in an EDP program
𝑃 if in every execution of 𝑃 , every instance of 𝑎 completes execution before any instance of
𝑏 begins its execution. Versions of the executes-before relation (called “happens-before” in
(Hu and Neamtiu 2018) and Wu et al. (2019)) have been used to detect event-races (where
the order between two events like a use and a free is not respected). Another use of the
executes-before relation, which we show in this paper, is in a “disjoint block” analysis (also
known as a not May-Happen-in-Parallel (not MHP) analysis) for EDP programs. Disjoint
blocks are blocks of code in two tasks which are guaranteed never to overlap (or Happen-in-
Parallel) in any execution of the program, much like blocks of code protected by the same
lock. Disjoint block information is fundamental for data race detection (Chopra et al. 2019;
Engler and Ashcraft 2003; Sterling 1993), high-level race detection for atomicity violations
(Singh et al. 2019), and for identifying redundant synchronizations. A final promising use

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted

without fee provided that copies are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.

Request permissions from permissions@acm.org.

c○ 2021 Association for Computing Machinery.
XXXX-XXXX/2021/7-ART $15.00

https://doi.org/10.1145/1122445.1122456

, Vol. 1, No. 1, Article . Publication date: July 2021.

https://doi.org/10.1145/1122445.1122456

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

2 Anon.

of the executes-before relation appears to be in carrying out efficient data-flow analysis for
EDP programs. One can imagine using executes-before information to construct a combined
control-flow graph of the program and analyze it using techniques like (Chopra et al. 2019;
De et al. 2011; Gotsman et al. 2007).
In this paper we propose a sound and efficient way of identifying executes-before pairs

in an EDP program. We give a small set of conditions and inference rules that can be
statically checked on a structure called a “task post graph” induced by the program, which
are sufficient to guarantee that one task executes before another. We have implemented
and evaluated the analysis on several Android apps, and observed that it has good recall of
manually identified executes-before pairs in these apps.

In a further application downstream, we show how to use the executes-before information
to identify pairs of disjoint-blocks in EDP programs, and apply this to statically detect data
races and check for redundant synchronizations in Android apps. We show the value of the
executes-before-based disjoint-block rules by observing that they contribute to 57% of the
total conflicting accesses eliminated.

2 OVERVIEW

In this section we illustrate the main ideas of this paper with an example event-driven
program in the form of an Android app adapted from Wu et al. (2019), shown in Fig. 1a.
The figure shows an activity called MyActivity that has a field p and four tasks onCreate,
a, b, and c. When the application begins execution, the Android runtime creates the
main thread with a FIFO queue attached to it. It then post’s (or enqueues) the lifecycle
callback onCreate to the main thread. The main thread begins by dequeing the only task
in its queue, onCreate, and executing it. Tasks in an app can post other tasks onto threads
using handlers. The onCreate task creates a handler for main (line 20) using which it posts
tasks a and b, in that order, onto the main thread’s queue (lines 21–22). The main thread
upon completion of onCreate proceeds with dequeing and executing task a which initializes
the value of p (line 4). The main thread then dequeues and executes task b. This task
creates a child thread with a queue attached to it (lines 9–10) and then creates a handler to
access the queue (line 11). The task then posts task c onto the newly created child thread
(line 12). The child thread, when it gets control, dequeues and executes task c, which writes
to variable p (line 17).
We say that a task 𝑑 “executes-before” a task 𝑒 in an EDP program 𝑃 if whenever we

have an execution of 𝑃 with an instance of task 𝑑 and 𝑒 respectively, the instance of 𝑑 must
complete before the instance of 𝑒 begins execution. In this sense, in the given program we
can see that onCreate executes-before both a and b. This is because firstly each task has a
single instance. Secondly, onCreate must execute for a and b to be posted, and since they
are posted to the same thread main, a and b must wait for onCreate to finish executing
before they can begin execution. We can also observe that task 𝑎 executes before 𝑏 since it is
posted by onCreate to main before b is. Finally, both onCreate and a must execute before
c (even though they are posted to different threads) since both onCreate and a execute
before b which posts c.
We now describe how we statically identify such executes-before pairs. We propose a

small set of conditions ((C1), (C2) and (C3) described in Sec. 5), each of which allows us to
conclude that a task executes-before another. The conditions are phrased on a structure we
call a Task Post Graph (TPG), which has the set of tasks as its nodes, and an edge from
task 𝑑 to task 𝑒 labelled th whenever task 𝑑 contains a post of task 𝑒 to thread th. Fig. 1b(i)
shows the TPG corresponding to the example program. The small arc arrow across the edges

, Vol. 1, No. 1, Article . Publication date: July 2021.

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Static Executes-Before Analysis for Event Driven Programs 3

1. class MyActivity extends Activity {

2. long p;

3. Runnable a = new Runnable () {

4. public void run() {p = 0L;}

5. }

6. Runnable b = new Runnable () {

7. public void run() {

8. long y = p;

9. HandlerThread child = new HandlerThread ();

10. child.start ();

11. Handler hb = new Handler(child.getLooper ());

12. hb.post(c);

13. long z = p;

14. }

15. }

16. Runnable c = new Runnable () {

17. public void run() {p = 10;}

18. }

19. public void onCreate () {

20. Handler handler = new Handler ();

21. handler.post(a);

22. handler.post(b);

23. }

24. }

(a) Program

on−

Create

Create

on−

C1

C2

C2

C1
C1

(ii)

(i)

𝑎 𝑏

𝑐

child

main

main
main

𝑎 𝑏

𝑐

main

child

main

main

(b) (i) TPG of pro-
gram and (ii) with
EB relation superim-
posed

Fig. 1. An example Android app adapted from Wu et al. (2019)

corresponding to posts of a and b from onCreate indicates that all posts of a take place
before those of 𝑏 in onCreate. Fig. 1b(ii) shows the executes-before pairs inferred using
these rules, using dashed edges labelled by the corresponding rule. For example, we infer
that onCreate executes before c by rule (C1) (see Fig. 4(C1)(b)), which essentially says
that if all paths from the initial task to c pass through onCreate, and all these paths have
at least one post to the thread to which onCreate is posted, then onCreate executes-before
c. We note that all five executes-before pairs, mentioned earlier, were inferable by our rules.

One of the uses of the executes-before information is in determining (in a sufficient way)
when two blocks of code (or two tasks themselves) are “disjoint,” in that they can never
happen-in-parallel (or overlap in time during an execution). We give a couple of such rules
in Sec. 7. The first of these rules says that if one task executes-before another they are
disjoint. This lets us infer that onCreate is disjoint with tasks a, b, and c, and that a is
disjoint with both b and c. Our second rule says that if it is the case that a parent 𝑥 of task
𝑦 executes before any other parent of 𝑦 then task 𝑥 is the first to post 𝑦, and hence the
block of statements before the post of 𝑦 in task 𝑥 are disjoint with the whole of 𝑦. This lets
us infer, in the above example, that the block of code in task b upto the post of c is disjoint
from the whole of c.
The disjoint block information can be used to detect data races in a sound manner. To

do this we first collect pairs of statements that may constitute conflicting accesses, in that
they both access a common memory location, at least one of them is a write, and they

, Vol. 1, No. 1, Article . Publication date: July 2021.

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

4 Anon.

may run on different threads. In the example program, the pairs of statements (4, 17),
(8, 17), and (13, 17) constitute conflicting accesses. Whenever a pair of accesses is “covered”
by a pair of disjoint blocks, we can eliminate the pair as non-racy (since they can never
happen-in-parallel). The access pair (4, 17) is covered by the pair of disjoint tasks a and c,
and hence can be eliminated. Similarly, the pair of statements (8, 17) is covered by the pair
of blocks comprising the first half of b (till the post of c) and the whole of c, and hence can
be eliminated. Finally, we report (13, 17) as a potentially racy pair of statements, since we
were unable to eliminate it using any of our rules. We note that this pair of accesses actually
constitutes a potentially harmful race.

Finally, we mention in passing another potential use of the executes-before information in
carrying out efficient data-flow analysis for EDP programs. Using the executes-before pairs
that we have inferred for the example program, we can construct a combined control-flow
graph (CFG) of the tasks in the program, that corresponds to the expression “onCreate·a·(b ‖
c)”, and carry-out a sound analysis on it. In particular, if we did an uninitialized variable
analysis on the above combined CFG, we can infer that the variable p is indeed initialized
in the access at line 17 in task c.

3 EVENT DRIVEN PROGRAMS

An event driven program is essentially a multi-threaded program with dynamically created
threads. It is organized as a set of program units called “tasks” which access a set of shared
global variables. Initially there is only a “main” thread which starts off by executing a
designated “main” task. Among other things, a task can create new threads and “post”
tasks to other threads. Each thread conceptually maintains a FIFO queue of tasks that
have been posted to it, and repeatedly dequeues and executes the task at the head of its
queue. Table 1 shows the set of commands that an event driven program can use over a set
of variables 𝑉 and locks 𝐿. We denote this set of commands by Cmd𝑉,𝐿.
More formally an event driven program 𝑃 is a tuple (𝑉,𝐿, 𝑇), where 𝑉 is a finite set of

global variables, 𝐿 is a finite set of locks, and 𝑇 is a finite set of tasks. Every task 𝑎 ∈ 𝑇
is represented as a control flow graph (CFG) 𝐺𝑎 = (Loc𝑎, ent𝑎, ext𝑎, Inst𝑎), where Loc𝑎 is
the (finite) set of locations of 𝑎, ent𝑎, ext𝑎 ∈ Loc𝑎 are the entry and exit locations of 𝑎
respectively, and Inst𝑎 ⊆ Loc𝑎 × Cmd𝑉,𝐿 × Loc𝑎 is the set of instructions of 𝑎. We use the
notation Inst𝑃 =

⋃︀
𝑎∈𝑇 Inst𝑎 to denote the set of all instructions in 𝑃 , and task(𝜄) for an

instruction 𝜄 in Inst𝑎 to denote the task 𝑎 in whose CFG it occurs. We assume a designated
main task called m in 𝑇 , which begins the program’s execution on the main thread. We also
assume an idle task, which does no useful work, and executes in a thread whenever there
are no other tasks to run on it. We denote the class of event driven programs by EDP and
refer to such programs as EDP programs. Fig. 2 shows the textual version of an example
EDP program with 3 tasks: m, count , and prod .

Before we define the semantics of an EDP program, some notations will be useful. We use
Z to denote the set of integers. We denote the set of finite sequences (or words) over a finite
set of symbols 𝑆 by 𝑆*, and represent the empty sequence by 𝜖. For a function 𝑓 : 𝐴 → 𝐵,
𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵, we use 𝑓 [𝑎 ↦→ 𝑏] to denote the function 𝑔 : 𝐴 → 𝐵 given by 𝑔(𝑥) = 𝑓(𝑥)
for 𝑥 ̸= 𝑎 and 𝑔(𝑥) = 𝑏 otherwise. If 𝐶 ⊆ 𝐴, we use 𝑓 ↾ 𝐶 to denote the restriction of 𝑓 to
the domain 𝐶. For a logical condition 𝑏 over a set of variables 𝑉 we denote by [[𝑏]] the set of
valuations that satisfy 𝑏. For an arithmetic expression 𝑒 over variables 𝑉 , and a valuation 𝜑
for 𝑉 , we denote by [[𝑒]]𝜑 the value obtained by evaluating 𝑒 in 𝜑.

Some general notions for rooted labelled directed graphs will be useful going forward. We
represent such a graph by a tuple 𝐺 = (𝑉, 𝑟,Σ, 𝐸), where 𝑉 is the set of nodes of the graph,

, Vol. 1, No. 1, Article . Publication date: July 2021.

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Static Executes-Before Analysis for Event Driven Programs 5

Table 1. EDP Program Commands Cmd𝑉,𝐿

Statement Description

t := create() Create a new thread and store the thread id in t.

stopth() Stop executing the current thread.

join(t) Current thread waits until thread t finishes executing.

post(t,a) Enqueue task a on to thread t’s queue.

skip Do nothing.

x := e Assign the value of expression e to variable x.

assume(b) Enabled only if expression b evaluates to true; does nothing.

lock(l) Current thread takes lock l if available; otherwise blocks till l is available.

unlock(l) Current thread releases lock l.

𝑟 ∈ 𝑉 is a designated root node, Σ is the set of edge labels, and 𝐸 ⊆ 𝑉 × Σ× 𝑉 is the set
of labelled directed edges of the graph. Let 𝐺 = (𝑉, 𝑟,Σ, 𝐸) be a labelled directed graph.
A path from node 𝑢 to 𝑣 is a finite (possibly empty) sequence of connected edges in the
graph, starting at 𝑢 and ending at 𝑣. The length of a path is the number of edges in the
path. Given a label 𝜎 ∈ Σ, we define the 𝜎-length of a path 𝜋 in 𝐺 to be the number of
𝜎-labelled edges in 𝜋. We say a node 𝑚 dominates another node 𝑛 in 𝐺, denoted 𝑑𝑜𝑚(𝑚,𝑛),
if every path from the root node 𝑟 to 𝑛 passes through 𝑚.
Let 𝑃 = (𝑉,𝐿, 𝑇) be an EDP program. We define the semantics of 𝑃 as a labelled

transition system 𝒮𝑃 = (𝑆, 𝑠0, 𝛿), where 𝑆 is the set of states, 𝑠0 ∈ 𝑆 is the initial state, and
𝛿 is the transition relation, as described below.

A state 𝑠 ∈ 𝑆 is a tuple ⟨𝒯 ,𝒬,𝑀𝑇 ,𝑀𝒬,𝑀𝐶 ,𝑀𝐿, 𝜑⟩, where
∙ 𝒯 is a set of active threads (that are created but not terminated),
∙ 𝒬 is a set of queues, one for each thread in 𝒯 ,
∙ 𝑀𝑇 : 𝒯 → 𝑇 × Loc associates with each active thread a task and a location in the
task, representing its current location. Thus if 𝑀𝑇 (th) = (𝑡, 𝑙), then we require that
𝑙 ∈ Loc𝑡.

∙ 𝑀𝒬 : 𝒯 → 𝒬 associates with each thread a queue,
∙ 𝑀𝐶 : 𝒬 → 𝑇 * associates with each queue a sequence of tasks representing the current
contents of the queue,

∙ 𝑀𝐿 : 𝐿 ⇀ 𝒯 is a partial map which associates with each lock the thread (if any) that
has acquired the lock, and

∙ 𝜑 : 𝑉 → Z is a valuation for variables representing their current value.

The initial state is given by

𝑠𝑖𝑛 = ({main}, {𝑚𝑎𝑖𝑛𝑄𝑢𝑒𝑢𝑒}, 𝜆𝑡ℎ𝑑.(m, entm), 𝜆𝑡ℎ𝑑.𝑚𝑎𝑖𝑛𝑄𝑢𝑒𝑢𝑒, 𝜆𝑞.𝜖, 𝑢𝑛𝑑𝑒𝑓, 𝜆𝑥.0).

The transition relation 𝛿 describes the possible transitions between states, and cap-
tures the semantics of the program. Let 𝑠 = (𝒯 ,𝒬,𝑀𝑇 ,𝑀𝒬,𝑀𝐶 ,𝑀𝐿, 𝜑) and 𝑠′ =
(𝒯 ′,𝒬′,𝑀 ′

𝑇 ,𝑀
′
𝒬,𝑀

′
𝐶 ,𝑀

′
𝐿, 𝜑

′) be two states, and 𝜄 = (𝑙, 𝑐, 𝑙′) be an instruction in a task
𝑎, with 𝑙′ ̸= ext𝑎. Then we have (𝑠, 𝜄, 𝑠′) ∈ 𝛿 iff there exists a thread 𝑡 in 𝒯 such that
𝑀𝑇 (𝑡) = (𝑎, 𝑙), and either:

∙ 𝑐 is the command skip, 𝒯 ′ = 𝒯 , 𝒬′ = 𝒬, 𝑀 ′
𝑇 = 𝑀𝑇 [𝑡 ↦→ (𝑎, 𝑙′)], 𝑀 ′

𝒬 = 𝑀𝒬,
𝑀 ′

𝐶 = 𝑀𝐶 , 𝑀
′
𝐿 = 𝑀𝐿, and 𝜑′ = 𝜑; or

∙ 𝑐 is the command assume(𝑏), 𝜑 ∈ [[𝑏]], 𝒯 ′ = 𝒯 , 𝒬′ = 𝒬, 𝑀 ′
𝑇 = 𝑀𝑇 [𝑡 ↦→ (𝑎, 𝑙′)],

𝑀 ′
𝒬 = 𝑀𝒬, 𝑀

′
𝐶 = 𝑀𝐶 , 𝑀

′
𝐿 = 𝑀𝐿, and 𝜑′ = 𝜑; or

, Vol. 1, No. 1, Article . Publication date: July 2021.

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

6 Anon.

∙ 𝑐 is the command 𝑥 := 𝑒, 𝒯 ′ = 𝒯 , 𝒬′ = 𝒬, 𝑀 ′
𝑇 = 𝑀𝑇 [𝑡 ↦→ (𝑎, 𝑙′)], 𝑀 ′

𝒬 = 𝑀𝒬,
𝑀 ′

𝐶 = 𝑀𝐶 , 𝑀
′
𝐿 = 𝑀𝐿, and 𝜑′ = 𝜑[𝑥 ↦→ [[𝑒]]𝜑]; or

∙ 𝑐 is the command stopth, 𝒯 ′ = 𝒯 − {𝑡}, 𝒬′ = 𝒬 − {𝑀𝒬(𝑡)}, 𝑀 ′
𝑇 = 𝑀𝑇 ↾ 𝒯 ′,

𝑀 ′
𝒬 = 𝑀𝒬 ↾𝒯 ′, 𝑀 ′

𝐶 = 𝑀𝐶 ↾𝒬′, 𝑀 ′
𝐿 = 𝑀𝐿, and 𝜑′ = 𝜑; or

∙ 𝑐 is the command th := create(), 𝒯 ′ = 𝒯 ∪{tid} for some tid ̸∈ 𝒯 , 𝒬′ = 𝒬∪{qid} for
some qid ̸∈ 𝒬, 𝑀 ′

𝑇 = 𝑀𝑇 [𝑡 ↦→ (𝑎, 𝑙′)][tid ↦→ (idle, ent idle)], 𝑀
′
𝒬 = 𝑀𝒬 ∪ {tid ↦→ qid},

𝑀 ′
𝐶 = 𝑀𝐶 ∪ {qid ↦→ 𝜖}, 𝑀 ′

𝐿 = 𝑀𝐿, and 𝜑′ = 𝜑[th ↦→ tid]; or
∙ 𝑐 is the command join(th), 𝜑(th) ̸∈ 𝒯 , 𝒯 ′ = 𝒯 , 𝒬′ = 𝒬, 𝑀 ′

𝑇 = 𝑀𝑇 [𝑡 ↦→ (𝑎, 𝑙′)],
𝑀 ′

𝒬 = 𝑀𝒬, 𝑀
′
𝐶 = 𝑀𝐶 , 𝑀

′
𝐿 = 𝑀𝐿, and 𝜑′ = 𝜑; or

∙ 𝑐 is the command post(th, 𝑏), 𝜑(th) ∈ 𝒯 , 𝑀𝐶(𝑞) ̸= 𝜖, 𝒯 ′ = 𝒯 , 𝒬′ = 𝒬, 𝑀 ′
𝑇 = 𝑀𝑇 [𝑡 ↦→

(𝑎, 𝑙′)], 𝑀 ′
𝒬 = 𝑀𝒬, 𝑀

′
𝐶 = 𝑀𝐶 [𝑞 ↦→ (𝑀𝐶(𝑞) · 𝑏)], 𝑀 ′

𝐿 = 𝑀𝐿, and 𝜑′ = 𝜑, where
𝑞 = 𝑀𝒬(𝜑(th)); or

∙ 𝑐 is the command post(th, 𝑏), 𝜑(th) ∈ 𝒯 , 𝑀𝐶(𝑞) = 𝜖, 𝑀𝑇 (𝜑(th)) = (idle,−), 𝒯 ′ = 𝒯 ,
𝒬′ = 𝒬, 𝑀 ′

𝑇 = 𝑀𝑇 [𝑡 ↦→ (𝑎, 𝑙′)][𝜑(th) ↦→ (𝑏, ent𝑏)], 𝑀
′
𝒬 = 𝑀𝒬, 𝑀

′
𝐶 = 𝑀𝐶 , 𝑀

′
𝐿 = 𝑀𝐿,

and 𝜑′ = 𝜑, where 𝑞 = 𝑀𝒬(𝜑(th)); or
∙ 𝑐 is the command lock(𝑘), 𝑀𝐿(𝑘) is undefined, 𝒯 ′ = 𝒯 , 𝒬′ = 𝒬, 𝑀 ′

𝑇 = 𝑀𝑇 [𝑡 ↦→ (𝑎, 𝑙′)],
𝑀 ′

𝒬 = 𝑀𝒬, 𝑀
′
𝐶 = 𝑀𝐶 , 𝑀

′
𝐿 = 𝑀𝐿[𝑘 ↦→ 𝑡], and 𝜑′ = 𝜑; or

∙ 𝑐 is the command unlock(𝑘), 𝑀𝐿(𝑘) = 𝑡, 𝒯 ′ = 𝒯 , 𝒬′ = 𝒬, 𝑀 ′
𝑇 = 𝑀𝑇 [𝑡 ↦→ (𝑎, 𝑙′)],

𝑀 ′
𝒬 = 𝑀𝒬, 𝑀

′
𝐶 = 𝑀𝐶 , 𝑀

′
𝐿 = 𝑀𝐿 − {(𝑘, 𝑡)}, and 𝜑′ = 𝜑.

For the case when 𝑙′ = ext𝑎, the rules are similar, except that the thread 𝑡 now switches
to (𝑏, ent𝑏) when 𝑡’s queue is non-empty and 𝑏 is the task at the head of 𝑡’s queue; when 𝑡’s
queue is empty, 𝑡 will now point to (idle, ent idle).

An execution of an event driven program 𝑃 is a finite sequence of transitions 𝜌 = 𝜏1, . . . , 𝜏𝑛
(𝑛 ≥ 1) of 𝒮𝑃 , such that there exists a sequence of states 𝑠0, . . . , 𝑠𝑛 of 𝒮𝑃 , with each 𝜏𝑖 of
the form (𝑠𝑖−1, 𝜄𝑖, 𝑠𝑖) for some 𝜄𝑖, and 𝑠0 = 𝑠𝑖𝑛. The sequence of instructions executed in 𝜌
is 𝜄1, . . . , 𝜄𝑛.

It is convenient to visualize an execution of an EDP program as a sequence of instructions
(or statements), with time going downwards and a column for each thread, as shown in
Fig. 2. Note that there may be multiple instances of a task that execute in the same or
different threads in an execution. In the example execution of Fig. 2 the task count has
three instances, two in the main thread and one in the child thread. However, each instance
(except possibly the last one on a thread) runs to completion in that once the instance is
executing on a thread, it is not switched out from the thread until it completes by reaching
its exit location. If we project an execution to a single thread th it will look like a sequence
of initial and complete execution paths (except possibly for the last one which may only be
initial) through the CFGs of the different tasks.
We close this section with some notions related to task CFGs. Let 𝑃 = (𝑉,𝐿, 𝑇) be an

EDP program, and let 𝑎 be a task in 𝑇 . Let 𝜄′ = (𝑙, 𝑐, 𝑙′) and 𝜄 = (𝑚, 𝑐,𝑚′) be instructions
in Inst𝑎. We say instruction 𝜄′ = (𝑙, 𝑐, 𝑙′) may follow instruction 𝜄 if there is a path from 𝑚′

to 𝑙 in 𝐺𝑎. We say 𝜄 dominates 𝜄′ if every path from ent𝑎 to 𝑙′ passes through 𝑚.

4 TASK POST GRAPH

In this section we introduce the Task Post Graph (TPG) structure for an event-driven
program. This structure will help us in identifying executes-before pairs in an EDP program
in a structural manner.

The TPG of an EDP program 𝑃 contains information about task 𝑎 possibly posting task
𝑏 to a thread th, represented by an edge in the graph from 𝑎 to 𝑏 labelled th. Note however

, Vol. 1, No. 1, Article . Publication date: July 2021.

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Static Executes-Before Analysis for Event Driven Programs 7

task m: task count: task prod:

1. n := 0; 8. n := n + x; 10. x := x + 1;
2. x := 0; 9. x := 0; 11. post(child, count);
3. post(main, count);
4. child := create();
5. post(child, prod);
6. x := x + 1;
7. post(main, count);

main

count

count

count

count

x := x + 1;

n := n + x;

x := 0;

child

count

prod

prod

count

x := 0;

n := n + x;

x := 0;

n := n + x;

x := x + 1;

child := create()

post(main,count);

x := 0;

n := 0;

post(child,prod);

post(main,count);

post(child,count);

m

Fig. 2. An example EDP program 𝑃1 and one of its executions

that tasks may be posted to “concrete” threads created dynamically during the execution of
𝑃 . To use a static label for the post edges, we make use of the notion of abstract threads.
We associate all the threads created at a particular create statement in the program with
an “abstract” thread corresponding to that statement. For convenience we assume that in
an EDP program a thread variable is assigned at only one statement, and we use the thread
variable as the name of the abstract thread associated with that create statement. We note
that a create statement in 𝑃 may be executed multiple times during an execution of 𝑃 , as
it may be in a loop in a task, or it may be in a task that is posted multiple times during
the execution of 𝑃 . We say an abstract thread is unique if it corresponds to exactly one
concrete thread. For convenience we call such an abstract thread a unique thread.

task m: task a:

1. child1 := create(); 10. child3 := create();
2. post(child1, a);
3. post(main, b); b:
4. while (*) 20: post(main, a);
5. child2 := create();

(a) Program 𝑃2

𝑚

𝑎 𝑏

𝑐ℎ𝑖𝑙𝑑1 main

main

𝑠

main

(b) Task Post Graph of 𝑃2

Fig. 3. An example program illustrating abstract threads and its TPG

To illustrate these notions, consider the example program 𝑃2 of Fig. 3a. There are four
abstract threads: child1 , child2 , child3 , and the implicitly created thread main. A concrete

, Vol. 1, No. 1, Article . Publication date: July 2021.

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

8 Anon.

thread, which is assigned to the variable child1 , is created at line 1 of task 𝑚 and the
corresponding abstract thread is child1 . Both the abstract threads main and child1 are
unique. The abstract threads child2 and child3 due to lines 5 and 10, respectively, are not
unique. For the case of abstract thread child2 , this is due to the creation of concrete threads
in a loop. For the case of abstract thread child3 , this is due to multiple posts of task 𝑎, that
creates a thread at line 10, from different locations (lines 2 and 20).

Let 𝑃 = (𝑉,𝐿, 𝑇) be an EDP program. The task post graph (TPG) induced by 𝑃 , denoted
TPG𝑃 , is a labelled directed graph (𝑁,𝐸) where 𝑁 = 𝑇 ∪ {𝑠} is the set of vertices of the
graph corresponding to the tasks of 𝑃 and a “dummy” initial vertex 𝑠, and 𝐸 is the set of
labelled edges of the form (𝑎, th, 𝑏) such that task 𝑎 contains a post of task 𝑏 to the abstract
thread th in 𝑃 . We also add the edge (𝑠,main,m) in 𝐸 to denote the implicit posting of
the main task m to the main thread. The TPG for the program 𝑃2 in Fig. 3a is shown in
Fig. 3b. To avoid clutter, hereafter, we leave out the dummy node 𝑠 from the diagrammatic
representation of the TPG.
Next we define a few notions related to the task post graph that will be useful in the

sequel.

Instance Post Tree. The instance post tree corresponding to an ex-
ecution of an EDP program depicts the different task instances
that were created during the execution and the order in which

count prod

m

main

count

main mainchild

child

count

one instance posted other task instances to (abstract) threads. More
formally, let 𝑃 = (𝑉,𝐿, 𝑇) be an EDP program, and let 𝜌 be an
execution of 𝑃 . The instance post tree corresponding to 𝜌, denoted
IPT 𝜌, is a rooted directed ordered tree with nodes corresponding to
task instances in 𝜌, the first instance of m as the root, and labelled
edges (𝑖, th, 𝑗) whenever task instance 𝑖 posts task instance 𝑗 to the
abstract thread th. Moreover for each instance 𝑖 the children of 𝑖
are ordered according to the order in which they were posted in 𝑖. The figure alongside shows
the instance post tree corresponding to the execution shown in Fig. 2, with the children of a
node being ordered from left to right (the blue arc also indicates this). We note that every
path in the instance post tree of an execution 𝜌 of 𝑃 is also a path in TPG𝑃 (essentially
the tree IPT 𝜌 embeds homomorphically into TPG𝑃).
We say that an edge from task 𝑎 to task 𝑏 labelled th in TPG𝑃 is a unique post edge if

there is exactly one post(th, 𝑏) statement in 𝑎, and moreover that statement is not in a loop.
It is easy to see that if (𝑎, th, 𝑏) is a unique post edge, then any instance of 𝑎 can post at
most one instance of 𝑏 to thread th.

We say that a task 𝑎 in 𝑃 is unique if every execution of 𝑃 contains at most one instance
of 𝑎. A sufficient condition on TPG𝑃 that ensures that task 𝑎 is unique is that there should
be a unique path from m to 𝑎, and all edges along this path should be unique post edges (in
the sequel we will refer to this condition as “a unique path of unique posts”). To see that
the condition is indeed sufficient, suppose we had two instances of 𝑎 in an execution 𝜌 of
𝑃 , and consider the instance post tree IPT 𝜌 of 𝜌. Consider the two paths 𝜋 and 𝜋′ from
m to the two instances of 𝑎 in this tree, and let 𝑥 be the lowest common ancestor of the
two instances of 𝑎 along these paths. Let 𝑥 be an instance of task 𝑏. Let 𝑦 and 𝑦′ be the
two children of 𝑥 along the paths 𝜋 and 𝜋′ respectively. If 𝑦 and 𝑦′ are instances of different
tasks, then we do not have a unique path from 𝑚 to 𝑎 in TPG𝑃 . If 𝑦 and 𝑦′ are instances of
the same task say 𝑐, then the (𝑏, th, 𝑐) edge in TPG𝑃 cannot be a unique post edge.

, Vol. 1, No. 1, Article . Publication date: July 2021.

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Static Executes-Before Analysis for Event Driven Programs 9

(C3)

Unique
postsposts

UniqueUnique
posts

Unique
posts

(C1)(b)(C1)(a) (C2)

main

m

𝑎

𝑐

th

𝑥

th th

𝑏

𝑎 𝑐

th-len ≥ 𝑑
len 𝑑

th

𝑥

main

m

th′

th-len ≥ 1

main

m

𝑎

𝑐

th

th-len≥ 𝑑 + 1

𝑐
𝑎

th

𝑥

main

m

th

len ≤ 𝑑

Fig. 4. Illustrating sufficient conditions (C1)–(C3) on the TPG of a program, for 𝑎 to execute before 𝑐.

Order between paths. Let 𝜋 and 𝜋′ be two paths in the TPG of a program 𝑃 . We say 𝜋 is
ordered-before 𝜋′ if 𝜋 = 𝜋1 · (𝑥, th, 𝑦) · 𝜋2 and 𝜋′ = 𝜋1 · (𝑥, th ′, 𝑧) · 𝜋′

2 for some paths 𝜋1, 𝜋2,
and 𝜋′

2, threads th and th ′, and tasks 𝑥, 𝑦 and 𝑧, such that 𝑦 ̸= 𝑧, 𝜋2 and 𝜋′
2 have no node

in common, and each post of task 𝑦 dominates all posts of task 𝑧 in the CFG of task 𝑥.

5 EXECUTES-BEFORE

In this section, we describe sufficient conditions for when a task is guaranteed to “execute
before” another task in an EDP program.

Let 𝑃 be an EDP program, and let 𝑎 and 𝑐 be tasks in 𝑃 . We say task 𝑎 executes before
task 𝑐 in 𝑃 , if in every execution 𝜌 of 𝑃 , every instance of 𝑎 completes execution before any
instance of 𝑐 begins execution in 𝜌. More precisely, suppose 𝜌 contains the entry instruction
of an instance of 𝑐 at position 𝑗 and the entry instruction of an instance of 𝑎 at position 𝑖;
then 𝑖 < 𝑗 and there exists a position 𝑘 with 𝑖 < 𝑘 < 𝑗, such that the instance of 𝑎 executes
its exit instruction at position 𝑘.
We describe several sufficient conditions on an EDP program and its TPG, which will

ensure that a certain task executes before another. Let 𝑃 = (𝑉,𝐿, 𝑇) be an EDP program,
and 𝑎 and 𝑐 two distinct tasks in 𝑇 . Each condition on TPG𝑃 below aims to ensure that
𝑎 executes before 𝑐. Figs. 4 and 5 illustrate these conditions. In the figures, an arc arrow
across path 𝜋 and 𝜋′ indicates that 𝜋 is ordered-before 𝜋′.

(C1) This condition is illustrated in Fig. 4(C1)(a). There is a task 𝑥 which is posted to a
unique thread th, and a number 𝑑 ≥ 0 such that:

(1) There is a unique path of unique posts from m to 𝑥;
(2) All paths from m to 𝑎 and m to 𝑐 pass through 𝑥;
(3) Each path from 𝑥 to 𝑎 is labelled th and has length at most 𝑑; and
(4) Every path from 𝑥 to 𝑐 has th-length at least 𝑑+ 1.
Fig. 4(C1)(b) shows the special case of this condition when 𝑑 = 0 and 𝑎 = 𝑥.

(C2) This condition is illustrated in Fig. 4(C2). There is a task 𝑥, a unique thread th, and a
number 𝑑 ≥ 1, such that:

(1) There is a unique path of unique posts from m to 𝑥;

, Vol. 1, No. 1, Article . Publication date: July 2021.

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

10 Anon.

(C1)(b)

−

−

(C2)(C1)(a) (C3)

𝑥

th

𝑑

th

𝑐

𝑒

𝑓

𝑔

𝑎

th

th

−

th

th

th

main

m m

main

𝑎

𝑑

𝑐

𝑒 𝑓

th

−

th

th

m

main

𝑑

th

𝑒

𝑓𝑎

th

𝑐

th

−th

m

main

𝑎

th

𝑏

−

𝑐

−

th

−

𝑑

Fig. 5. Example TPGs of programs satisfying conditions (C1)–(C3). In each case task 𝑎 executes before
𝑐.

(2) All paths from m to 𝑎 and m to 𝑐 pass through 𝑥;
(3) There is a unique path 𝜋 of unique posts of length 𝑑 from 𝑥 to 𝑎, with all edges

labelled th; and
(4) For every path 𝜋′ from 𝑥 to 𝑐:

– The path 𝜋′ is ordered after the path 𝜋 from 𝑥 to 𝑎; and
– The th-length of 𝜋′ is at least 𝑑.

(C3) This condition is illustrated in Fig. 4(C3). There is a task 𝑥 and a unique thread th
such that:

(1) There is a unique path of unique posts from m to 𝑥;
(2) 𝑥 posts task 𝑎 onto th via a unique post, and is the only task to post 𝑎.
(3) For every child 𝑏 of 𝑥 other than 𝑎, the path from m to 𝑎 should be ordered-before a

path from m to 𝑏.
(4) All paths from m to 𝑐 pass through 𝑥.
(5) Task 𝑐 is always posted to the thread th;

Fig. 5 shows the TPGs of some EDP programs that satisfy the conditions (C1)–(C3)
respectively. The edge label “-” indicates that the thread does not matter. In each case the
task 𝑎 can be seen to execute before task 𝑐.
Next we define some ways of inferring executes-before pairs from an initial set of such

pairs in 𝑃 .

(I1) If a task 𝑎 executes before every parent 𝑑 of a task 𝑐 in TPG𝑃 , then 𝑎 must execute
before 𝑐. (See Fig. 6(I1)).

(I2) If tasks 𝑎 and 𝑐 are such that
(1) There is a unique path of unique posts from m to 𝑎 in TPG𝑃 ,
(2) 𝑎 is posted to a unique thread th,
(3) 𝑎 posts 𝑐 to th, and
(4) 𝑎 executes before every parent of 𝑐 that is different from 𝑎;
then 𝑎 must execute before 𝑐 (See Fig. 6(I2)).

(I3) If tasks 𝑎, 𝑑, and 𝑐 are such that 𝑎 executes before 𝑑 and 𝑑 executes before 𝑐, then 𝑎
must execute before 𝑐. (See Fig. 6(I3)).

, Vol. 1, No. 1, Article . Publication date: July 2021.

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

Static Executes-Before Analysis for Event Driven Programs 11

(I2)

EB

EB

EB

EB EB

EB

(I3)

unique posts
Unique path of

(I1)

EB

EB

EB

𝑎 𝑑 𝑒

𝑐

− −

𝑎 𝑑 𝑐

th

m

𝑎 𝑑 𝑒

𝑐

− −
th

Fig. 6. Illustrating the executes-before inference rules (I1), (I2) and (I3). The dark arrows are the edges
added by the rules.

We can now give a simple saturation algorithm (Algo. 1), to compute a sound set of
executes-before pairs.

Algorithm 1: Compute EB pairs

Data: EDP Program P
Result: Set EB of executes-before pairs
EB := ∅;
Add pairs (𝑎, 𝑐) to EB based on conditions (C1)–(C3);

while ∃ a new pair (𝑎, 𝑐) that can be inferred by rules (I1)–(I3) do
EB := EB ∪ {(𝑎, 𝑐)};

end

return EB ;

Theorem 5.1. The set EB returned by Algo. 1 for an EDP program 𝑃 is sound in that
if (𝑎, 𝑐) ∈ EB then 𝑎 executes before 𝑐 in 𝑃 .

Proof. It is sufficient to argue that (a) the base rules (C1)-(C3) are sound, and that (b)
the inference rules (I1)–(I3) are sound as well.
To see the soundness of rule (C1), let 𝑎 and 𝑐 be tasks in program 𝑃 satisfying the

conditions of the rule, and consider an execution 𝜌 of 𝑃 containing two instances of 𝑎 and 𝑐.
Consider the instance post tree IPT 𝜌 of 𝜌, and let 𝑛𝑎 and 𝑛𝑐 be the nodes corresponding
to the above instances of 𝑎 and 𝑐 respectively. Let 𝜋 and 𝜋′ be the two initial paths in the
tree to 𝑛𝑎 and 𝑛𝑐 respectively. We note that 𝜋 and 𝜋′ must correspond to initial paths in
TPG𝑃 . By the conditions of (C1), the two paths in IPT 𝜌 must appear as shown in Fig. 7a
(except possibly for the left-to-right ordering). Here 𝑛𝑥 is posted to th, 𝑛𝑦 is the lowest
common ancestor of 𝑛𝑎 and 𝑛𝑐 in the tree, and all tasks from 𝑛𝑥 to 𝑛𝑦 are posted onto
th. Let 𝑛𝑦 = 𝑛0, 𝑛1, . . . , 𝑛𝑘 = 𝑛𝑎 (𝑘 ≥ 0) be the task instances in the path from 𝑛𝑦 to 𝑛𝑎

(all these task instances being posted to th). Then there must exist a subsequence of task
instances 𝑚1, . . . ,𝑚𝑘+1 in the path from 𝑛𝑦 to 𝑛𝑐 (excluding 𝑛𝑦), such that each 𝑚𝑖 is
posted to th. The dashed contours in the figure indicate the same th-level from 𝑛𝑦 (or 𝑛𝑥).
It is clear that 𝑛0 = 𝑛𝑦 must be posted to th before 𝑚1 is. We can now argue that 𝑛1 must
be posted to th before 𝑚2 is. Either 𝑛1 is posted to th before 𝑚1 is, or 𝑚1 is posted before

, Vol. 1, No. 1, Article . Publication date: July 2021.

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

12 Anon.

m

𝑛𝑥

𝑛𝑦

𝑛1

𝑛2

𝑚1

𝑚2

𝑚𝑘

𝑛𝑘 = 𝑛𝑎

th

th

th

th

th

th

th

th

𝑛𝑐

th

𝑚𝑘+1

(a) Instance post tree for (C1)

𝑛𝑥

𝑛𝑦

𝑛1

𝑛2

𝑚1

𝑚2

𝑚𝑘

𝑛𝑘 = 𝑛𝑎

th

th

th

th

th

th

m

𝑛𝑐

th

(b) Instance post tree for (C2)

(i) (ii)

m

𝑛𝑥

𝑛𝑎

𝑛𝑥

m

th

𝑛𝑎 𝑛𝑏

𝑛𝑐
𝑛𝑐

thth

th

(c) Instance post tree for (C3)

Fig. 7. Illustrating the soundness argument for (C1), (C2), and (C3)

𝑛1 is. In the former case it is clear that 𝑛1 would be posted before 𝑚2. In the latter case, 𝑚1

must wait for 𝑛𝑦 to complete its execution on th before it can post 𝑚2, by when 𝑛𝑦 would
have posted 𝑛1 to th. Thus in both cases, 𝑛1 is posted to th before 𝑚2 is. It now follows that
𝑛2 must be posted to th before 𝑚3 is; and so on, till 𝑛𝑎 = 𝑛𝑘 is posted to th before 𝑚𝑘+1 is.
Since they are posted to the same unique thread th, 𝑛𝑎 must finish execution before 𝑚𝑘+1

can begin execution. Since 𝑛𝑐 can be posted only after 𝑚𝑘+1 begins execution, it follows
that the instance 𝑛𝑎 must complete its execution before the instance of 𝑛𝑐 begins execution.
This proves that 𝑎 must execute before 𝑐 in 𝑃 .

For the soundness of (C2), consider tasks 𝑎 and 𝑐 satisfying the conditions of (C2), and
consider an execution 𝜌 containing an instance of 𝑎 and 𝑐. Once again the instance post
tree of 𝜌 must look like the one shown in Fig. 7b. By the ordering condition, the post of
the task corresponding to 𝑛1 to th in the instance 𝑛𝑦 of 𝑦 must have taken place before the
post of the task (say 𝑧) that leads to the post of 𝑚1. Thus 𝑛1 is in the queue of th before
the instance of 𝑧 is posted, and therefore before 𝑚1 is eventually posted to th. Continuing
this argument, we have that 𝑛𝑘 = 𝑛𝑎 is posted to th before 𝑚𝑘 is; and hence 𝑛𝑎 completes
its execution on th before 𝑚𝑘 begins, and hence also before 𝑛𝑐 begins. This proves that 𝑎
executes before 𝑐.

For the soundness of (C3), consider an execution 𝜌 of the program 𝑃 containing instances
of 𝑎 and 𝑐. Using the IPT 𝜌, here we show an instance of 𝑎 completes execution before an
instance of 𝑐 can even start.

, Vol. 1, No. 1, Article . Publication date: July 2021.

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

Static Executes-Before Analysis for Event Driven Programs 13

Let 𝑛𝑎 and 𝑛𝑐 be the nodes in the IPT 𝜌, corresponding to the instances of 𝑎 and 𝑐
respectively. In IPT 𝜌, due to constraints (1) and (2) of rule (C3), there is exaxtly one
instance of the tasks in the path from 𝑚 to 𝑎 in TPG𝑃 . Thus 𝑛𝑎 is the only instance of task
𝑎 while task 𝑐 can have multiple instances, 𝑛𝑐 being one of them. Further, from constraints
(2) and (4) in (C3), node 𝑛𝑐 can be (i) a descendant of 𝑛𝑎 in IPT 𝜌, or (ii) a descendant of
𝑛𝑏 in IPT 𝜌, where 𝑏 is a sibling of 𝑎 in TPG𝑃 (as in Fig. 7c).

Case (i): It is easy to see that the instance 𝑛𝑎 is posted even before 𝑛𝑐 is posted. Since they
are posted to the same unique thread th (due to constraints (1) and (5) of (C3)), instance
𝑛𝑎 completes execution even before 𝑛𝑐 can start.

Case (ii): Instance 𝑛𝑐 is posted only after 𝑛𝑏 is posted. Since the path from task 𝑚 to task
𝑎 is ordered before any path from 𝑚 to 𝑏 (due to constraint (3)), instance 𝑛𝑥 posts 𝑛𝑎 even
before it posts 𝑛𝑏. Since 𝑛𝑎 and 𝑛𝑐 are posted to the same unique thread th, 𝑛𝑎 appears in
th’s queue even before 𝑛𝑐. Thus instance 𝑛𝑎 completes execution before 𝑛𝑐 can even start.

In either case, instance 𝑛𝑎 of task 𝑎 completes execution before an instance 𝑛𝑐 of task 𝑐.
Thus 𝑎 executes before 𝑐.

Coming now to the soundness of the inference rules (I1)–(I3). Consider rule (I1), and
suppose tasks 𝑎 and 𝑐 satisfy the conditions of the rule in 𝑃 . Consider an execution 𝜌 with
an instance of 𝑎 and 𝑐. Now the instance of 𝑐 must have been posted by one of the parents 𝑑
of 𝑐. But 𝑎 executes before 𝑑, so the instance of 𝑎 must have completed before the instance
of 𝑑 began, and hence before the instance of 𝑐 began. For the case of (I2), suppose tasks 𝑎
and 𝑐 satisfy the conditions of rule (I2), and consider an execution 𝜌 with an instance of 𝑛𝑎

of 𝑎 and 𝑛𝑐 of 𝑐. If 𝑛𝑐 was posted by a task different from 𝑎, then similar to the previous
argument 𝑛𝑎 would execute before 𝑛𝑐. If 𝑛𝑐 was posted by an instance of task 𝑎, then since
𝑎 has at most one instance by the conditions of (I2), 𝑛𝑐 must have been posted by 𝑛𝑎 to th.
Since th is a unique thread, 𝑛𝑐 can only execute once 𝑛𝑎 has finished. This completes the
soundness argument for (I2). The soundness of rule (I3) is immediate. □

6 DATA RACES AND MAY HAPPEN IN PARALLEL

In this section we define data races and introduce “may happen in parallel” notions for EDP
programs.

Let us fix an EDP program 𝑃 = (𝑉,𝐿, 𝑇). Consider two tasks 𝑎 and 𝑏 in 𝑇 (𝑎 and 𝑏 could
be the same task), and two non-empty paths 𝜋 and 𝜋′ in 𝐺𝑎 and 𝐺𝑏 respectively. We say
𝜋 and 𝜋′ may happen in parallel in 𝑃 if there is an execution 𝜌 of 𝑃 , and two instances of
𝑎 and 𝑏 in 𝜌, in which the paths 𝜋 and 𝜋′ interleave (that is, either 𝜋′ begins after 𝜋 has
begun but not yet ended; or vice-versa).
We now define when two statements 𝑠1 and 𝑠2 (corresponding, say, to instructions

𝜄1 = (𝑙1, 𝑐1, 𝑙
′
1) and 𝜄2 = (𝑙2, 𝑐2, 𝑙

′
2)) in tasks 𝑎 and 𝑏 in 𝑃 respectively, “may happen in

parallel.” Consider the program 𝑃 ′ obtained from 𝑃 by enclosing the statements 𝑠1 and
𝑠2 in skip statements. More formally, we obtain 𝑃 ′ by replacing the instruction 𝜄1 by the
sequence of instructions (𝑙1, skip,𝑚1), (𝑚1, 𝑐1,𝑚

′
1), and (𝑚′

1, skip, 𝑙
′
1), where 𝑚1 and 𝑚′

1

are new locations in Loc𝑎; and similarly for 𝜄2. Let 𝜋1 be the path 𝑙1
skip→ 𝑚1

𝑐1→ 𝑚′
1

skip→ 𝑙′1 in
𝐺𝑎′ , and similarly 𝜋2 in 𝐺𝑏′ . We now say 𝑠1 and 𝑠2 may happen in parallel in 𝑃 , if the paths
𝜋1 and 𝜋2 may happen in parallel in the program 𝑃 ′. In the example program of Fig. 2,
statements in lines 6 and 10 may happen in parallel, whereas statements in lines 2 and 10
cannot happen in parallel.

Two statements are called conflicting accesses if they are read/write accesses to the same
variable, at least one of them is a write, and the two statements may run on different threads.

, Vol. 1, No. 1, Article . Publication date: July 2021.

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

14 Anon.

We say two statements 𝑠1 and 𝑠2 in 𝑃 are involved in a data race (or are simply racy) if they
are conflicting accesses that may happen in parallel. Thus, the statements 6 and 10 in the
example program of Fig. 2 are racy, but statements 2 and 10 are not. Similarly, statement 8
races with itself, while statement 10 does not.

Finally, we define what it means for a “block” of code to happen in parallel with another.
A block of code in 𝑃 is specified by a pair (𝑙,𝑋), where for some task 𝑎 in 𝑃 , 𝑙 is a location
in Loc𝑎 and 𝑋 ⊆ Loc𝑎 is a subset of locations reachable from 𝑙, in task 𝑎. An initial path in
a block 𝐵 = (𝑙,𝑋) of a task 𝑎 in 𝑃 , is a non-empty path in 𝐺𝑎 that begins at 𝑙 and stays
within the set of locations 𝑋, except possibly for the last location in the path. We say a
statement 𝑠 = (𝑚, 𝑐,𝑚′) in 𝑃 belongs to block 𝐵 = (𝑙,𝑋) if 𝑚 belongs to the set 𝑋. We say
two blocks 𝐵1 and 𝐵2 of 𝑃 may happen in parallel if there are two initial paths 𝜋1 in 𝐵1

and 𝜋2 in 𝐵2, which may happen in parallel with each other. Otherwise, we say 𝐵1 and 𝐵2

are disjoint. In the example program of Fig. 2, 𝐵1 = (1, {1, 2}) and 𝐵2 = (10, {10, 11}) are
blocks in tasks m and prod, respectively. The two blocks can be seen to be disjoint.
We observe that if 𝑠1 and 𝑠2 are statements in two blocks 𝐵1 and 𝐵2 respectively in 𝑃 ,

and 𝐵1 and 𝐵2 are disjoint with each other, then it follows that 𝑠1 and 𝑠2 cannot happen in
parallel.

7 DISJOINT BLOCK RULES

In this section we present four rules to identify pairs of disjoint blocks in an EDP program.
The first two are novel and are based on the executes-before order in the program, while the
last two based on fork/join and locks are more standard.

Let us fix an EDP program 𝑃 = (𝑉,𝐿, 𝑇) for the rest of this section. Let 𝑎 and 𝑏 be two
tasks in 𝑇 . The rules below tell us when 𝑎 (or a part of it) is disjoint from 𝑏.

(Rule 1) (“First-To-Post”) Let 𝑎 and 𝑏 be tasks in 𝑃 such that 𝑎 is a unique task, 𝑎
posts 𝑏, and 𝑎 executes before every other parent 𝑑 of 𝑏. Let 𝑋 = Loc𝑎 ∖ {𝑛 ∈
Loc𝑎 | 𝑛 may follow a post of b in a}. Then the blocks (ent𝑎, 𝑋) and 𝑏 are disjoint.

(Rule 2) (“Executes-Before”) Let 𝑎 and 𝑏 be tasks in 𝑃 such that 𝑎 executes before 𝑏. Then the
tasks 𝑎 and 𝑏 are disjoint.

(Rule 3) (“Join”) Let 𝑎 be a task with a join(𝑡ℎ′) statement in it. Then the block 𝐵, shown in
Fig. 9a, is disjoint with the task 𝑏 if

(1) 𝑡ℎ′ corresponds to a unique abstract thread.
(2) For every 𝑝, parent of 𝑏, (𝑝, 𝑏) ∈ 𝐸 is labeled with 𝑡ℎ′.

Observe that task 𝑐 that is posted after the join statement is disjoint with task 𝑏, provided
only task 𝑎 posts 𝑐. Any task 𝑑 that is, in turn, posted by 𝑐 is disjoint with 𝑏 provided 𝑎
dominates 𝑑 in the TPG.

(Rule 4) (“Lock”) Two blocks 𝐵1 and 𝐵2, as in Fig. 9b, enclosed in lock(𝑙)-unlock(𝑙) statements
are disjoint.

In Fig. 8 we illustrate the application of the first couple of rules to some example program
TPGs. The dashed arrows represent the EB relation computed by our algorithm, and the
figures below show the disjoint pairs of tasks computed by the rules. Part (a) of the figure
shows an application of Rule 1 to show that the “pre-post(𝑏)” part of task 𝑎 is disjoint from
𝑏.

, Vol. 1, No. 1, Article . Publication date: July 2021.

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

Static Executes-Before Analysis for Event Driven Programs 15

(a) (b) (c)

𝑑 𝑒

𝑎 𝑐

𝑚

𝑒

𝑐

𝑏

𝑑

𝑎

main

th

th1 th2

th

thth

𝑏

𝑚

𝑒

𝑐

𝑑

𝑎

main

th th

thth

𝑏

th1

𝑑 𝑒

𝑎 𝑐

𝑚

𝑒

𝑐

𝑏

𝑑

𝑎

main

main

th1 th2

main

mainmain

𝑏

𝑏

𝑑 𝑒

𝑎 𝑐

𝑏

Fig. 8. Application of disjoint block Rules 1 and 2 on some example TPGs. Dashed arrows show the EB
relation and thick undirected lines in the lower figures denote “disjoint-with”.

join(𝑡ℎ′);

𝑎:

.

.

.

.

.

.

𝑏:

.

.

.

B
lo

c
k

B

(a) Disjoint Blocks in Rule 4

𝑎: 𝑏:

lock(𝑙);

unlock(𝑙)

.

.

.

.

.

.

.

.

.
unlock(𝑙)

lock(𝑙);

.

.

.

.

.

.

.

.

.

(b) Disjoint Blocks in Rule 4

Fig. 9. Rules 3 and 4

7.1 Race Detection Algorithm

The algorithm to detect races in EDP programs is shown in Algo. 2. We define the term
“covers” used in the algorithm as follows. Let 𝑃 be an EDP program and let 𝐵 and 𝐵′ be two

, Vol. 1, No. 1, Article . Publication date: July 2021.

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

16 Anon.

Create: a:
1. p := 0; 10. x := p;
2. post(main, a);
3. post(main, b);

b: c:
20: y := p; 30. p := 10
21: child := create();
22: post(child, c);

(a) EDP program

(C1)

(I1)

(C2)

(I1)

(C1)

𝑎

main

𝑏

𝑐

main

child

main

Create

(b) TPG annotated
with EB relation

Fig. 10. Illustrating the race detection algorithm

blocks in 𝑃 . We say that the pair of blocks (𝐵,𝐵′) covers the statements 𝑠 and 𝑠′ if either 𝑠
belongs to 𝐵 and 𝑠′ belongs to 𝐵′ or vice versa (see Sec. 6 for the definition of “belongs to”).

Algorithm 2: Race Detection

Data: EDP Program P
Result: Set PR of potential races
PR := ∅;
Find the list CA of conflicting accesses in P ;

forall pair (𝑠1, 𝑠2) of conflicting accesses in CA do
if there are disjoint blocks 𝐵1 and 𝐵2, due to any of the rules, such that 𝐵1 and
𝐵2 covers 𝑠1 and 𝑠2 then

Declare (𝑠1, 𝑠2) to be non-racy;

else
Flag (𝑠1, 𝑠2) to be potentially racy;

PR := PR ∪ {(𝑠1, 𝑠2)};
end

end

Example. We explain the application of Algo. 2 on a version of the example from Sec. 2,
in Fig. 10a. A portion of the TPG, annotated with the executes before relation and the
rules applied to derive them, is shown on the right. The abstract threads main and child are
unique. The tasks accesses only one shared variable 𝑝 and the pairs of conflicting accesses
are {(1, 1), (1, 10), (1, 20), (1, 30), (10, 30), (20, 30), (30, 30)}. By Rule 1, tasks Create, 𝑎, and
𝑏 are pairwise disjoint, since they are always posted to the same unique abstract thread
- main. Similarly, task 𝑐 is disjoint with itself. Hence the pairs (1, 1), (1, 10), (1, 20), and
(30, 30) are declared to be non-racy by the algorithm. The unique task 𝑏 is the only task to
post 𝑐. Hence Rule 2 applies and the block 𝐵1 = (20, {20, 21, 22}) in task 𝑏 is disjoint with
𝑐. Thus the pair (20, 30) is declared to be non-racy by the algorithm. Since task Create

executes before 𝑐, Rule 3 applies and the task Create is disjoint with 𝑐. Hence the pair
(1, 30) is declared to be non-racy by the algorithm. Similar is the case with the pair (10, 30).

Soundness of rules. We can now prove the soundness of our disjoint block rules.

Theorem 7.1. The rules 1–4 are sound in that if any EDP program 𝑃 satisfies the
premise of one of the rules, the identified blocks are indeed disjoint in 𝑃 .

, Vol. 1, No. 1, Article . Publication date: July 2021.

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

Static Executes-Before Analysis for Event Driven Programs 17

Proof. The soundness of Rules 3 and 4 are standard.
To see that Rule 1 is sound, suppose tasks 𝑎 and 𝑏 in 𝑃 satisfy the conditions of the rule.

Consider an execution 𝜌 of 𝑃 in which there is an instance of task 𝑎 and an instance of task
𝑏. Now there can only be one instance of 𝑎 in 𝜌 since 𝑎 is a unique task. If the instance
of 𝑏 was posted by some other parent 𝑐 of 𝑏, then since 𝑎 executes before 𝑐, it must have
finished execution before 𝑏 begins, and hence must be non-overlapping with 𝑏. On the other
hand, if the instance of 𝑏 was posted by the (unique) instance of 𝑎, then clearly no part of
the statements in the block (ent𝑎, 𝑋) can overlap with statements of 𝑏. This completes the
soundness of Rule 1.

The soundness of Rule 2 (Executes-Before) is immediate. □

8 ANDROID APPS AS EDP PROGRAMS

In this section we describe the structure and execution semantics of Android apps and show
how we can view them as EDP programs.
An Android application (or app) is constituted using one or more of Android’s four

core components - Activity, Service, Content Provider, and Broadcast Receiver. An Ac-
tivity is a component that provides a UI with which users can interact. An Activity
undergoes a sequence of state transitions that permits it to interact with the user. These
state transitions are triggered by lifecycle callbacks such as onCreate, onStart, onResume,
onPause, onStop, onRestart, and onDestroy. These callbacks run on the main thread.
The ActivityManagerService, a part of the Android system, controls the order in which
the Activity callbacks are executed. Android also provides ways for executing background
operations in threads other than the main thread. In this section, we model the Activity
component of Android and the background processing.

Modeling an Activity. An Android application can be viewed as an event driven program
with the Activity callbacks running as tasks on the main thread. The sysTask running on
the system thread models ActivityManagerService and it controls the order of callbacks
running on the main thread.
An Activity in our model is comprised of the tasks called Preamble, Create, Resume,

Pause, Stop, Restart, and Destroy. The Preamble task does some initialization. The
Create task comprise of instructions in the Android lifecycle callbacks onCreate, onStart,
and onResume, in that sequence. The Resume task models onResume lifecycle callback, Pause
task models onPause, Stop task models onStop callback, while Restart task consists of
instructions in onRestart, onStart, and onResume callbacks, in sequence. Destroy task
consists of onDestroy callback of the Activity. An EDP program can also have UI tasks
that execute on the main thread. These tasks execute after Create or Resume tasks. The
CFG of sysTask which controls the posting of task is shown in Fig. 11. It shows the order of
posts of Activity life-cycle callbacks and one UI task. The EDP program for the running
example in Fig. 1a is shown in Fig. 12.
Android provides AsyncTask feature that allows to run instructions in the background

and allows reporting of results from the background thread to the main thread. We model
an AsyncTask as having three tasks namely doInBackground, onProgressUpdate and
onPostExecute. The doInBackground task which does background processing runs on a
new thread while the task onProgressUpdate passes results of the background processing
run on the main thread, and onPostExecute, which does clean up operations after the
background processing finishes, run on the main thread.

, Vol. 1, No. 1, Article . Publication date: July 2021.

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

18 Anon.

Create

Pause

Stop

Destroy

Restart

Resume

Click

Fig. 11. Control flow of sysTask

sysTask: m: Restart:
1. post(main, Create) 1. p := 0 1. skip
2. L1: post(main, Pause) 2. system := create()
3. if (*) { 3. post(system, sysTask) Destroy:
4. post(main, Resume) 1. skip
5. goto L1 Create:
6. } 1. post(main, a) a:
7. else { 2. post(main, b) 1. x := p
8. post(main, Stop)
9. if (*) { Pause: b:

10. post(main, Restart) 1. skip 1. y := p
11. goto L1 2. child := create()
12. } Resume: 3. post(child, c)
13. else { 1. skip
14. post(main, Destroy) c:
15. } Stop: 1. p := 10
16. } 1. skip
17. }

Fig. 12. Running example in Fig. 1a as an EDP program

9 IMPLEMENTATION

In this section we evaluate the recall of EB conditions (in Sec. 5) in computing the executes-
before relation. We also assess the usefulness of EB rules in some downstream applications
like race detection and redundant synchronization detection. We present the tool AndRacer,
that statically analyzes Android applications for data races and also finds redundant syn-
chronization blocks. We first describe the tool implementation followed by analyzing the
result on 19 Android apps.

9.1 Tool Implementation

AndRacer takes an application package (as an .apk file) as input, and
outputs a set of pairs of accesses that may be involved in a data
race. A schematic representation of the AndRacer tool is shown in

EB

list of

CAsGenerator

Rules

EB
TPG

Android

Potential

races

Generatorapp Builder

TPG

CA

Checker

the figure alongside. The tool has four
components: (1) the TPG Builder, to
construct the TPG of the input app, (2)
the EB Generator, to compute the task
pairs that are executes-before related,
(3) the CA Generator, to compute the
list of conflicting access pairs, and (4)

, Vol. 1, No. 1, Article . Publication date: July 2021.

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

Static Executes-Before Analysis for Event Driven Programs 19

the Rules Checker, to apply the rules on
the conflicting access pairs to determine
if they are racy or not.

TPG Builder. The TPG Builder relies on having an entry method for the application. The
tool uses the FlowDroid framework (Arzt et al. 2014) to translate an Android application to
one having an entry class, DummyMain, and an entry method, dummyMain. The dummyMain

method posts all the life-cycle callbacks of the Android components.
We assume single run-time instance of a component. The callbacks of each component are

independent and do not trigger the life-cycle callbacks of other components. Android has a
special class, Fragment which has its own life-cycle callbacks. The callbacks of a Fragment are
not causally related to the callbacks of the Android components and we consider Fragment
as another component. The TPG Builder considers this special class, in addition to the four
components (see Sec. 8), while constructing the TPG.

The TPG Builder first finds the nodes in the TPG which essentially are the tasks. In an
Android application, callbacks correspond to tasks. The TPG Builder collects the callbacks
using FlowDroid starting from the dummyMain method, which is the root node of the TPG,
and the other callbacks are ones that are reachable from it via posts. Starting from the
dummyMain method the tool analyzes the statements for the posts of the callbacks. The life-
cycle callbacks have standard names like onCreate, onStart, etc., and can easily be identified.
The application callbacks are posted using methods like Handler.post, Thread.start,
Timer.schedule, AsyncTask.execute, etc. The post statement determines an edge from
the task that has the post to the task being posted in the TPG. Each post edge has attributes
for abstract thread for the post, uniqueness of the abstract thread, uniqueness of the post
and the order of the post.
The abstract thread is identified using the points-to-set. The uniqueness of the abstract

thread and post is decided by checking if the allocation-site/post statement is in a loop or in
a task posted non-uniquely. Finally, the order of the post at a post statement is determined
by the number of tasks that may-be-posted until a post instruction node in the CFG of the
task.

EB Generator. The EB Generator component of AndRacer builds the executes-before
relation between all possible pairs of callbacks in a given Android Application. We imple-
mented algorithm Algo. 1 to soundly compute the executes-before relation based on the
conditions in Fig. 4 and inferences in Fig. 6.

CA Generator. The CA Generator component of AndRacer collects the set of accesses
to shared variables and marks whether they are read or write. For each callback pair that
may be posted to different threads (which is inferred from the labels of incoming edges to the
callbacks in the TPG) and for each pair of accesses in the callback pair, the CA Generator
checks whether the pair of accesses conflict. If so, the access pair is marked as conflicting.

The tool uses the points-to analysis computed by the context and flow insensitive Spark
framework (Lhoták and Hendren 2003), to decide on conflicting access the access pairs.
We tried to incorporate other candidate points-to-analysis frameworks guaranteeing better
precision. But, unfortunately the frameworks did not work as expected or were imprecise
in specific scenarios. The imprecise points-to analysis by Spark leads to false conflicting
accesses. In order to reduce the number of false conflicting accesses, we designed and
implemented a simple escape analysis and object-sensitive points-to analysis for this pointers
which are explained next.

, Vol. 1, No. 1, Article . Publication date: July 2021.

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

20 Anon.

Escape Analysis: Here we give a brief description of the analysis. The analysis determines
whether an object allocated in a callback can ever be accessed outside the scope of the
callback. Each callback, represented as an inter-procedural CFG, may have a set of allocation
nodes (or abstract objects) with allocation sites in the callback inter-procedural CFG. We
represent points-to information as a map from access paths to the sets of allocation nodes it
can point to. An access path is a sequence of references. For example, an access path f.g.h is
headed by a root allocation node pointed by f and g,h are the other allocation nodes that
may be reachable from f.
The idea of escape analysis is based on the following observation, an allocation node 𝑜𝑛

with an allocation site in the callback 𝑐 may escape the scope of the task, if any reference in
the prefix of the access path 𝑝 to 𝑜𝑛 may-point to an allocation node with allocated site not
in the callback.
This implies that an object created in some callback 𝑐′, may access the object allocated

in the callback 𝑐. We implemented a conservative may escape analysis.
Object Sensitive this-pointer Analysis: The analysis is based on the observation that

significant number of accesses in the applications conflict on the this reference of the JAVA
class. AndRacer checks if the accesses are conflicting on the this reference and resolves
the points-to set of this on demand. The base reference this is tracked at the caller. The
points-to set of this is computed at the caller and the conflicting accesses are checked for
intersection of points-to set.

Rules Checker. Given a list of conflicting access pairs in an Android app and the TPG for
the app, the disjoint block rules described in Sec. 7 are applied to mark the conflicting access
pairs that cannot execute in parallel in a callback pair. The Rules Checker component of the
tool uses the executes-before information, from the EB Checker component, to implement
the disjoint block rules.
We describe here the implementation of one of the rules - the “Lock” rule. One of the

commonly used synchronization mechanisms in the apps is the use of synchronized blocks
and synchronized methods. Hence our implementation considers only these mechanisms. We
used context and flow insensitive points-to-set analysis to get allocation nodes corresponding
to the object on which a lock held. In Java, every synchronized method/block keyword
acquires a lock on some object, except in the case of synchronized public static methods.
In that case, the lock is acquired on the class to which the static method belongs.
With these assumptions, we implemented a simple lockset algorithm to find the set of

locks held at each statement in the Jimple representation of the input Android app. We
define a lock set as a set of multi-set of objects (allocation nodes) or classes (in the case
of static synchronized methods). Let 𝐿𝑠 be the lock set computed for a statement 𝑠. An
element 𝑀 of 𝐿𝑠 is a multi-set that exactly contains the classes and the allocation nodes of
objects on which the thread is holding the locks. Lock set for each statement is computed
using data-flow analysis on the CFG of each task.

The computed lock sets are then used to check whether a pair of statements would have a
common lock in every execution i.e. they may happen in parallel or not. Let 𝐿𝑠1 be the lock
set computed for a statement 𝑠1 and 𝐿𝑠2 be the lock set computed for statement 𝑠2. Then
statements 𝑠1 and 𝑠2 are cannot happen in parallel if 𝑀𝑠1 ∩𝑀𝑠2 ≠ 𝜑 : ∀𝑀𝑠1 ∈ 𝐿𝑠1 ,∀𝑀𝑠2 ∈
𝐿𝑠2 .

For example, consider tasks 𝑎 and 𝑏 in Fig. 13. Let the points-to-set of object 𝑜1 be alloca-
tion node 𝑎1 and the points-to-set of object 𝑜2 be allocation nodes 𝑎1 and 𝑎2. Then the lock
set associated with statement 𝑠1 is {{}, {𝑎1}} and statement 𝑠2 is {{Hello, 𝑎1}, {Hello, 𝑎2}}.

, Vol. 1, No. 1, Article . Publication date: July 2021.

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

Static Executes-Before Analysis for Event Driven Programs 21

class Hello {
... | synchronized public static void bar() {
void foo() { | synchronized(o2) { // s2 }

// s1 | }
} |
Runnable a = new Runnable() { | Runnable b = new Runnable() {

public void run() { | public void run() { bar(); }
foo(); | }
synchronized(o1) { foo(); } | public static void main(String[] args) {

} | ... // calls leading to execution of a and b
} | }

}

Fig. 13. Illustrating application of Rule 5

Consider the scenario where some thread is executing statement 𝑠1 with a lock on 𝑎1, now
another thread can be executing statement 𝑠2 with the locks held either on 𝐻𝑒𝑙𝑙𝑜 and 𝑎1
or on 𝐻𝑒𝑙𝑙𝑜 and 𝑎2. There is a lock common in {𝑎1} and {𝐻𝑒𝑙𝑙𝑜, 𝑎1} i.e. 𝑎1. But there is
no lock common in {𝑎1} and {𝐻𝑒𝑙𝑙𝑜, 𝑎2}, in which case 𝑠1 and 𝑠2 may happen in parallel.
Similarly we also need to check if there is a lock common in {} and {𝐻𝑒𝑙𝑙𝑜, 𝑎1} and also
in {} and {𝐻𝑒𝑙𝑙𝑜, 𝑎2}. If all such pairs have some lock in common, the statements cannot
happen in parallel. In this case there are pairs that do not have any lock in common and
hence the statements may happen in parallel.

Redundant Synchronization. We now describe another application of executes-before
relation which is to detect the redundant synchronizations in an Android app. Apart from
computing whether two statement are potentially racy, the “Lock” rule can also be used to
identify redundant synchronized blocks. A redundant synchronized block is one which contains
no such access that may happen in parallel with any other conflicting access even without it
being synchronized. There is a performance overhead associated with entering and exiting a
synchronized block. Hence getting rid of the redundant synchronized blocks improves the
performance of the application.

We implemented a simple algorithm to detect redundant synchronizations as follows: First
a set 𝑆 of all statements is computed which contain accesses that are marked as potentially
racy after the application of disjoint block rules 1-3 (the rules other than the “Lock” rule).
The CFG of every task is then traversed while maintaining a set RSync and stack Stk. RSync
keeps the set of synchronized blocks that are redundant and Stk contains the synchronized
blocks for whose start has been encountered but not its end. This is to account for nested
synchronized blocks. If the statement encountered is a lock, it is pushed to Stk and is added
to RSync as a representation for the corresponding synchronized block. If the statement
encountered is an unlock, the corresponding lock is popped from Stk. If a statement is
encountered that is in set 𝑆 of potentially racy access, then all the synchronized blocks
present in the Stk are removed from RSync.

9.2 Benchmarks

We ran our tool on 19 Android applications to demonstrate the usefulness of the executes-
before rules. We use latest versions of these well known real-world apps. Some of them are
used in an earlier work relating to Android (Wu et al. 2019). Table 2 summarizes the features
of the applications which are taken from various domains like finance, health, security,
network, education, etc. Applications with multiple threads were selected for the experiments
and the column “Thds”, in the table, gives the number of threads in an application. The
“Tasks” column gives the number of tasks. The smallest app analyzed, Child Monitor, has 1K

, Vol. 1, No. 1, Article . Publication date: July 2021.

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

22 Anon.

Table 2. Benchmark statistics

App LoC (K) Thds Tasks

Child Monitor 1.0 3 34

Aard2 4.9 7 88

Dns66 4.9 7 47

Character Recognition 6.5 5 25

A2DP Volume 6.8 9 113

AarogyaSetu 8.2 3 61

KeePassDroid 18.1 5 79

OpenApk 2.1 5 34

DeskCon 3.1 13 64

ClipStack 3.9 5 146

Crescent Cash 5.3 13 165

BitCoinium Prime 7.0 13 115

OSMonitor 14.2 4 68

AnyMemo 23.3 14 251

Mileage 44.5 12 109

AntennaPod 54.5 11 458

OwnCloud 56.0 14 390

k9mail 76.1 6 296

Fbreader 76.5 20 285

lines of Java code (excluding comments and blank lines), as indicated by the “LoC” column,
while the largest of them all, Fbreader, has 76.5K LoC.

9.3 Results

We conducted the experiments on an Intel Xeon W-2295 CPU with 256GB RAM running
Ubuntu 20.04 LTS. Table 3 shows the recall of executes-before (EB) conditions (proposed in
Sec. 5) in computing the executes-before relation, when we ran AndRacer on the apps. The
“Tool EB” column gives the number of executes-before pairs of callbacks that are computed
by the tool while the “Man. EB” column gives the number of executes-before pairs, that
we found out on manual inspection. The manual inspection is done on a subset of Android
components, mostly the Activity component. The ratio of the pair of callbacks reported by
AndRacer to the pair of callbacks reported manually is given in “Recall%” column. The
“Time” column gives the time taken (in seconds) to compute the executes-before pairs.

Our tool performed well with a high recall value of 97%. The recall results demonstrates
that our executes-before conditions were reasonably comprehensive that they fit the natural
patterns of executes before scenarios found in these apps. The tools missed EB pairs mostly
due to the imprecise flow sensitive analysis of Spark framework and that FlowDroid did
not report some callbacks, hence execute-before pairs involving these callbacks have been
left out.
Table 4 gives statistics on the potential races detected by the tool. The “CA” column

gives the number of conflicting accesses detected. The table is further structured to give
data on three main features of the tool, we intended to evaluate. The “EB usefulness” part
gives data to indicate the effectiveness of the EB relations in reporting CA pairs as non-racy.

, Vol. 1, No. 1, Article . Publication date: July 2021.

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

Static Executes-Before Analysis for Event Driven Programs 23

Table 3. Executes-before pairs reported by AndRacer

App Tool EB Man. EB Recall% Time (s)

Child Monitor 44 45 97.7 0.05

Aard2 74 74 100.0 0.31

Dns66 22 22 100.0 0.10

Character Recognition 15 15 100.0 0.05

A2DP Volume 148 158 94.0 0.42

AarogyaSetu 82 38 100.0 0.11

KeePassDroid 77 83 93.0 0.21

OpenApk 25 28 89.0 0.05

DeskCon 71 37 100.0 0.11

ClipStack 119 40 100.0 2.14

Crescent Cash 130 42 100.0 0.91

BitCoinium Prime 38 22 100.0 0.20

OSMonitor 14 14 100.0 0.03

AnyMemo 175 81 95.0 0.52

Mileage 54 58 93.0 0.18

AntennaPod 310 151 97.3 3.47

OwnCloud 222 136 100.0 1.13

k9mail 138 20 100.0. 1.11

Fbreader 344 120 97.5 2.85

The “Race statistics” figures indicate the races reported and the precision in detecting
actual races while the “Redn. Sync.” figures indicate the usefulness in detecting redundant
synchronizations. “Syn” and “EB” columns give the number of CA pairs eliminated, as
non-racy, due to the use of synchronizations and execute-before relation, respectively. Note
that, some pairs can be eliminated by both. The “SoleEB” column gives the number of
CA pairs eliminated solely due to executes-before relation. “SoleEB%” column gives the
percentage of CA pairs eliminated solely due to executes-before relation. Moving on to race
statistics, the “PR” column gives the number of CA pairs flagged as potentially racy by
the tool and “AR” is a conservative count of actual races found on manual inspection. Due
to the complex control flow, we not able to inspect some of the apps for actual races. The
top section of the table gives AR values for those apps which we could manually analyze.
The percentage of actual races in the potential races flagged by the tool, as a measure of
precision, is given under the “Prec%” column. The time taken to report races is given under
the “Time” column. Recall that our tool also reports the use of redundant synchronization.
The “RSB” column gives the number of redundant synchronizations detected by the tool
and the number in parenthesis is the actual count of synchronizations used in the apps. The
“Time” column here gives the time taken to report the redundant synchronization count.

Discussion. We note that our tool is able to filter out a large part of the conflicting critical
access pairs as non-racy (on the average of 45.3% of CAs are eliminated). The proposed EB
based rules were found to be useful in eliminating CA pairs as non-racy. On an average, 57%
of CA pairs were eliminated due to the use of EB rules. It is worthwhile to note that the EB
rules were the sole factor in eliminating CA pairs in the Crescent Cash app which had well
over 6000 CAs. The figures for Character Recognition app are similarly encouraging.

Our tool is fairly precise in that it reported fewer false positives. We were able to manually
inspect some of the apps for actual data races. Some of them we could not inspect due
to their complex control flow. Based on the ones we inspected, out tool is precise with an
average of 61%.

, Vol. 1, No. 1, Article . Publication date: July 2021.

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

24 Anon.

Table 4. Data Races reported by AndRacer

EB usefulness Race statistics Redn. Sync.

App CA Syn EB SoleEB SoleEB% PR AR Prec% Time(s) RSB Time(s)

Child Monitor 22 0 10 10 100.0 12 12 100 2.3 0 (/0) 2.2

Aard2 31 5 6 6 54.5 20 6 30 21.1 4 (/6) 21.1

Dns66 51 21 22 3 12.5 27 0 0 11.4 5 (/7) 11.4

Character Recognition 43 0 30 30 100.0 13 13 100 2.7 0 (/0) 2.7

A2DP Volume 47 0 17 17 100.0 30 30 100 7.6 0 (/0) 7.3

AarogyaSetu 8 0 2 2 100.0 6 6 100 70.0 0 (/0) 69.0

KeePassDroid 49 45 14 2 4.3 2 0 0 20.0 0 (/1) 19.9

OpenApk 693 0 148 148 100.0 545 9.1 0 (/0) 9.0

DeskCon 122 0 29 29 100.0 93 7.5 0 (/0) 7.5

ClipStack 371 269 1 1 0.4 101 10.6 4 (/17) 10.7

Crescent Cash 6058 0 5794 5794 100.0 264 72.5 0 (/0) 70.6

BitCoinium Prime 156 0 57 57 100.0 99 17.7 0 (/0) 17.5

OSMonitor 3911 0 221 221 100.0 3690 4.8 0 (/0) 4.9

AnyMemo 3602 98 96 96 49.5 3408 27.6 3 (/5) 27.4

Mileage 2592 225 951 909 80.2 1458 5.5 0 (/1) 5.7

AntennaPod 2193 338 383 383 53.1 1472 157.8 50 (/57) 148.3

OwnCloud 6130 15 73 62 80.5 6053 78.9 5 (/6) 77.5

k9mail 5146 4948 2 2 0.04 196 97.9 26 (/36) 97.8

Fbreader 226 0 156 156 100.0 70 29.3 44 (/50) 29.2

False Positives. One of the reasons for imprecision in race detection is due to the Spark
points-to set analysis. Our tool considers that multiple instances of a task is represented by
one “abstract” task. There are several scenarios in the apps where multiple components post
a task. Hence our tool loses precision, since none of the rules apply, accounting for some false
positives. For example, in Dns66 app, during the initialisation of the NotificationBuilder
field in the onNewIntent callback of MainActivity, it can get updated in doInBackground

task running in a different thread. The two accesses are deemed potentially racy but even if
they may run in parallel, fields of different instances of the task will be accessed. Our tool
misses out on this pair because another instance of the doInBackground task is created by
another component, hence violating our assumption.
The redundant synchronizations analysis, detects use of synchronization constructs in

the applications. The tool found that some of the apps like Aard2, Dns66, AntennaPod,
OwnCloud, and Fbreader relied on a lot of synchronizations which were not needed since
their shared accesses do not happen in parallel (as detected by the EB conditions).
To summarize, our tool performed well in detecting data races and redundant synchro-

nizations, despite the use of imprecise points-to analysis. The proposed executes-before
conditions played a significant role in the performance numbers of the tool.

10 RELATED WORK

We group related work according to work on executes-before, MHP, and dynamic and
bounded model-checking based techniques for EDP programs, and discuss our work in
relation to them.

, Vol. 1, No. 1, Article . Publication date: July 2021.

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

Static Executes-Before Analysis for Event Driven Programs 25

Executes-Before analysis. Both Hu and Neamtiu (2018) and (Wu et al. 2019) consider the
problem of statically determining executes-before (“happens-before” in their terminology)
pairs as part of their goal of statically detecting event-based races in Android apps. Event-
races are conflicting accesses that are not causally ordered in the application (for instance,
we would like an access to happen after the initialization and a free to happen after an
access). They build a happens-before graph out of different components (including tasks
and click events) in the app, with edges 𝐴 ≺ 𝐵 meaning that 𝐴 “happens-before” 𝐵. They
then use this graph to order conflicting accesses and report the ones not ordered as potential
event races. To begin with, event races are a weaker notion than the standard races we target
in this paper: for instance, two accesses that are well-synchronized by locks (and hence
non-racy) may be declared as event races simply because there is no fixed order between them.

mtask:

1. while (*) {
2. t := create();
3. post(t,mtask);
4. }

Secondly, while their happens-before rules are similar in spirit to our
executes-before conditions, their rules are not sound for general EDP
programs. In particular, one of the rules in Hu and Neamtiu (2018) says
that if 𝐴1 ≺ 𝐴2 and 𝐴1 posts 𝐴3 and 𝐴2 posts 𝐴4, then we can infer
that 𝐴3 ≺ 𝐴4; which is clearly unsound unless we assume 𝐴3 and 𝐴4

are posted to the same unique thread. Similarly, in Wu et al. (2019) the rule Intra-Post says
that if event (𝑒𝑥, 𝑐𝑥) (i.e. task 𝑒𝑥 in post-context 𝑐𝑥) posts (𝑒𝑦, 𝑐𝑦) (all on and to the same
thread 𝑡), then (𝑒𝑥, 𝑐𝑥) ≺ (𝑒𝑦, 𝑐𝑦). If we consider the program alongside, this rule is easily
seen to be unsound. Thus the aim of the rules in these two works is to be able to produce a
small set of potential event races with a low false positive rate, with no intention of being
sound. In contrast, we want our execute-before rules to be sound, given the downstream
applications of MHP analysis, (sound) data race and redundant synchronization detection,
and data-flow analysis.

MHP Analysis. Kahlon et al. (2009) give a static analysis to detect races in multi-threaded
C programs with asynchronous function calls which is similar to EDP programs. Their main
focus is on doing a context-sensitive points-to and must-held lockset analysis for C programs
in the presence of function pointers. The MHP rules they give essentially correspond to
standard fork-join and lock-unlock rules. They also exploit statement ordering within a
thread but appear weaker than our EB-based rules. In particular they would not be able to
detect disjointness (or “not MHP”) of tasks 𝑎 and 𝑏 in Fig 8, where we add a post of 𝑏 from
task 𝑐 to a new thread th ′.
The algorithm by Albert et al. (2015) computes precise MHP information for fork-join

asynchronous programs. This is not very useful in our setting (for example in Android apps)
where joins appear to be rarely used.

Since Android apps are Java-based, one may ask if static race-detection techniques for Java
could be used for Android apps. While many of the techniques for obtaining a precise set of
conflicting accesses (for example Naik et al. (2006)) would help here too, the MHP analysis
would not be sound as they do not consider the task posting feature of EDP programs.
Moreover, these techniques typically drop soundness in favour of precision. For instance,
Naik et al. (2006) declare statements to be non-MHP even if two may-held locks may-alias.
The nAdroid tool of Fu et al. (2018) tries to address task posting in Android apps by
converting them to a standard Java program in which each callback is on a different thread,
and then invoking a Java race detector like Chord (Naik et al. 2006). However, as one
would expect, this approach leads to a lot of false positives.

Dynamic and bounded analysis. One of the early works on dynamic event-based race
detection is based on the idea of race coverage (Raychev et al. 2013) which eliminates races

, Vol. 1, No. 1, Article . Publication date: July 2021.

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

26 Anon.

on conflicting accesses that are used for synchronization. The algorithm is implemented
in the tool called EventRacer and detects races in web applications with high precision.
Hsiao et al. (2014) developed the race detection tool called CAFA which is based on the
idea of non-commutativity of events. The tool first detects concurrent events based on a
causality model which defines relations between events due to the operations on the event
queue and the properties of the events. This permits a more precise definition of happens-
before relations. The model permits multiple threads and various Android components, but
focuses on use-after-free races. Bielik et al. (2015) address the issue of scalability of dynamic
analysis techniques through the use of an efficient algorithm for building and querying the
happens-before graph. The work focuses on data races between events handled by a single
main thread. In general, dynamic analysis techniques are inherently unsound in that they
may have false negatives, while we aim for soundness.

DroidRacer (Maiya et al. 2014) use a bounded model-checking approach to detect a wide
range of event-based races. The authors give a formal semantics of event- driven systems that
consider both thread interleavings and event dispatch. In another bounded model-checking
approach (Majumdar and Wang 2015) implement a phase-bounding algorithm, to analyze C
programs that have an execution model which supports asynchronous programming, in a tool
called BBS. The model assumes an application to have a single worker thread process with
a queue to which tasks can be posted. BBS implements a sequentialization algorithm which
replaces asynchronous posts with “normal” function calls. The resulting sequential program
is fed into the bounded model checker CBMC. While such approaches can be expected to be
very precise, they are not scalable and are inherently unsound.

Emmi et al. (2015) prove the decidability of program analysis in EDP programs through
a reduction from the control-state reachability problem for asynchronous programs to one
in Petri Data Nets. The model puts a bound on the number of tasks and buffers, with the
buffers being unordered and tasks making non-recursive procedure calls. State explosion is
an issue for model-checking based approaches and it would be difficult to get them to scale
to the size of apps analyzed in our work.

11 CONCLUSION

In this paper we have given a sound and efficient technique, with good recall, to statically
identify executes-before pairs in event driven programs. The executes-before information
is shown to be effective in downstream analyses like data race detection and identifying
redundant synchronization blocks in Android apps.
In future work we would like to explore the use of the executes-before information in

sound detection of event-based races, as well as in efficient and precise data-flow analysis for
event driven programs.

, Vol. 1, No. 1, Article . Publication date: July 2021.

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

Static Executes-Before Analysis for Event Driven Programs 27

REFERENCES

Elvira Albert, Samir Genaim, and Pablo Gordillo. 2015. May-Happen-in-Parallel Analysis for Asynchronous
Programs with Inter-Procedural Synchronization. In Proceedings of the Static Analysis - 22nd International
Symposium, SAS 2015 (Lecture Notes in Computer Science, Vol. 9291). Springer, Saint-Malo, France,
72–89.

Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel, Jacques Klein, Yves
Le Traon, Damien Octeau, and Patrick McDaniel. 2014. FlowDroid: Precise Context, Flow, Field, Object-
Sensitive and Lifecycle-Aware Taint Analysis for Android Apps. In Proceedings of the 35th ACM SIGPLAN

Conference on Programming Language Design and Implementation (PLDI ’14). ACM, Edinburgh, United
Kingdom, 259269.

Pavol Bielik, Veselin Raychev, and Martin T. Vechev. 2015. Scalable race detection for Android applications.

In Proceedings of the 2015 ACM SIGPLAN International Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2015, part of SPLASH 2015. ACM, Pittsburgh, PA,
USA, 332–348.

Nikita Chopra, Rekha Pai, and Deepak D’Souza. 2019. Data Races and Static Analysis for Interrupt-Driven
Kernels. In Proceedings of the 28th European Symposium on Programming, ESOP 2019, Held as Part of

the European Joint Conferences on Theory and Practice of Software, ETAPS 2019 (Lecture Notes in
Computer Science, Vol. 11423). Springer, Prague, Czech Republic, 697–723.

Arnab De, Deepak D’Souza, and Rupesh Nasre. 2011. Dataflow Analysis for Datarace-Free Programs. In

Proceedings of the Programming Languages and Systems - 20th European Symposium on Programming,
ESOP 2011, Held as Part of the Joint European Conferences on Theory and Practice of Software,
ETAPS 2011 (Lecture Notes in Computer Science, Vol. 6602), Gilles Barthe (Ed.). Springer, Saarbrücken,

Germany, 196–215. https://doi.org/10.1007/978-3-642-19718-5 11
Michael Emmi, Pierre Ganty, Rupak Majumdar, and Fernando Rosa-Velardo. 2015. Analysis of Asynchro-

nous Programs with Event-Based Synchronization. In Proceedings of the 24th European Symposium on

Programming, ESOP 2015, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2015 (Lecture Notes in Computer Science, Vol. 9032). Springer, London, UK, 535–559.

Dawson R. Engler and Ken Ashcraft. 2003. RacerX: effective, static detection of race conditions and

deadlocks. In Proceedings of the 19th ACM Symposium on Operating Systems Principles 2003, SOSP
2003, Michael L. Scott and Larry L. Peterson (Eds.). ACM, Bolton Landing, NY, USA, 237–252.

https://doi.org/10.1145/945445.945468

Xinwei Fu, Dongyoon Lee, and Changhee Jung. 2018. nAdroid: statically detecting ordering violations in
Android applications. In Proceedings of the 2018 International Symposium on Code Generation and

Optimization, CGO 2018, Jens Knoop, Markus Schordan, Teresa Johnson, and Michael F. P. O’Boyle

(Eds.). ACM, Vösendorf / Vienna, Austria,, 62–74. https://doi.org/10.1145/3168829
Alexey Gotsman, Josh Berdine, Byron Cook, and Mooly Sagiv. 2007. Thread-modular shape analysis. In Pro-

ceedings of the ACM SIGPLAN 2007 Conference on Programming Language Design and Implementation,

San Diego, California, USA, June 10-13, 2007. 266–277. https://doi.org/10.1145/1250734.1250765
Chun-Hung Hsiao, Cristiano Pereira, Jie Yu, Gilles Pokam, Satish Narayanasamy, Peter M. Chen, Ziyun

Kong, and Jason Flinn. 2014. Race detection for event-driven mobile applications. In Proceedings of the
ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI ’14. ACM,
Edinburgh, United Kingdom, 326–336.

Yongjian Hu and Iulian Neamtiu. 2018. Static Detection of Event-based Races in Android Apps. In
Proceedings of the Twenty-Third International Conference on Architectural Support for Programming

Languages and Operating Systems, ASPLOS 2018. ACM, Williamsburg, VA, USA, 257–270.

Vineet Kahlon, Nishant Sinha, Erik Kruus, and Yun Zhang. 2009. Static data race detection for concurrent
programs with asynchronous calls. In Proceedings of the 7th joint meeting of the European Software

Engineering Conference and the ACM SIGSOFT International Symposium on Foundations of Software

Engineering, 2009. ACM, Amsterdam, The Netherlands, 13–22.
Ondrej Lhoták and Laurie J. Hendren. 2003. Scaling Java Points-to Analysis Using SPARK. In Proceedings of

the Compiler Construction, 12th International Conference, CC 2003, Held as Part of the Joint European

Conferences on Theory and Practice of Software, ETAPS 2003. Springer, Warsaw, Poland, 153–169.
https://doi.org/10.1007/3-540-36579-6 12

Pallavi Maiya, Aditya Kanade, and Rupak Majumdar. 2014. Race detection for Android applications. In
Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Implementation,

PLDI ’14. ACM, Edinburgh, United Kingdom, 316–325.

, Vol. 1, No. 1, Article . Publication date: July 2021.

https://doi.org/10.1007/978-3-642-19718-5_11
https://doi.org/10.1145/945445.945468
https://doi.org/10.1145/3168829
https://doi.org/10.1145/1250734.1250765
https://doi.org/10.1007/3-540-36579-6_12

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

28 Anon.

Rupak Majumdar and Zilong Wang. 2015. Bbs: A Phase-Bounded Model Checker for Asynchronous Programs.
In Proceedings, Part I, of Computer Aided Verification - 27th International Conference, CAV 2015
(Lecture Notes in Computer Science, Vol. 9206). Springer, San Francisco, CA, USA, 496–503.

Mayur Naik, Alex Aiken, and John Whaley. 2006. Effective static race detection for Java. In Proceedings of
the ACM SIGPLAN 2006 Conference on Programming Language Design and Implementation, Michael I.
Schwartzbach and Thomas Ball (Eds.). ACM, Ottawa, Ontario, Canada, 308–319. https://doi.org/10.

1145/1133981.1134018
Veselin Raychev, Martin T. Vechev, and Manu Sridharan. 2013. Effective race detection for event-driven

programs. In Proceedings of the 2013 ACM SIGPLAN International Conference on Object Oriented

Programming Systems Languages & Applications, OOPSLA 2013, part of SPLASH. ACM, Indianapolis,
IN, USA, 151–166.

Abhishek Singh, Rekha Pai, Deepak D’Souza, and Meenakshi D’Souza. 2019. Static Analysis for Detecting
High-Level Races in RTOS Kernels. In Proceedings of the Formal Methods - The Next 30 Years -
Third World Congress, FM 2019 (Lecture Notes in Computer Science, Vol. 11800), Maurice H. ter

Beek, Annabelle McIver, and José N. Oliveira (Eds.). Springer, Porto, Portugal, 337–353. https:
//doi.org/10.1007/978-3-030-30942-8 21

Nicholas Sterling. 1993. WARLOCK - A Static Data Race Analysis Tool. In USENIX Winter.

Diyu Wu, Jie Liu, Yulei Sui, Shiping Chen, and Jingling Xue. 2019. Precise Static Happens-Before Analysis
for Detecting UAF Order Violations in Android. In 12th IEEE Conference on Software Testing, Validation
and Verification, ICST 2019. IEEE, Xi’an, China, 276–287.

, Vol. 1, No. 1, Article . Publication date: July 2021.

https://doi.org/10.1145/1133981.1134018
https://doi.org/10.1145/1133981.1134018
https://doi.org/10.1007/978-3-030-30942-8_21
https://doi.org/10.1007/978-3-030-30942-8_21

	Abstract
	1 Introduction
	2 Overview
	3 Event Driven Programs
	4 Task Post Graph
	5 Executes-Before
	6 Data Races and May Happen in Parallel
	7 Disjoint Block Rules
	7.1 Race Detection Algorithm

	8 Android Apps as EDP Programs
	9 Implementation
	9.1 Tool Implementation
	9.2 Benchmarks
	9.3 Results

	10 Related Work
	11 Conclusion
	References

