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Abstract. We consider the problem of checking the unwinding condi-
tions of Mantel for Basic Security Predicates (BSP’s) [7], for finite-state
systems. We show how the unwinding conditions can be simplified to
checking conditions on a maximal simulation relation. We conclude that
the time complexity of verifying BSP’s via the unwinding route compares
favourably with the model-checking technique proposed in [2].

1 Introduction

Information flow properties are a way of specifying security properties of systems,
that dates back to the work of Goguen and Meseguer [3] in the eighties. A system
is viewed as generating traces containing “confidential” and “visible” events
(only the latter being observable by a “low-level” user) and the information flow
properties specify restrictions on the kind of traces the system may generate,
so as to restrict the amount of information a low-level user can infer about
confidential events having taken place in the system. For example, the “non-
inference” [9, 8, 12] property states that for every trace produced by the system,
its projection to visible events must also be a possible trace of the system.
Thus if a system satisfies the non-inference information flow property, a low-
level user cannot observe a trace of the system and be able to say whether
certain confidential events must necessarily have taken place.

In [7] Mantel provides a framework for reasoning about the various informa-
tion flow properties presented in the literature, in a modular way. He identifies
a set of basic information flow properties which he calls “basic security predi-
cates” or BSP’s, which are shown to be the building blocks of most of the known
trace-based properties in the literature. The framework is modular in that BSP’s
which are common to several properties of interest for the given system, need
only be verified once for the system.

There have been two approaches to the problem of verifying information flow
properties for a given system: a traditional one based on “unwinding” [4, 11, 7]
and the more recent “model-checking” technique in [2]. The unwinding technique
is based on identifying structural properties of the system model which ensure
the satisfaction of the information flow property. The method is not complete in
general, in that a system could satisfy the information flow property but fail the
unwinding condition. In [7] Mantel gives unwinding conditions for most of the
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BSP’s he identifies. In the model-checking approach [2], BSP’s are characterized
in terms of regularity preserving language- theoretic operations. This leads to a
sound and complete decision procedure for checking whether a finite state system
satisfies a given BSP.

In this paper our aim is to investigate the problem of checking the unwinding
conditions of [7] for finite-state systems, and compare the running time with
that of the model-checking approach of [2], which is exponential in the number
of states of the system.

The naive approach to checking the unwinding conditions the way they are
stated in [7] – in terms of the existence of an unwinding relation that satisfies
certain properties – would also be exponential in the size of the system. We
first show that this is not necessary, as the unwinding conditions can be equiv-
alently stated in terms of whether the maximal unwinding relation satisfies the
required properties. Secondly, we show how this maximal unwinding relation can
be viewed as a standard simulation relation on a edge-labelled transition system,
thereby opening the door for the use of well-studied and efficient algorithms for
computing simuluation relations in the literature [5, 10].

As a result we show that the unwinding conditions can be checked in poly-
nomial time in the size of the system (except for the BSP’s based on “admissi-
bility”, which require exponential time). Thus the unwinding conditions, though
not complete, compare favourably with the model-checking approach in terms of
the time required to check them on a given finite-state system. The unwinding
condition based approach to verifying information flow properties can thus be
useful for systems with large state spaces for which the model-checking approach
runs out of memory.

2 Preliminaries

By an alphabet we will mean a finite set of symbols representing events or actions
of a system. For an alphabet Σ we use Σ∗ to denote the set of finite strings over
Σ. The null or empty string is represented by the symbol ε. For two strings α

and β in Σ∗ we write αβ for the concatenation of α followed by β. A language
over Σ is just a subset of Σ∗.

For the rest of the paper we fix an alphabet of events Σ. We assume a parti-
tion of Σ into V, C, N , which in the framework of [6] correspond to events that
are visible, confidential, and neither visible nor confidential, from a particular
user’s point of view.

Let X ⊆ Σ. The projection of a string τ ∈ Σ∗ to X is written τ �X and is
obtained from τ by deleting all events that are not elements of X . The projection
of the language L to X , written L�X , is defined to be {τ �X | τ ∈ L}.

A labelled transition system (LTS) over an alphabet Σ is a structure of the
form T = (Q, s,−→), where Q is a set of states, s ∈ Q is the start state, and

−→⊆ Q × Σ × Q is the transition relation. We write p
a

−→ q to stand for
(p, a, q) ∈−→, and use p

w
−→∗q to denote the fact that we have a path labelled
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w from p to q in the underlying graph of the transition system T . If some state
q has an edge labelled a, then we say a is enabled at q.

The language generated by T is defined to be

L(T ) = {α ∈ Σ∗ | there exists a t ∈ Q such that s
α

−→∗t}.

Let X ⊆ Σ. We say an event e ∈ Σ is X-enabled at a state p ∈ Q if there

exists α, γ ∈ Σ∗ and q ∈ Q such that s
α

−→∗p, s
γ

−→∗q, α �X= γ �X , and e is
enabled at q.

We say T is deterministic if there do not exist states p, q and r in Q, with
q 6= r and a ∈ Σ, such that p

a
−→ q and p

a
−→ r.

We will asssume in the sequel that all states in an LTS are reachable from
the start state.

3 Unwinding Conditions

We begin by recalling the basic security predicates (BSP’s) of Mantel [7]. These
definitions play no technical role in the paper, but we include these definitions
for the reader to have an idea of the predicates associated with the unwinding
conditions.

It will be convenient to use the notation α =Y β where α, β ∈ Σ∗ and
Y ⊆ Σ, to mean α and β are the same “modulo a correction on Y -events”. More
precisely, α =Y β iff α �Y = β �Y , where Y denotes Σ − Y . By extension, for
languages L and M over Σ, we say L ⊆Y M iff L�Y ⊆ M �Y .

In the definitions below, we assume L to be a language over Σ.

1. L satisfies R (Removal of events) iff for all τ ∈ L there exists τ ′ ∈ L such
that τ ′ �C= ε and τ ′ �V = τ �V .

2. L satisfies D (stepwise Deletion of events) iff for all αcβ ∈ L, such that
c ∈ C and β �C= ε, we have α′β′ ∈ L with α′ =N α and β′ =N β.

3. L satisfies I (Insertion of events) iff for all αβ ∈ L such that β �C= ε, and
for every c ∈ C, we have α′cβ′ ∈ L, with β′ =N β and α′ =N α.

4. Let X ⊆ Σ. Then L satisfies IA (Insertion of Admissible events) w.r.t X iff
for all αβ ∈ L such that β �C= ε and for some c ∈ C, there exists γc ∈ L

with γ �X= α�X , we have α′cβ′ ∈ L with β′ =N β and α′ =N α.
5. L satisfies BSD (Backwards Strict Deletion) iff for all αcβ ∈ L such that

c ∈ C and β �C= ε, we have αβ′ ∈ L with β′ =N β.
6. L satisfies BSI (Backwards Strict Insertion) iff for all αβ ∈ L such that

β �C= ε, and for every c ∈ C, we have αcβ′ ∈ L, with β′ =N β.
7. Let X ⊆ Σ. Then L satisfies BSIA (Backwards Strict Insertion of Admissible

events) w.r.t X iff for all αβ ∈ L such that β �C= ε and there exists γc ∈ L

with c ∈ C and γ �X= α�X , we have αcβ′ ∈ L with β′ =N β.
8. Let X ⊆ Σ, V ′ ⊆ V , C ′ ⊆ C, and N ′ ⊆ N . Then L satisfies FCD (Forward

Correctable Deletion) w.r.t V ′, C ′, N ′ iff for all αcvβ ∈ L such that c ∈ C ′,
v ∈ V ′ and β �C= ε, we have αδvβ′ ∈ L where δ ∈ (N ′)∗ and β′ =N β.
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9. Let, V ′ ⊆ V , C ′ ⊆ C, and N ′ ⊆ N . Then L satisfies FCI (Forward Cor-
rectable Insertion) w.r.t C ′, V ′, N ′ iff for all αvβ ∈ L such that v ∈ V ′,
β �C= ε, and for every c ∈ C ′ we have αcδvβ′ ∈ L, with δ ∈ (N ′)∗ and
β′ =N β.

10. Let X ⊆ Σ, V ′ ⊆ V , C ′ ⊆ C, and N ′ ⊆ N . Then L satisfies FCIA (For-
ward Correctable Insertion of admissible events) w.r.t. X, V ′, C ′, N ′ iff for
all αvβ ∈ L such that: v ∈ V ′, β �C= ε, and there exists γc ∈ L, with c ∈ C ′

and γ �X= α�X ; we have αcδvβ′ ∈ L with δ ∈ (N ′)∗ and β′ =N β.
11. L satisfies SR (Strict Removal) iff for all τ ∈ L we have τ �C∈ L.
12. L satisfies SD (Strict Deletion) iff for all αcβ ∈ L such that c ∈ C and

β �C= ε, we have αβ ∈ L.
13. L satisfies SI (Strict Insertion) iff for all αβ ∈ L such that β �C= ε, and for

every c ∈ C, we have αcβ ∈ L.
14. Let X ⊆ Σ. L satisfies SIA (Strict Insertion of Admissible events) w.r.t X

iff for all αβ ∈ L such that β �C= ε and there exists γc ∈ L with c ∈ C and
γ �X= α�X , we have αcβ ∈ L.

We say a Σ-labelled transition system T satisfies a BSP iff L(T ) satisfies the
BSP. We now recall the “unwinding” conditions defined in [7], which are shown
to be sufficient conditions for a transition system to satisfy the corresponding
BSP’s.

Let us fix a Σ-labelled transitions system T = (Q, s,−→) for the rest of this
section. We say a relation n ⊆ Q × Q is an unwinding relation for T if for all
states p, q, r ∈ Q and for all events e ∈ Σ \ C if p

e
−→ q and p n r, then there

exists t ∈ Q and δ ∈ (Σ \C)∗ such that δ �V = e�V , r
δ

−→∗t, and q n t. In [7] the
condition on n above is refered to as osc for “output step consistency”.

In the definitions below, let n be an unwinding relation for T .

1. We say T satisfies the unwinding condition lrf (locally respects forwards)

w.r.t. the unwinding relation n iff whenever we have p
c

−→ q for some c ∈ C,
we also have q n p.

2. We say T satisfies the unwinding condition lrb (locally respects backwards)

w.r.t. n iff for each p ∈ Q and c ∈ C, there exists q ∈ Q such that p
c

−→ q

and p n q.
3. Let V ′ ⊆ V , C ′ ⊆ C, and N ′ ⊆ N . We say T satisfies the unwinding

condition fcrf (forward correctably respects forwards) w.r.t. V ′, C ′, N ′ and

n, iff for each p, q ∈ Q, v ∈ V ′, and c ∈ C ′, if p
cv
−→∗q then there exists

r ∈ Q and δ ∈ (N ′)∗, such that p
δv
−→∗r and q n r.

4. Let V ′ ⊆ V , C ′ ⊆ C, and N ′ ⊆ N . We say T satisfies the unwinding
condition fcrb (forward correctably respects backwards) w.r.t. V ′, C ′, N ′ and

n, iff for each p, q ∈ Q, v ∈ V ′, and c ∈ C ′, if p
v

−→ q then there exists r ∈ Q

and δ ∈ (N ′)∗, such that p
cδv
−→∗r and q n r.

5. Let X ⊆ Σ. We say T satisfies the unwinding condition lrbe (locally respects
backwards for enabled events) w.r.t. X and n, iff whenever c is X-enabled

at p, then we have p
c

−→ q with p n q.
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6. Let X ⊆ Σ, V ′ ⊆ V , C ′ ⊆ C, and N ′ ⊆ N . We say T satisfies the unwinding
condition fcrbe (forward correctably respects backwards for enabled events)
w.r.t. X , V ′, C ′, N ′ and n, iff for each p, q ∈ Q, v ∈ V ′, and c ∈ C ′ X-
enabled at p, if p

v
−→ q then there exists r ∈ Q and δ ∈ (N ′)∗, such that

p
cδv
−→∗r and q n r.

Theorem 1 ([7]). Let X ⊆ Σ, V ′ ⊆ V , C ′ ⊆ C, and N ′ ⊆ N . The following
implications are valid.

1. T satisfies BSD if there exists an unwinding relation n for T such that T
satisfies lrf w.r.t. n.

2. T satisfies BSI if there exists an unwinding relation n for T such that T
satisfies lrb w.r.t. n.

3. T satisfies BSIA w.r.t X if there exists an unwinding relation n for T such
that T satisfies lrbe w.r.t. X and n.

4. T satisfies FCD w.r.t. V ′, C ′, N ′ if there exists an unwinding relation n for
T such that T satisfies fcrf w.r.t. V ′, C ′, N ′ and n.

5. T satisfies FCI w.r.t. V ′, C ′, N ′ if there exists an unwinding relation n for
T such that T satisfies fcrb w.r.t. V ′, C ′, N ′ andn.

6. T satisfies FCIA w.r.t X, V ′, C ′, N ′ if there exists an unwinding relation n

for T such that T satisfies fcrbe w.r.t. X, V ′, C ′, N ′ and n.
7. T satisfies D if there exists an unwinding relation n for T such that T

satisfies lrf w.r.t. n.
8. T satisfies I if there exists an unwinding relation n for T such that T

satisfies lrb w.r.t. n.
9. T satisfies IA w.r.t X if there exists an unwinding relation n for T such

that T satisfies lrbe w.r.t. X and n.
10. T satisfies R if there exists an unwinding relation n for T such that T

satisfies lrf w.r.t. n.
ut

We now show that there exists a maximal unwinding relation, and that it is
sufficient to check the unwinding conditions on this maximal relation.

The following proposition states that unwinding relations are closed under
union.

Proposition 2. Let n1 and n2 be unwinding relations for T . Then n = n1∪n2

is also an unwinding relation for T .

Proof. Let p
e

−→ q for e ∈ (Σ \ C) and p n r in T . Since p n1 r and n1 is an

unwinding relation for T , there exists a t ∈ Q such that r
δ

−→∗t with δ ∈ (Σ\C)∗,
δ �V = e�V , and q n1 t. Hence, q n t. Similarly, for the case of n2. ut

It now follows that if we take the union of the set of all unwinding relations
for T , we obtain an unwinding relation for T , and it is maximal in the sense that
every other unwinding relation for T is contained in it. We denote the maximal
unwinding relation for T by nT .
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Let us call an unwinding condition (of the type of lrf etc) upward closed if
whenever T satisfies the condition w.r.t. an unwinding relation n1, and n1 ⊆ n2,
we also have that T satisfies the condition w.r.t. n2. Then it is easy to check
that:

Proposition 3. The conditions lrf, lrb, fcrf, fcrb, lrbe and fcrbe are all upward
closed. ut

The existence of the maximal unwinding relation nT and Proposition 3 now
gives us the following result:

Lemma 4. There exists an unwinding relation n such that T satisfies lrf (re-
spectively lrb, fcrf, fcrb, lrbe, fcrbe) w.r.t. n, iff T satisfies lrf (respectively lrb,
fcrf, fcrb, lrbe, fcrbe) w.r.t. nT . ut

Thus the conditions in the unwinding theorem 1 above can equivalently be
checked on the maximal unwinding relation nT .

4 Unwinding and Simulation

In this section we recall the standard notion of a simulation relation and show
how to express the maximal unwinding relation as a simulation relation on an
appropriate transition system.

Let us fix a Σ-labelled transition system T = (Q, s,−→) for the rest of this
section. A relation ≺⊆ Q × Q is called a simulation relation for T if for every
p, q, r ∈ Q, and e ∈ Σ, whenever p

e
−→ q and p ≺ r, we have t ∈ Q such that

r
e

−→ t and q ≺ t.
Once again it is easy to see that simulation relations are closed under finite

and infinite unions, and that hence there exists a maximal simulation relation for
T , which is the union of all simulation relations for T . We denote this maximal
simulation relation for T by ≺T .

Algorithm 1 shows a naive algorithm for computing the maximal simulation
relation ≺T for a finite state LTS T , which runs in time O(mn4), where m and
n are the number of edges and states in T . We define post e(p) for a state p to

be the set {q | p
e

−→ q}.
We now show how the maximal unwinding relation nT coincides with the

maximal simulation relation ≺TV
for an appropriately defined transition system

TV .
The transition system TV is obtained from T by deleting all C-labelled tran-

sitions, and replacing all N -labelled transitions by ε transitions, and then com-
puting the transitive closure of the resulting graph. Warshall’s algorithm (see
[1]), which runs in O(n3) time can be used to compute the transitive closure of

the graph. Formally we define TV = (Q, s,−→V ) where for all v ∈ V , p
v

−→V q

iff there exists δ, δ′ ∈ N∗ such that p
δvδ′

−→∗q

Theorem 5. The maximal unwinding relation nT for T coincides with the max-
imal simulation relation ≺TV

for TV .
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Algorithm 1: Computing Maximal Simulation Relation

Input: T , a finite state LTS
Output: ≺T , the maximal simulation relation for T
for p ∈ Q do1

sim(p) = {q ∈ Q | for all e enabled at p, e is also enabled at q}2

end3

while there are states p, q, r and e ∈ Σ such that r ∈ post e(p), q ∈ sim(p) and4

poste(q) ∩ sim(r) = φ do

sim(p) = sim(p) \ {q}5

end6

≺T =
�

q∈Q{{q} × sim(q)}7

Proof. We first show that the maximal unwinding relation nT for T is a simu-
lation relation for TV . Let p

n1−→ p1
n2−→ p2...

nk−→ pk
v

−→ pk+1
m1−→ ...

ml−→ q, with
v ∈ V , ni, mj ∈ N , for 1 ≤ i ≤ k, 1 ≤ j ≤ l and p nT r in T . This path will

result in the transition p
v

−→V q in TV , due to the construction of TV . From the
definition of the unwinding relation, there exists t, ti ∈ Q with 1 ≤ i ≤ (k + m)

such that r
δ1−→∗t1

δ2−→∗...
δk−→∗tk

δ
−→∗tk+1

γ1

−→∗...
γl

−→∗t with δi, γj ∈ N∗ for
1 ≤ i ≤ k, 1 ≤ j ≤ l, δ ∈ (Σ \C)∗ and δ �V = v, and q nT t. This path will result

in the transition r
v

−→V t in TV . This implies nT is a simulation relation for
TV . Recall that ≺TV

is the union of all the simulation relations for TV . Hence
nT ⊆≺TV

.
We show that the maximal simulation relation ≺TV

for TV is an unwinding

relation for T . Let p
e

−→ q with e ∈ (Σ \ C) in T , p nT r and p ≺TV
r in TV . If

e ∈ V , from the definition of the simulation relation, there exists a t ∈ Q such
that r

v
−→V t in TV and q ≺TV

t. This means that there exists a path labelled
δvδ′ with δ, δ′ ∈ N∗ from r to t in T . If e ∈ N , again from the definition of the
simulation relation, for all paths labelled nδvδ′ with δ, δ′ ∈ N∗, v ∈ V from p,
we have a path labelled γvγ ′ with γ, γ′ ∈ N∗ from r in T . This implies for all
δvδ′ path from q, there is a path labelled γvγ ′ from r. So, q ≺TV

r. Hence for

each e ∈ (Σ \C), p, q, r ∈ Q with p
e

−→ q in T and p ≺TV
r, we have t ∈ Q such

that r
δ

−→∗t with δ ∈ N∗ in T and δ �V = e�V and q ≺TV
t. Therefore ≺TV

is an
unwinding relation. Recall that nT is the union of all the unwinding relations
for T . Hence ≺TV

⊆ nT .
Hence, the maximal unwinding relation nT for T coincides with the maximal

simulation relation ≺TV
for TV . ut

5 Checking Unwinding Conditions

In this section, we make use of the Theorem 5 and check the unwinding conditions
lrf, lrb, fcrf, fcrb, lrbe and fcrbe w.r.t. the maximal simulation relation ≺TV

for a
finite state LTS T . The procedure to check the unwinding condition lrf is given
below. The other unwinding conditions lrb, fcrf, fcrb, lrbe and fcrbe can also be
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checked in a similar way. Let m and n be the number of edges and states in T .
Let X ⊆ Σ, V ′ ⊆ V , C ′ ⊆ C and N ′ ⊆ N .

1. Construct TV using Warshall’s algorithm [1] in O(n3) time.
2. Compute the maximal simulation relation ≺TV

for TV using the Algorithm 1.
3. Check the unwinding conditions lrf w.r.t. ≺TV

.

Now we describe the way to check all the unwinding conditions w.r.t. ≺TV
.

For every p
c

−→ q with c ∈ C in T , if q ≺TV
p then T satisfies lrf w.r.t. ≺TV

.

For every p ∈ Q, c ∈ C, if there exists some q ∈ Q with p
c

−→ q in T and p ≺TV
q

then T satisfies lrb w.r.t. ≺TV
. The time complexity for checking lrf and lrb is

O(m) and O(n|C|) respectively.
To check whether T satisfies fcrf w.r.t. ≺TV

, we construct adjacency matrices
Av and Bv for every v ∈ V ′ such that Av[p, q] = 1 iff there is a path labelled
cv for some c ∈ C ′ from state p to q, and Bv[p, q] = 1 iff there is a path of
δv for some δ ∈ (N ′)∗ from p to q. If for every Av [p, q] = 1, there exists some
q′ ∈ Q with Bv [p, q′] = 1 and q ≺TV

q′, then T satisfies fcrf w.r.t. ≺TV
. To check

whether T satisfies fcrb w.r.t. ≺TV
, we construct adjacency matrices Av and Bv

for every v ∈ V ′ such that Av[p, q] = 1 iff there is a edge labelled v from state p

to q, and Bv[p, q] = 1 iff there is a path labelled cδv for some δ ∈ (N ′)∗, c ∈ C ′

from p to q. If for every Av[p, q] = 1, there exists some q′ ∈ Q with Bv [p, q′] = 1
and q ≺TV

q′, then T satisfies fcrb w.r.t. ≺TV
. Av and Bv can be computed

in O(n3) time, since it involves computation of matrix product and transitive
closure. The time complexity for checking fcrf and fcrb after the construction
of Av and Bv for every v ∈ V ′ is O(|V ′|n3).

To check whether some c ∈ C is X-enabled at p, we construct T ′ with states
containing two components: the first component keeps track of a state from T ,
while the second keeps track of a set of states of T that are reachable by words
that are X equivalent to the current word being read.

More precisely, let M be a transition system obtained by replacing non X-

edges in T with ε edges. Then T ′ = (Q′, s′,−→′) where Q′ = (Q × 2Q) ∪ Q;

s′ = (s, S) where S = {q ∈ Q | s
ε

−→∗q in M}; −→′ is given below:

(p, T )
e

−→′ (q, T ) if p
e

−→ q and e 6∈ X

(p, T )
e

−→′ (q, U) if p
e

−→ q, e ∈ X, and

U = {r | ∃t ∈ T, t
e

−→∗r in M}

(p, T )
c

−→′ p if ∃t ∈ T, q ∈ Q : t
c

−→ q and c ∈ C;

p
e

−→′ q if p
e

−→ q and e 6∈ C.

A c ∈ C is X-enabled at p iff for (p, T ) in T ′, there exists a t ∈ T and r ∈ Q

with t
c

−→ r. Some c ∈ C can be idenfied as X-enabled at p in 2O(n) time.
If for every p ∈ Q and for every c ∈ C, X-enabled at p, there exists q ∈ Q

with p
c

−→ q and p ≺TV
q, then T satisfies lrbe w.r.t. ≺TV

. If for every p
v

−→ q

with v ∈ V ′ and for every c ∈ C ′, X- enabled at p ∈ Q, there exists q′ ∈ Q with
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p
cδv
−→∗q′ for some δ ∈ (N ′)∗ and q ≺TV

q′, then T satisfies fcrbe w.r.t ≺TV
. The

time complexity to check for lrbe and fcrbe is |Σ|2O(n).

6 Complexity Analysis

The following table gives the comparision for checking BSP’s using the model
checking approach described in [2] and the unwinding conditions approach given
in this paper. Here m and n are the number of edges and number of states in
the given transition system T respectively. The time complexities given under
the unwinding conditions heading are when used with the naive Algorithm 1 for
computing the maximal simulation relation.

BSP’s Unwinding Conditions Model Checking

R O(|Σ|n6) 2O(n2|Σ|)

D O(|Σ|n6) 2O(n2|Σ|)

I O(|Σ|n6) 2O(n2|Σ|)

IA |Σ|2O(n) 2O(n2|Σ|)

BSD O(|Σ|n6) 2O(n2|Σ|)

BSI O(|Σ|n6) 2O(n2|Σ|)

BSIA |Σ|2O(n) 2O(n2|Σ|)

FCD O(|Σ|n6) 2O(n2|Σ|)

FCI O(|Σ|n6) 2O(n2|Σ|)

FCIA |Σ|2O(n) 2O(n2|Σ|)

SR - O(mn2|Σ|)
SD - O(mn2|Σ|)
SI - O(mn2|Σ|)

SIA - |Σ|22O(n)

Thus, the unwinding techniques provide a more efficient way for checking
BSP’s. Though the unwinding techniques are incomplete in general, it will be
useful for checking large systems. The running time of the unwinding techniques
can be improved by using the ideas of [5, 10].
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