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ABSTRACT
We present SEAL, a language for specification and analy-
sis of safety properties for label-based access control sys-
tems. A SEAL program represents a possibly infinite-state
non-deterministic transition system describing the dynamic
behavior of entities and their relevant access control opera-
tions. The features of our language are derived directly from
the need to model new access control features arising from
state-of-the art models in Windows 7, Asbestos, HiStar and
others. We show that the reachability problem for this class
of models is undecidable even for simple SEAL programs,
but a bounded model-checking algorithm is able to validate
interesting properties and discover relevant attacks.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—ac-
cess controls, verification

General Terms
Security, Verification

Keywords
access control, label-based access, Windows 7, attacks, bounded
model checking, logic programs

1. INTRODUCTION
The question of safety in access control was first studied in

the 70s in the context of the HRU and Graham-Denning [13,
11] models, based on the access-control matrix abstraction
due to Lampson [16]. The general safety question in this
context, which formalizes the notion of authorized access
was shown to be undecidable.

In practice however, there are restricted models for which
safety is decidable [15, 5], and it can be shown that correct
enforcement of authorized access requests preserves safety,
using a reference monitor (RM) which mediates all accesses.
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In most commercial and open-source operating systems, such
as Windows 7 and different flavors of Linux, a modified dis-
cretionary access-control (DAC) model is implemented using
this idea. The concept of ownership is used to define autho-
rized access, which determines the ability to change per-
missions to resources. RMs mediate all requests from pro-
cesses to resources and control access based on the instan-
taneous values in a virtual access matrix that captures the
ownership relation. This automatically enforces safety, even
though general safety properties require history for correct-
ness. Since ownership implies authorization in these models,
this notion is frequently exploited by attackers (e.g., using
buffer overflow attacks to get ”root-user” access), thereby
making safety guarantees provided by enforcement using
RMs meaningless.

In a bid to work around this weakness, in recent years,
there is a growing interest in applying what we call label-
based access control (LBAC) models to provide stronger
confidentiality and integrity guarantees. Windows Vista and
Windows 7 are the first commercial operating systems that
use integrity labels to minimize the damage that can be
caused by a compromised process running on behalf of an
authenticated user. Windows’ LBAC is called UAC (User
Account Control). In UAC, applications can run only with
low integrity levels by default, and cannot access trusted re-
sources which are tagged with higher-integrity labels when
compromised. Other examples of LBAC include SELinux[14]
and IFEDAC[18], as well as Asbestos and Hi-Star [21, 22].
In all these models, customizable confidentiality or integrity
labels are used to taint processes and resources that access
sensitive data, thereby preventing them from being accessed
or modified by processes with lower labels. Ownership-based
discretionary access control is also allowed in these models.

LBAC models are inspired by the pioneering works on
Multi-level Security (MLS) systems, exemplified by the Bell-
LaPadula [3] and Biba [4] models, but differ from them in
one crucial aspect. In traditional MLS models, labels as-
signed to processes and resources are immutable (fixed), and
strong safety properties can be enforced by RMs that only
need to compare the labels of processes and resources on
access. A security lattice [12] of labels is defined, which im-
poses a partial-order on how information is allowed to flow
between processes and resources, e.g., by disallowing write-
ups in the lattice for integrity protection and preventing
read-ups for confidentiality. However, immutable labels are
not very useful in commercial operating systems [17]. Con-
trolled and selective downgrading or upgrading of labels is
required, to satisfy everyday information flow requirements,



such as installing web applications. The safety question in
this context is whether a high process can access a low re-
source (confidentiality violation), or whether a low process
can write to a high resource (integrity violation). Once the
labels are allowed to change, safety cannot be enforced by in-
stantaneous lookup using an RM, without maintaining aux-
iliary information about the value of the label. History, e.g.,
as taint information, needs to be stored along with a process
or resource’s current label.

We present SEAL, a language for modeling and analyz-
ing safety properties in LBAC systems. Using SEAL we can
model the system state as the set of relevant access control
relations. Transitions are events that change labels and cre-
ate new associations or entries in these relations. A SEAL
program induces a possibly infinite state non-deterministic
transition system over these sets of relations. The safety
problem (or really its negation) can be viewed as a reacha-
bility property in this system. We show that analyzing this
property is undecidable even in a very restricted fragment of
SEAL. This is in contrast to other models of access control,
where even though the general case turns out to undecidable,
we admit decidable fragments that are expressive enough for
practical systems.

The syntax of SEAL resembles Datalog [6] or logic pro-
gramming closely. In terms of semantics however, typical
Datalog programs are interpreted over a given (closed) set
of relations. SEAL programs, on the other hand, can be
thought of as specifying dynamic state-transition systems
on sets of relations.

Access control problems have been specified using logic
programs in the past [1, 2, 19]. In these works, the mech-
anism of access control is expressed using an appropriate
language, i.e., constraint logic programming (CLP) or safe
stratified Datalog respectively. Given an access request, and
a database instance, logic specialization is used to answer
the query correctly and efficiently. The declarative aspect
of these programs also adds flexibility in terms of allowing
one to change access control mechanisms with little over-
head. Given the state of the system and an access query,
one can use these frameworks to tell whether the access is
authorized or not.

In contrast, we examine the problem of verifying if a dy-
namic access control model admits unsafe behavior. More
precisely, a SEAL LBAC specification is declared secure
when no unauthorized accesses are possible, assuming that
the system starts from a valid state and evolves adhering to
the behavior given in the specification. The difference be-
tween the two approaches can be expressed as examining the
satisfiability aspect of safety in abstract models, in contrast
to verifying the validity of queries in a model instance.

SEAL is related to EON [8], a language for expressing
dynamic access control systems where the base relations of
an EON program are unary. This restriction is not natu-
ral in generalized LBAC systems, since it does not capture
concepts such as binding resources to their named entities
(e.g., link files), or in expressing the exact semantics of la-
bel associations. We show that extending EON with even
one binary predicate makes the query reachability question
undecidable.

For verification in SEAL, we propose an algorithm that
systematically explores all possible states in the model, for
a given depth, as in bounded model checking [10, 9], and
validates if the property can be proved in the expansion. If

a counter-example is found, a finite state representation of
this attack is automatically generated, and a corresponding
RM can be built to track the history of states and transi-
tions to enforce the property. The monitor will track changes
to the state of the system and warn users before an unsafe
state is imminent. If the property cannot be disproved in the
bounded model, no safety guarantees can be asserted in gen-
eral. However, bounded depth guarantees from the model
can still carry over in natural use-cases in implementations
appropriately.

We show how SEAL can be used to model state-of-the-art
LBAC systems and models, including Windows 7, HiStar,
and Asbestos. We present examples of vulnerabilities, in-
cluding the UAC prompt elevation in the start menu, as well
as the silent elevation-list vulnerability that were discovered
by our bounded state-space exploration. These examples
cannot be modeled by EON. For Asbestos, we show the ab-
sence of secrecy violations in bounded contexts for general
safety properties. Finally we also discuss some limitations
of SEAL, especially in the context of IFEDAC [18].

The rest of the paper is organized as follows: In Section 2
we introduce SEAL and present its syntax and operational
semantics formally, and explain it informally with a relevant
example. Section 3 explores the Windows 7 LBAC model
and motivates the features of SEAL. Section 4 examines the
query reachability problem in SEAL, and includes a brief de-
scription of our bounded state-space exploration algorithm.
This is followed by our case studies in Section 5, where we
highlight vulnerabilities found in Windows 7 as well as dis-
cuss its applicability to Asbestos and IFEDAC. Finally, we
summarize our work in Section 6 and conclude with some
pointers to future work.

2. SEAL LANGUAGE
In this section, we present the formal syntax and seman-

tics of our logic programming language SEAL. SEAL uses
a relational model to formulate the access control prob-
lem, i.e., every state of the modeled access control system
is viewed as a set of relevant relations that are used to
define the mechanism of access. To illustrate, the state
{Process(a),File(b),Own(b, a)}, represents a model with one
process a, and one file b whose owner is a. Note that at any
instance (or snapshot), the relations have only a finite num-
ber of tuples.

2.1 SEAL Syntax
A SEAL program consists of three sections: a static part,

a dynamic part and queries. The static part of a SEAL
program encodes how the access relations can be constructed
(or derived) from the base relations, capturing dependencies
among the base relations appropriately. The dynamic part
is the heart of SEAL and consists of a list of customized
rules that specify how the base relations can be updated,
under what conditions (if any).

The static part of a SEAL program P is identical in syn-

tax to Datalog and denoted by P̂ . We first give a brief
description of the syntax of Datalog. For a full descrip-
tion of Datalog refer to [6]. A Datalog rule is of the form:
L0 :−L1, L2, . . . , Ln, where Li is a predicate with param-
eters. The parameters can either be constants (strings) or
variables. L0 is called the head of the rule. The head of the
rule should not have constants as parameters. Datalog does
not allow complex terms (such as functors) as arguments to



these predicates, and imposes certain stratification restric-
tions on the use of negation and recursion i.e., the variable
appearing in the negated predicate should also appear in
some positive predicate in the body of the same rule. Fur-
ther each variable in the head of a rule must also appear in
some positive clause in the body of the rule. There are two
types of predicates: base and derived. Base predicates occur
only in the body of the rules, and derived predicates occur
in at least one rule as head.

The syntax of the dynamic rules in SEAL is as follows:

anext B(x1, . . . , xm),B′(y1, . . . , yn) :−
R(u1, . . . , uk),R′(v1, . . . , vl).

enext B(x1, . . . , xm),B′(y1, . . . , yn) :−
R(u1, . . . , uk),R′(v1, . . . , vl).

In this rule, R(u1, . . . , uk) denotes the conjunction of posi-
tive predicates with parameters from the variables u1, . . . , uk,
such that every ui, 1 ≤ i ≤ k occurs in some predicate.
R′(v1, . . . , vl) denotes the conjunction of negative predicates
with parameters from the variables v1, . . . , vl, and every
vi, 1 ≤ i ≤ l also occurs in some positive predicate. Simi-
larly, B(x1, . . . , xm) denotes the conjunction of positive base
predicates and B′(y1, . . . , yn) denotes the conjunction of neg-
ative base predicates. All the variables of R′ and B′ occur
in R. Though the syntax of enext and anext are similar, the
semantics is a little different. We explain this in detail in
Section 2.2.

The dynamic rules can be normalized by restricting each
rule to have only one positive guard (right-hand side) predi-
cate, as it is equivalent to the above form. If the guard is not
a single positive predicate, it has to be a conjunction of pos-
itive and negative predicates. This can be replaced with a
single fresh predicate (containing all the variables appearing
in the earlier guard predicates), without loss of generality.
The original rule can now be replaced with a Datalog rule
with the fresh predicate as the head and the earlier guard
predicates as the body. Thus, a simplified (but equivalent)
dynamic rule would look like:

anext B(x1, . . . , xm),B′(y1, . . . , yn) :−R(u1, . . . , uk)
enext B(x1, . . . , xm),B′(y1, . . . , yn) :−R(u1, . . . , uk)

In these rules, all the variables of B′ occur in R.
We allow two kinds of queries: simple and temporal. A

simple query is written as Q(x1, . . . , xn)? and a temporal
query as Q1(x1, . . . , xm);Q2(y1, . . . , yn)?. We disallow du-
plication of variables in queries in a given SEAL program.
Note that if duplication of variables is needed, one can intro-
duce a new Datalog rule with a fresh query predicate. Hence
it is enough to consider just the name of the query predicate
(along with its arity) and not the argument variables. In
the rest of the paper, we assume that the all the dynamic
rules have a single positive predicate as the guard without
duplication of variables.

2.2 SEAL Semantics
Given an initial set of base predicates I, a SEAL pro-

gram P induces a transition system MP = (Q,Σ,−→, s0)
where Q is a (possibly infinite) set of states, Σ is a set of dy-
namic rules in the program, the transition relation is given
by −→⊆ Q × Σ × Q, and s0 ∈ Q is the starting state con-
structed from I. A state is a set (or database) of relations.
Note that this transition system may be non-deterministic.

As mentioned earlier, we use P̂ (I) to denote the standard
Datalog semantics for the Datalog portion of the SEAL pro-
gram P against a given set of base predicates I. In other
words, the Datalog rules of P are applied iteratively (and
cumulatively) on the predicates of I and derived predicates
are populated until they reach a fix-point. The conditions on
the Datalog rules ensure the existence of a least fix-point [6].
We use s and t to denote such saturated sets of predicates.
These saturated sets form the basic states in the induced
state-transition system. The starting state s0 = P̂ (I). We
use bp(s) and bp(t) to denote only the set of base predicates
in states s and t.

We now describe the semantics of the dynamic rules. Let
α = anext B(x1, . . . , xm),B′(y1, . . . , yn) :−R(u1, . . . , uk) in
a SEAL program P , where all the variables of B′ occur in

R. Then we have a transition s
α−→ s′ where s′ = P̂ (bp(s)∪

genan(α, s) \ killan(α, s)) if the predicate R (with arity k)
is non-empty in s, otherwise the a-transition is not enabled
at s. The sets genan and killan are defined as:

genan(α, s) = {B(a1, . . . , ar) |
B ∈ B ∧R(c1, . . . , ck) ∈ s}
where, for every 1 ≤ i ≤ r,

ai =

{
cj if xi = uj1 ≤ j ≤ k
a fresh constant otherwise

killan(α, s) = {B′(b1, . . . , bt) |
B′ ∈ B′ ∧R(c1, . . . , ck) ∈ s}
where, for every 1 ≤ i ≤ t, bi = cj
such that yi = uj for some 1 ≤ j ≤ k.

Similarly, when α = enext B(x1, . . . , xm),B′(y1, . . . , yn) :
−R(u1, . . . , uk) where all the variables of B′ occur in R, we

have a transition s
α−→ s′ where s′ = P̂ (bp(s)∪genen(α, s)\

killen(α, s)) if the predicate R with arity k is non-empty in
s, otherwise the α-transition is not enabled at s. When
the α-transition is enabled at s, pick one tuple R(c1, . . . , ck)
from s and update the state as defined by genen and killen
as follows:

genen(α, s) = {B(a1, . . . , ar) | B ∈ B}
where, for every 1 ≤ i ≤ r,

ai =

{
cj if xi = uj1 ≤ j ≤ k
a fresh constant otherwise

killen(α, s) = {B′(b1, . . . , bt) | B′ ∈ B′}
where, for every 1 ≤ i ≤ t, bi = cj ,
such that yi = uj for some 1 ≤ j ≤ k.

Note that in case of anext we consider all the tuples in
R from s and in enext we non-deterministically pick one
tuple of R in s. The semantics of enext is the source of non-
determinism in the induced automaton. If there are multiple
elements satisfying the guard of an enext rule e at a state
s, the induced transition system has many transitions on s
with the same label e accounting for every selection of the
satisfying guard predicate in s. A dynamic rule without a
guard is equivalent to having a zero-arity (constant) guard
predicate true.

We now describe the semantics of SEAL query evaluation.
A simple query Q(x1, . . . , xn)? holds from a set of a basic
predicates I w.r.t. a SEAL program P if there exists a state
s′ and a sequence of dynamic rules w = α1α2 . . . αm of P

such that P̂ (I)
α1−→ s1

α2−→ · · · αm−→ s′ and the predi-
cate Q (with arity n) is non-empty in s′. A temporal query



of the form Q1(x1, . . . , xm); Q2(y1, . . . , yn)? holds from a
state s w.r.t. a SEAL program P if there exist states s′, s′′

and two sequences of dynamic rules u = α1α2 . . . αk, v =

β1β2 . . . βl of P such that P̂ (I)
α1−→ s1

α2−→ · · · αk−→
s′

β1−→ t1
β2−→ · · · βl−→ s′′, the predicate Q1 (with arity m)

is non-empty in s′ and Q2 (with arity n) is non-empty in s′′.
Temporal queries can equivalently be written as simple

queries. Let Q1(x1, . . . , xm); Q2(y1, . . . , yn) be a temporal
query. This query may be replaced with a new simple query
Q(x1, . . . , xm, y1 . . . , yn), a dynamic rule

enext Done(x1, . . . , xm) :−Q1(x1, . . . , xm)

where Done is a fresh predicate, and a Datalog rule

Q(x1, . . . , xm, y1, . . . , yn) :−Q2(y1, . . . , yn),Done(x1, . . . , xm)

We now state the problem of query-reachability formally.
Given a snapshot of the system as a set of base relations I,
a simple query predicate Q and a SEAL program P , does Q

hold from P̂ (I) w.r.t. P . We also want to compute all such
paths.

2.3 Example
We present a simple program written in SEAL, and ex-

plain our syntax and semantics informally with this example.
Consider the following program that models the behavior of
a user presented with a UAC prompt associated with a label
change in Windows 7:

1. enext LowFile(x).

2. anext LinksTo(x,y):- LowFile(y), StdHighName(x).

3. AlwaysConsent(x) :- StdHighName(x).

4. StdHighName("regedit").

5. LinksTo(x,y),LowFile(y); AlwaysConsent(x)?

The first statement in our SEAL program is an enext rule,
which specifies that a new low file (file with integrity label
low) can be created by the user, or by a program running as
low on behalf of the user at any point. Note that anext would
not have made any difference here. The second statement is
a guarded anext statement which specifies that we can create
a link with a standard high name (say regedit, the registry
editor) to a low file (a virus) and put it on the desktop. The
third line is a regular Datalog rule that states that anything
with standard high name always causes the user to accept
prompt. The fourth statement is a database entry (or a
database ”fact”). The last statement is a query that says if
we have a link to a low file on the desktop, can the user be
fooled into giving consent?

This program induces a infinite state-transition system as
shown in the Figure 1. We start with the initial state (say
state 1) where regedit is the only entry in the StdHighName

and AlwaysConsent relations, consistent with standard Dat-
alog semantics. The first enext rule will cause the database
to transition to a state where a new constant is added to the
Low relation (state 2). Once this is added, no other Datalog
rule can fire and this is the updated state. Now, the guard
to the second anext rule is satisfied and a transition to a new
state can occur, where the LinksTo relation can be updated
appropriately. Note that the first enext rule is also enabled
in state 2, and this transition creates another constant in the
Low relation, and so on. Since there is only one constant in

Low StdHighName LinksTo AlwaysConsent
regedit regedit

Low StdHighName LinksTo AlwaysConsent
tmpFile regedit regedit

Low StdHighName LinksTo AlwaysConsent
tmpFile regedit (regedit,tmpFile) regedit

· · ·

...

1

2
1

1

Figure 1: Induced transition system for the example

the StdHighName relation, we will end up eventually describ-
ing a world where there are many low links on the desktop
to the high resource. It is easy to see that the query, about
whether it is possible for a link to a low file (say a virus) to
fool the user into accepting a UAC prompt(AlwaysConsent),
is true in this model. We have intentionally kept this exam-
ple simple, and hence a little contrived, attributing to user
behavior semantics that is outside the scope of the specifi-
cation given in the example.

3. MODELING IN SEAL
In this section, we call out specific requirements in state-

of-the art access control systems that motivate our choice
of features for SEAL. In particular, we focus on the LBAC
component of Windows 7, which is called User Account Con-
trol (UAC). With the help of examples we show how existing
formalisms (specifically EON) cannot capture the required
semantics adequately.

The intuition behind UAC is to enable authorized users
(typically PC owners) to log in as standard users and per-
form common tasks that do not require administrative priv-
ileges. The idea is when a user process is compromised (say
by a buffer-overflow attack) and control hijacked, the at-
tacker will have no more privileges than the default (low)
privileges associated with standard user accounts. There-
fore, when UAC is enabled, even a local administrator will
run as a standard user account with reduced privileges. This
is the case until (s)he attempts to run an application or
task that has an administrative token (i.e., requires special
privileges). When such a member of the local administra-
tors group attempts to start a privileged application or task,
they are prompted to consent to running the application as
elevated.

UAC is implemented using a lattice of integrity labels.
The integrity labels for each process (or thread) and re-
source on the Windows 7 installation are stored in its se-
curity descriptor. Windows 7 has four integrity labels (a
total order): System, High, Medium and Low. By default,
processes (and threads) on behalf of standard user accounts



run as Medium and all resources created by these accounts
can only be Medium or lower. Some applications however,
such as Internet Explorer (IE), run with default low rights.
Any resource downloaded from the Internet (say) is auto-
matically assigned a Low label, and (explicit) consent from
the user (who is Medium), is required by clicking on the UAC
prompt in case of elevation. By default, for integrity pro-
tection, restrictions are placed on explicit information flows
from lower levels to higher levels in the usual way. Write-up
by a lower process to a higher resource is not allowed, and
a read-down from a higher process to a lower user is not
allowed, unless explicitly authorized by the user in response
to a UAC prompt. Explicit authorization is allowed in UAC
for functionality reasons. If a user is reasonably certain e.g.,
that they trust the source of the plugin (by checking the
cryptographic hash of the binary with a trusted provider),
the labels need to be upgraded naturally. Within IE it is
possible to download and install plugins that need higher
privileges. A separate process or thread is run on behalf of
an existing process that requests additional privileges, and
explicit user consent is required to make these label changes.

The formal model of UAC was presented by Chaudhuri et
al in EON [7]. We present this model in SEAL, restricting
our relations to unary base predicates to mimic the syntax
of EON. This also sets the context to explain our extensions
to this model in the next subsection.

The unary base relations used in the model example have
the following informal meanings: P is a relation representing
processes; Obj represents objects (including processes); and
Low, Med, High, etc. represent processes and objects with
those integrity labels (ILs).

enext Obj(x),Low(x).
enext Obj(x),Med(x).
enext Obj(x),High(x).

enext P(x) :- Obj(x).
...

Guarded enext rules specify how ILs of processes and ob-
jects can be changed. For instance, a Medium process can
raise the IL of an object from Low to Medium if that ob-
ject is not a process; it can also lower the IL of an object
from Medium to Low. A High process can lower its own IL
to Medium (e.g., to execute a Medium object), consistent
with the safe upgrading and downgrading in the context of
integrity properties.

enext Med(y),!Low(y) :- Low(y),!P(y),Med(x),P(x).
enext Low(y),!Med(y) :- Med(y),Med(x),P(x).

enext Med(x),!High(x) :- High(x),P(x).
...

Datalog rules specify how processes can Read, Write, and
Execute objects. A process x can Read an object y without
any constraints. In contrast, x can Write y only if the IL of
x is Geq (greater than or equal to) the IL of y. Conversely,
x can Execute y only if the IL of y is Geq the IL of x.

Read(x,y) :- P(x),Obj(y).
Write(x,y) :- P(x),Geq(x,y).
Execute(x,y) :- P(x),Geq(y,x).

Geq(x,y) :- Med(x),Med(y).
Geq(x,y) :- Med(x),Low(y).
Geq(x,y) :- Low(x),Low(y).
...

Several interesting safety queries can be studied in this
model. For instance, can a Medium object be read by a
Medium process after it is written by a Low process? Can
an object that is written by a Low process be eventually
executed by a High process by downgrading to Medium?

Med(y); Low(x),Write(x,y); Med(z),Read(z,y)?
Low(x),Write(x,y); High(z); Med(z),Execute(z,y)?

When these queries were executed in EON, which has a
sound and complete decision procedure, in addition to the
obvious vulnerabilities that are introduced by explicit user
consent, vulnerabilities were discovered that highlight the
need to maintain the history of label-state of a process or a
resource as the system evolves over time. This information
is not explicitly available to the standard user when a UAC
prompt is issued, and the attacks such as the one shown
in our running-example can exist, due to additional native
resource-access semantics that are not accounted for in the
model.

In the next sub-section, we show how the EON language
used to model UAC is not sufficient to analyze scenarios
when UAC actions are composed with Windows native ac-
cess semantics. While the results of modeling UAC with
EON are useful, they do not specify interactions with com-
ponents outside the direct scope of the access relations (such
as file naming semantics etc.)

3.1 Windows 7 Folder Access
We motivate the need for a richer specification language,

SEAL, by illustrating a behavior that captures the interac-
tion between the UAC model and native Windows 7 folder-
access semantics.

As mentioned earlier, Windows 7 attaches integrity labels:
Low, Medium, High and System, to all resources and pro-
cesses (threads) in an installation. While the UAC defines
rules for safe upgrading and downgrading of integrity levels,
we show with an example that the peculiar and no doubt
useful semantics of the start Menu folder admits a behavior
that cannot be modeled in EON.

In Windows, a user’s start menu is populated with soft
links (shortcuts to actual resources) from two separate folder
locations. One is the user’s local start menu folder and the
other is a global folder, typically populated in enterprise
networks with remotely sourced applications. These two lo-
cations are merged to create the start menu that the user
sees. If the same shortcut exists in both the user’s local
folder and the global folder, upon access, the shortcut in the
user’s folder is given preference, and the application associ-
ated with the link is executed.

To model this behavior, we use the following base predi-
cates to represent entities in our model:

P(x) x is a process
Low(x) x has a ‘low’ IL
High(x) x has a ‘high’ IL
Adm(x) x is an admin
File(x) x is a file
Link(x) x is a link
Folder(x) x is a folder
FreshName(x) x is a fresh name
LinksTo(x,y) link name x points to resource y
Name(x,y) Name of x appears as y

InLocalFolder(x) x is in local start menu folder
InGlobalFolder(x) x is in global folder



The modeling assumes that there are only two integrity
levels: low and high (for simplicity), and that there is a high
administrator process already running in the system.

The dynamic rules are from 1 to 7. The rules 1 and 2
model creation of a new low and a high process respectively.

1. enext P(y), Low(y) :- Adm(x).

2. enext P(y), High(y) :- Adm(x).

Rule 3 creates fresh names, which are used in naming the
link files.

3. enext FreshName(x).

Rules 4 and 5 model the creation of a new low and high
file respectively, where y is a fresh constant.

4. enext File(y), Low(y) :- P(x).

5. enext File(y), High(y):- P(x), High(x).

The rules 6 and 7 model the start menu semantics. Rule
6 creates a link in the global folder to a genuine executable
which requires elevation. Rule 7 creates a link in the local
folder to another executable with the same name as the link
in the global folder, pointing to a low file.

6. enext LinksTo(y,z), High(y), Name(y, u),

UsedName(u), !FreshName(u),

InGlobalFolder(y) :- P(x), High(x),

File(z), High(z), FreshName(u).

7. enext LinksTo(y,z), Low(y), Name(y, u),

InLocalFolder(y) :- P(x), File(z),

UsedName(u).

The rest of the rules are pure Datalog rules, with easy-to-
read meanings.

SameName(x,y) :- Name(x,z), Name(y,z).

StartMenu(x) :- SameName(x,y),

InLocalFolder(x), InGlobalFolder(y).

StartMenu(x) :- InLocalFolder(x),

!InGlobalFolder(x).

StartMenu(x) :- InGlobalFolder(x),

!SameName(x,y).

AddPrivilege(x) :- StartMenu(x).

Below is the query modeling a safety property. The state
satisfying this query represents the vulnerable state of the
system.

Low(x); AddPrivilege(x)?

Note that both LinksTo and SameName are binary predi-
cates and cannot be represented as multiple unary predicates
in EON, as they both range over infinite domains. In Sec-
tion 5, we explain how we can analyze this specification and
examine if it admits unsafe states.

4. QUERY REACHABILITY IN SEAL
While the specification shown in Section 3.1 captures the

semantics of native Windows 7 file access, we show that the
existence of even one binary predicate in a SEAL program
makes the query reachability problem undecidable. We show
this with a reduction from Hilbert’s tenth problem. This
result adds further restrictions to the proof presented by
Chaudhuri et al. [8] where they showed undecidability using
two binary predicates.

Theorem 1. The query reachability problem for SEAL
with one binary base predicate is undecidable.

Proof. We prove that the simple query reachability prob-
lem for SEAL with just one binary base predicate is unde-
cidable by reducing Hilbert’s tenth problem.

Hilbert’s Tenth Problem. Given a diophantine equa-
tion (n degree polynomial with m unknowns: x1 . . . xm and
integer coefficients: p11 . . . pmn, p) of the form

p11x
1
1 + p12x

2
1 + · · ·+ p1nx

n
1 +

p21x
1
2 + p22x

2
2 + · · ·+ p2nx

n
2 +

...
pm1x

1
m + pm2x

2
m + · · ·+ pmnx

n
m + p = 0

does there exist natural number solution (zero included)
for the unknowns? This problem is known to be undecidable.
Hilbert initially defined the problem for an integer solution.
However, the problem is equivalent for a natural number
(zero included) solution. This follows from the fact that
every natural number can be expressed as a sum of 4 squares,
as proved by Lagrange.

We encode natural numbers using a single binary predi-
cate and extend it to model Hilbert’s Tenth problem (HTP).
Given an instance of HTP: p11 . . . pmn, p, we construct a
SEAL program with isZero and Succ as base predicates,
with their natural meanings (Succ(x,x’) represents x being
the successor of x’). The predicate Succ is the only binary
base predicate in the program. From this, we can generate
all natural numbers. We use the standard ordered pair no-
tation for representing integers: (a, b) for the integer a − b.
We give the sketch of the program here:

enext isZero(x).

anext Succ(x,x’) :- NaturalNum(x’).

NaturalNum(x) :- isZero(x).

NaturalNum(x) :- Succ(x,y), NaturalNum(y).

Integer(x,y) :- NaturalNum(x), NaturalNum(y).

Plus(x,y,x) :- isZero(y).

Plus(x,y,z) :- Succ(y,y’), Plus(x,y’,z’),

Succ(z,z’).

NMul(x,y,y) :- isZero(y).

NMul(x,y,z) :- Succ(y,y’), NMul(x,y’,z’),

Plus(x,z’,z).

Mul(a,b,x,c,d) :- NMul(a,x,c), NMul(b,x,d).

NExp(x,y,z) :- isZero(y), isZero(z’),

Succ(z,z’).

NExp(x,y,z) :- Succ(y,y’), NExp(x,y’,z’),

NMul(x,z’,z).

One(x) :- Succ(x,x’), isZero(x’).

Two(x) :- Succ(x,x’), One(x’).

.

.

.

N(x) :- ...

P11(x,y) :- ...

.



.

.

PMN(x,y) :- ...

P(x,y) :- ...

Equal(x,y) :- isZero(x), isZero(y).

Equal(x,y) :- Succ(x,x’), Succ(y,y’),

Equal(x’,y’).

Query(x1...xm) :-

One(1), Two(2), ... , N(n), P(pa,pb),

NExp(x1,1,x11’), P11(p11a,p11b),

Mul(p11a,p11b,x11’,x11a,x11b),

NExp(x1,2,x12’), P12(p12a,p12b),

Mul(p12a,p12b,x12’,x12a,x11b),

.

.

.

NExp(x1,n,x1n’), P1N(p1na,p1nb),

Mul(p1na,p1nb,x1n’,x1na,x1nb),

.

.

.

NExp(xm,1,xm1’), PM1(pm1a,pm1b),

Mul(pm1a,pm1b,xm1’,xm1a,xm1b),

.

.

.

NExp(xm,n,xmn’), PMN(pmna,pmnb),

Mul(pmna,pmnb,xmn,xmna,xmnb),

Plus(pa,x11a, y11a), Plus(y11a,x12a, y12a), ... ,

Plus(.,xmna, ymna),

Plus(pb,x11b, y11b), Plus(y11b,x12b, y12b), ... ,

Plus(.,xmnb, ymnb), Equal(ymna,ymnb).

Query(x1...xm) ?

We give a brief explanation of the above program. The
first dynamic rule creates an element representing zero. The
second rule with the help of Datalog rules for NaturalNum

create natural numbers. Note that the type of the dynamic
rule would not make any difference for this program. As
mentioned earlier an integer is represented using an ordered
pair of natural numbers. The predicate Plus, NMul and NExp

describe addition, multiplication and exponentiation of nat-
ural numbers respectively. The predicate Mul denotes the
multiplication of an integer with a natural number. The
predicates One till N are used to describe exponentiation con-
stants of the equation. A positive integer coefficient q is
represented as (q, 0) and a negative coefficient −q as (0, q).
The predicates P11 till PMN and P represent the coefficients.
The predicate Equal is true when both the arguments (nat-
ural numbers) are same. The query predicate Q describes
the given equation and checks if the result is zero.

Now, if the query reachability problem is decidable then
we will have an algorithm to solve HTP. Hence proved.

The undecidability result implies that it is not possible
to find an algorithm (or a decision procedure) to compute
reachability for a general SEAL program. We have looked at
various abstractions and over-approximations and a general
algorithm to guarantee soundness, by defining an appropri-
ate equivalence relation or appropriate finite abstractions is
still open.

Instead, we implement a bounded model-checking algo-
rithm, which is complete for a given depth-bound. The pro-
cedure is to start with an initial state and explore all possible
(non deterministic) transitions from each reachable state it-
eratively, until the bound is reached. If a counterexample
or an unsafe state is found in the bounded model, then it is
a true error. In practice, as we show in our Case Studies,
a depth of 8 to 10 uncovers many vulnerabilities, previously
known or otherwise. While we cannot assert that a model
that does not admit an attack (or unsafe state) within this
bound is safe, it may be unlikely that an attacker would use
methods that involve many more state change operations.

In the next section, we present three case studies, where
we model and analyze different aspects of safety in Windows
7, Asbestos, and IFEDAC.

5. CASE STUDIES
In this section, we present results from our modeling of

three different access control systems, Windows 7, Asbestos
(and HiStar), and IFEDAC. In each of the studies we explain
our findings, in terms of true vulnerabilities discovered/not
discovered for different depths. The SEAL tool to implement
the bounded state-space exploration was written in F# and
is available for download.

5.1 Windows 7 vulnerabilities
The first case study is the specification of the behavior of

dynamically created links in the start menu folder. Through
our analysis we discover that the specification admits a vul-
nerability at exploration depth 8.

To explain this vulnerability [20], we present an attack
scenario as follows: A malicious user can write a proxy in-
fection tool, which can be downloaded as a Trojan (as low),
when the user clicks on an interesting third-party applica-
tion. When this tool is run by the user, it can write to
the user’s start menu folder and read the contents of the
global start menu folder without requesting elevated per-
missions. This malicious program searches the global start
menu folder for all applications that require elevation, and
creates duplicate links to malicious virus code (still labeled
low) in the user’s local folder, with the same name as the
trusted program in the global folder.

When the user attempts to run a program that has been
duplicated, they see a UAC prompt. Because the program
already requires elevated permission, the user would not
be alarmed, and would give consent. The malicious pro-
gram, with elevated privileges, executes the intended pro-
gram, fooling the user into thinking everything is normal.
Meanwhile, the malicious program can clean up any traces,
and install itself somewhere with permanently-elevated priv-
ileges.

The steps required to mount this attack, in the context
of the SEAL program presented in Section 3.1, are shown
in Figure 2. The model has to explore the states to depth
level of 7 before the attack is discovered. We implemented a
reduced version of the specification which had about 100000
states.

The next behavior we model is something called the silent
elevation list. The silent elevation list is an option to al-
low the operating system developer to define a list of ap-
plications that can always bypass the UAC prompt, with-
out user consent. The intent is to populate this list with
only trusted applications, and improve the user experience.



Figure 2: Start Menu Vulnerability

Popular third-party applications such as Adobe Reader and
Flash Player occur in this list. These third-party applica-
tions are themselves untrusted and require explicit consent
by the user to install as a plugin in the browser after they
are downloaded. Once they are installed, they are automat-
ically added to the silent elevation list. A SEAL program
modeling this behavior is presented next:

1. enext Downloads(x,y), Low(y), App(y)

:- Low(x), P(x).

2. High(y) :- Install(y), Low(y)

3. App(y), High(y) :- SEList(u), SameName(y,u).

4. Low(x); High(x)?

It is clear that a malicious plugin with the same name
as a trusted binary on the Silent Elevation list can obtain
administrative privileges, violating the safety requirement.
A low process can download a low application, as specified
in Step 1 and this can be installed as a plugin, assuming
the source was trusted in Step 2. Now if this has the same
name as an application in the Silent Elevation list, we have
essentially bypassed the integrity guarantee as a High user
can read a high application (this is not modeled in the ex-
ample). This vulnerability was found in 5 steps in our tool.
For the bounding depth of 5, our tool discovered over 6000
states.

Note that Windows 7 has an in-built tamper detection
warning that automatically changes the color of the UAC
prompt when an untrusted application is loaded. A trusted
application whose integrity can be verified is presented with
UAC window with a green border, and an untrusted ap-
plication has a yellow border. This warning may prevent
a vigilant user from falling victim to a start menu attack,
but does not help much in the Silent Elevation attack, un-
less the browser validates the signature of the downloaded
plugin outside the scope of the UAC prompt.

The vulnerabilities described were found by examining dif-
ferent components in the Windows 7 codebase that use UAC,
and studying their behavior in the context of integrity guar-
antees (safety). In the future, we plan to examine all such
interactions to systematically discover similar vulnerabilities
(if any).

5.2 Asbestos
Asbestos is a Unix-based operating system developed by

researchers that provides in-built support for creating confi-
dentiality labels. The goal is to provide safety by implement-
ing LBAC, by dynamically isolating trusted processes from
untrusted ones using automatic tainting and taint propaga-
tion. Asbestos processes have both send and receive labels,
corresponding to their clearance level and their taint level.
Labels can also be set-valued, as in MLS compartments. The
specification of Asbestos’ LBAC provides a large number of
choices. In EON, the authors have shown that it is possi-
ble to configure Asbestos labels in a manner that can cause
unsafe behavior. However, safe defaults are suggested for
send and receive labels. Even though these labels are set-
valued, restricting the specifications to default values allows
us to express it in EON and SEAL. For the example scenar-
ios and configurations presented in the Asbestos work, EON
was able to validate the safety properties effectively.



In terms of improving on EON, SEAL allows the use of
multiary relations, reducing the size of the specifications,
and potentially the complexity of verification for bounded
models. For example, in EON, in order to create a user
process and its associated port, with specific values for send
and receive labels in the webserver example, we need the
following relations:

enext Process(x), PortUW(x),

LabelSendUcStar(x), LabelSendUtThree(x),

LabelSendVcOne(x), LabelSendVtOne(x),

LabelSendUwStar(x), LabelSendVwOne(x),

--

LabelRecvUcStar(x), LabelRecvUtThree(x),

LabelRecvVcTwo(x), LabelRecvVtTwo(x),

LabelRecvUwStar(x), LabelRecvVwTwo(x),

--

LabelPortUWUcTwo(x), LabelPortUWUtThree(x),

LabelPortUWVcTwo(x), LabelPortUWVtTwo(x),

LabelPortUWUwZero(x), LabelPortUWVwTwo(x) :- U.

In SEAL this can be specified using far fewer relations. In
fact, this enext rule can be specified using only one relation,
but we present an equivalent rule which uses four relations
for readability:

enext Process(x, port),

ProcessSendLabels(x,s1, .. ,s6),

ProcessRecvLabels(x,r1, .. ,r6),

ProcessPortLabels(port,x,p1, .. ,p6).

Further, as in the case of Windows 7, exposing additional
semantics to the access models may help in discovering new
vulnerabilities. HiStar is an extension to Asbestos, and sim-
ilar properties can be validated here.

5.3 IFEDAC
Information Flow enhanced DAC (IFEDAC [18]) is a pro-

posed extension to the traditional DAC models that is specif-
ically targeted at preventing Trojans. One of the problems
with a DAC system is that a resource is associated with
only one owner, whereas in real systems, the provenance of
the resources, in terms of their past owners and their in-
tegrity plays an important part in arbitrating trust issues.
To capture provenance, IFEDAC specifications extends the
concept of ownership to include all principals that ever cre-
ated or owned the file. This set of principals is used as a
label to mark clearance or integrity level of a resource / pro-
cess. These labels naturally form a lattice with set inclusion
as the order. These labels may change as the system evolves
(in accordance with the given IFEDAC specification).

The framework modeling the behaviors of IFEDAC speci-
fications should account for these dynamic sets (labels). Let
X and Y denote integrity label of a process p and read protec-
tion class (rpc) of an object o respectively. For the purpose
of this illustration, it is enough to treat rpc of an object
to be same as its integrity label. Let dom(X,Y) denote X

dominates Y, i.e., X ⊇ Y. A straight-forward translation of
IFEDAC rule for a process p to read object o would read as
follows.

reads(p,o) :- int(X,p), rpc(Y,o), dom(X,Y).

Note that here we are using an implicit quantification on
set variables X and Y. SEAL does not allow quantification

over set variables, and the IFEDAC model cannot be ex-
pressed in our framework. However, as in the case of As-
bestos presented previously, it is possible to encode a par-
ticular instance of an IFEDAC system where these sets are
fixed, and SEAL can be used in a limited way to verify safety
when other relations can change dynamically. Verification
with quantification over set-valued variables is outside the
scope of SEAL.

6. CONCLUSIONS
We present SEAL, a language for specifying and analyz-

ing dynamic LBAC systems using logic programs. SEAL
improves on existing modeling languages such as EON by
allowing for richer specifications, modeling behaviors that
were not previously articulated. The safety problem in LBAC
systems is reduced to query reachability in SEAL, and is
shown to be undecidable even for a conservative program in-
stance with one binary base predicate. This restriction poses
an interesting open question about the existence of abstrac-
tions or over-approximations that can guarantee soundness
in these models automatically.

Because of this restriction, we implement a bounded state-
space exploration tool that is useful in analyzing the be-
havior of Windows 7, which is arguably the most widely
used commercial LBAC system. While we cannot guaran-
tee safety, any violation found by our tool is a true error.
The vulnerabilities discovered by SEAL, including the Start
Menu problem and the Silent Elevation list, highlight the
need to define the interface between the access control model
and modules that implement or require label-changes using
UAC, more rigorously. We also study how SEAL can be
used for modeling other LBAC systems, including Asbestos
and IFEDAC. We recognize SEAL’s limitations to handle
IFEDAC models.

One natural direction to explore is to construct approx-
imations. Ideally we would like to construct a finite state
transition system containing all the behaviors (runs) of the
induced possibly infinite state transtion system of a SEAL
program. In this way, we can give guarantees on when a
specification doesn’t have a vulnerability.
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