
Model-Checking Trace-based Information Flow

Properties ∗

Deepak D’Souza Raveendra Holla Raghavendra K. R.

Department of Computer Science and Automation,

Indian Institute of Science, Bangalore, India.

{deepakd, raveendra, raghavendrakr}@csa.iisc.ernet.in

Barbara Sprick†

TU Darmdstadt,

Fachbereich Informatik, Germany.

sprick@mais.informatik.tu-darmstadt.de

Abstract

In this paper we consider the problem of verifying trace-based infor-
mation flow properties for different classes of system models. We begin
by proposing an automata-theoretic technique for model-checking trace-
based information flow properties for finite-state systems. We do this
by showing that Mantel’s Basic Security Predicates (BSPs), which were
shown to be the building blocks of most trace-based properties in the
literature, can be verified in an automated way for finite-state system
models. We also consider the problem for the class of pushdown system
models, and show that it is undecidable to check such systems for any of
the trace-based information flow properties. Finally we consider a sim-
ple trace-based property we call “weak non-inference” and show that it is
undecidable even for finite-state systems.

1 Introduction

Information flow properties are a way of specifying security properties of sys-
tems, dating back to the work of Goguen and Meseguer [12] in the eighties.
In this framework, a system is modelled as having high-level (or confidential)
events as well as low-level (or public) events, and a typical property requires that
the high-level events should not “influence” the outcome of low-level events. In
other words, the sequence of low-level events observed from a system execution,
should not reveal “too much” information about the high-level events that may
have taken place.

There is a great variety of information flow properties proposed in the lit-
erature, and they can be broadly classified into three different categories. The

∗Preliminary results in this paper appeared in [9] and [7]
†Work partially done while visiting Indian Institute of Science, Bangalore.

1

original formulation of “non-interference” by Goguen and Meseguer was state-
based in the sense that it spoke about the state of the system after a sequence of
events: The state reached by the system after executing a sequence of low and
high-level events, must be the same (from the low-level observer’s point of view)
as the state reached after executing only the low-level events in the sequence.
Some information flow properties are trace-based in that they specify a prop-
erty of the set of traces or executions produced by the system. For example,
the “non-inference” property [20, 19, 25] states that for every trace produced
by the system, its projection to low-level events must also be a possible trace
of the system. Finally, properties could be based on structural properties of
the system model. For example, the property “Bisimulation-based Strong Non-
deterministic Non-interference” (BSNNI) of Focardi and Gorrieri [10] states that
the system model with high-level events made “silent”, should be bisimilar to
the system model with high-level transitions deleted. Many of these three kinds
of properties also appear in a “language-based” setting, in that they are phrased
over programs directly. For example, Denning and Denning [6] say a program
satisfies non-interference if the program started in two states that are low-level
equivalent (i.e. they agree on the values of low-level variables), always termi-
nates in states that are low-level equivalent.

In [16, 17] Mantel studies the trace-based properties in the literature, and
provides a framework for reasoning about them in a modular way. He iden-
tifies a set of basic information flow properties which he calls “basic security
predicates” or BSPs, which are shown to be the building blocks of most of the
known trace-based properties in the literature. Some of the well-known prop-
erties covered in this framework include the non-inference property mentioned
above, separability [19] (which requires that every possible low-level behavior in-
terleaved with every possible high-level behaviour must be a possible behaviour
of the system), generalized non-interference [18] (which requires that for ev-
ery possible trace and every possible perturbation there is a correction to the
perturbation such that the resulting trace is again a possible trace of the sys-
tem), non-deducibility [23], restrictiveness [18], forward correctability [14], and
the perfect security property [25]. Mantel’s framework is modular in that BSPs
which are common to several properties of interest for the given system, need
only be verified once for the system. Focardi and Gorrieri [10] also study some
trace-based properties and classify their relative expressiveness.

Our focus in this paper is concerned with the problem of verifying trace-
based information flow properties for a given class of system models. Much
of the work in the literature has focussed on using “unwinding” conditions to
solve the problem [12, 17]. Unwinding conditions are simulation relations on the
states of a system model which satisfy certain additional constraints. In [17]
Mantel gives unwinding conditions for most of the BSPs he identifies. These
unwinding conditions are shown to be sound in general, and complete for a
restricted class of system models in which all events are classified as either
high or low. For general systems however these unwinding conditions are not
complete [17, Section 5.4.5]: a system could satisfy the information flow property
but fail the corresponding unwinding condition. Thus, while these unwinding
conditions can be verified algorithmically (at least for the class of finite-state
system models, see [8]), they do not lead to a verification (or “model-checking”)
algorithm for general systems.

In this paper, we use the framework of Mantel as a starting point, and present

2

a model-checking algorithm for all trace-based information flow properties in his
taxonomy, for systems modeled as finite-state transition systems. We define a
set of (formal) language-theoretic operations that represent the allowed pertur-
bations and corrections for each BSP, and show that the question of whether
a set of traces L satisfies a BSP P boils down to checking whether a language
op1(L) is contained in a language op2(L), where op1 and op2 are particular
language-theoretic operations. Thus these characterisations can be viewed as
analogues of Focardi and Gorrieri’s trace-based static characterisations [10]. Fi-
nally we show that the language-theoretic operations are regularity-preserving.
Thus if L is specified by a finite-state transition system (and is hence regu-
lar), then op1(L) and op2(L) are also regular, and the question of whether
op1(L) ⊆ op2(L) can be answered effectively by standard automata-theoretic
techniques. This gives us a model-checking algorithm for verifying BSPs for
finite-state systems. Using Mantel’s characterisations, we immediately obtain
model-checking algorithms for all the information-flow properties in his taxon-
omy.

A natural question to ask is whether this technique also extends to the class
of pushdown systems, which are one of the most tractable classes of infinite-
state systems. For example reachability of a given configuration is decidable
for this class of systems [3]. Pushdown systems can make use of an unbounded
stack, and are useful in modelling programs with procedure calls and variables
with bounded values. Such systems also occur in the literature as recursive
state machines [1] and boolean programs [2]. Unfortunately, we show that the
problem of model-checking such systems for any of the BSPs is undecidable, and
hence we cannot hope to find an algorithmic solution to the problem. We go on
to show that this undecidability result also applies to the trace-based properties
in Mantel’s taxonomy.

Finally, in the third part of the paper we consider a natural trace-based
security property we call Weak Non-Inference orWNI . The property essentially
says that by observing a visible system trace a low-level user cannot pinpoint
the exact sequence of confidential events that have taken place in the system.
The property is thus in the same spirit as the BSPs and the other trace-based
non-interference properties, as it also says that by seeing a visible trace a low-
level user cannot infer “too much” about the confidential events that have taken
place in the system. In fact, WNI can be seen to be weaker than all the trace-
based properties mentioned above. We show that the problem of model-checking
WNI is undecidable not just for pushdown systems but for finite-state systems
as well.

This result is interesting for a couple of reasons: Firstly, it follows from
our results that WNI , a natural non-interference property, is not definable in
Mantel’s BSP framework. Secondly, this result sheds some light on a broader
question: Is there a natural first-order logic which can express properties like the
BSPs and which can be model-checked for finite-state systems? We note that
BSPs make use of the operations of concatenation (implicitly) and projection to
a subset of the alphabet. By earlier undecidability results in the literature [21]
a general first order (FO) logic that allows concatenation is necessarily undecid-
able. By our undecidability result for WNI , it follows that a FO logic that uses
projection (and negation, which BSPs don’t use) is necessarily undecidable.

Turning now to related work, our decision procedure for the verification
problem for finite-state systems is closest to that of Focardi and Gorrieri [10].

3

They have also implemented their decision procedure for systems modeled in
process algebra in a tool called CoSec [11]. In contrast, our decision procedures
are applicable to a much larger class of trace-based properties. In principle, our
“static characterisations” can be used to extend the CoSec tool to handle all
trace-based properties in Mantel’s taxonomy.

In work subsequent to ours van der Meyden and Zhang [24] give model-
checking algorithms for the trace-based properties: non-deducibility, general-
ized non-interference and forward correctability, apart from state-based non-
interference properties, and the bisimulation-based version of the restrictiveness
property. They also show some hardness results for these algorithms, in partic-
ular PSPACE-completeness for the three trace-based properties above. Their
decision procedures are similar to that of Focardi-Gorrieri and ours. Though
we do not address the issue of completeness, our decision procedures are easily
seen to be in PSPACE.

In [5] Dam gives a decision procedure for checking the language-based bisim-
ulation property called strong low bisimulation as defined in [22], for simple
parallel while programs. He also shows the undecidability of the bisimulation-
based non-interference property studied in [4], for this class of programs. The
class of programs considered are infinite-state systems, with finite control but
variables with unbounded values. Hence they contain strictly the class of finite-
state systems as well as the class of pushdown systems we consider. In contrast
our undecidability result for WNI is for a simple trace-based property and for
finite-state systems.

The rest of the paper is organized as follows. Section 2 defines the techni-
cal terms and recalls Mantel’s BSPs and trace-based definitions of well known
non-interference properties. Section 3 defines the language-theoretic operations,
and characterizes BSPs in terms of these operations. Section 4 shows that these
operations are regularity-preserving, leading to a model checking algorithm for
BSPs for finite-state systems. In Section 5 we prove the undecidability of the
model-checking for BSPs for pushdown systems. Section 6 shows the undecid-
ability of the model-checking problem for the trace-based properties in Man-
tel’s taxonomy, for pushdown systems. In Section 7 we introduce the Weak
Non-Inference property, show its undecidability for finite-state systems. Finally
Section 8 concludes the article with some discussion and future work.

2 Preliminaries

In this section we recall Mantel’s Basic Security Predicates and trace-based
definitions of information flow properties. As we are interested in addressing
the verification problem in this paper, we only recall the definitions of these
properties and point the reader to [17] and [10] for motivation and example
applications.

We begin with some preliminary notions. By an alphabet we will mean a
finite set of symbols representing events or actions of a system. For an alphabet
Σ we use Σ∗ to denote the set of finite strings over Σ. The null or empty string
is represented by the symbol ǫ. For two strings α and β in Σ∗ we write αβ for
the concatenation of α and β. A language L over Σ is just a subset of Σ∗.

A marked language M over an alphabet Σ is a language over the alphabet
Σ∪{♮}, where ‘♮’ is a special “mark” symbol different from those in Σ, and each

4

string in M contains exactly one occurrence of ♮. A marked language is thus a
subset of Σ∗♮Σ∗.

A view w.r.t. an alphabet Σ is a partition V = (V,N,C) of Σ into visible
events V , confidential events C, and neither visible nor confidential events N ,
from a particular user’s point of view.

For the rest of the paper we fix an alphabet of events Σ. Let w be a string
over Σ, and let X ⊆ Σ. Then w ↾X denotes the string obtained by deleting
all events from w that are not elements of X . It will be convenient to use the
notation α =Y β where α, β ∈ Σ∗ and Y ⊆ Σ, to mean α and β are the same
“modulo a correction on Y -events”. More precisely, α =Y β iff α ↾Y = β ↾Y ,
where Y denotes Σ − Y . By extension, for languages L1 and L2 over Σ or
Σ ∪ {#}, we say L1 ⊆Y L2 iff L1 ↾Y ⊆ L2 ↾Y .

We begin by recalling the basic security predicates (BSPs) of Mantel [17].
Let L be a language over Σ. Let V = (V,N,C) be a view of Σ. The definitions
below say when L satisfies a particular BSP w.r.t. the view V :

1. L satisfies R (Removal of events) iff for all τ ∈ L there exists τ ′ ∈ L such
that τ ′ ↾C= ǫ and τ ′ ↾V = τ ↾V .

2. L satisfies D (stepwise Deletion of events) iff for all αcβ ∈ L, such that
c ∈ C and β ↾C= ǫ, we have α′β′ ∈ L with α′ =N α and β′ =N β.

3. L satisfies I (Insertion of events) iff for all αβ ∈ L such that β ↾C= ǫ, and
for every c ∈ C, we have α′cβ′ ∈ L, with β′ =N β and α′ =N α.

4. Let X ⊆ Σ. Then L satisfies IA (Insertion of Admissible events) w.r.t.
X iff for all αβ ∈ L such that β ↾C= ǫ and for some c ∈ C, there exists
γc ∈ L with γ ↾X= α↾X , we have α′cβ′ ∈ L with β′ =N β and α′ =N α.

5. L satisfies BSD (Backwards Strict Deletion) iff for all αcβ ∈ L such that
c ∈ C and β ↾C= ǫ, we have αβ′ ∈ L with β′ =N β.

6. L satisfies BSI (Backwards Strict Insertion) iff for all αβ ∈ L such that
β ↾C= ǫ, and for every c ∈ C, we have αcβ′ ∈ L, with β′ =N β.

7. Let X ⊆ Σ. Then L satisfies BSIA (Backwards Strict Insertion of Admis-
sible events) w.r.t. X iff for all αβ ∈ L such that β ↾C= ǫ and there exists
γc ∈ L with c ∈ C and γ ↾X= α↾X , we have αcβ′ ∈ L with β′ =N β.

8. Let V ′ ⊆ V , C′ ⊆ C, and N ′ ⊆ N . Then L satisfies FCD (Forward
Correctable Deletion) w.r.t. V ′, C′, N ′ iff for all αcvβ ∈ L such that
c ∈ C′, v ∈ V ′ and β ↾C= ǫ, we have αδvβ′ ∈ L where δ ∈ (N ′)∗ and
β′ =N β.

9. Let, V ′ ⊆ V , C′ ⊆ C, and N ′ ⊆ N . Then L satisfies FCI (Forward
Correctable Insertion) w.r.t. V ′, C′, N ′ iff for all αvβ ∈ L such that v ∈ V ′,
β ↾C= ǫ, and for every c ∈ C′ we have αcδvβ′ ∈ L, with δ ∈ (N ′)∗ and
β′ =N β.

10. Let X ⊆ Σ, V ′ ⊆ V , C′ ⊆ C, and N ′ ⊆ N . Then L satisfies FCIA
(Forward Correctable Insertion of admissible events) w.r.t. X,V ′, C′, N ′

iff for all αvβ ∈ L such that: v ∈ V ′, β ↾C= ǫ, and there exists γc ∈ L,
with c ∈ C′ and γ ↾X= α ↾X ; we have αcδvβ′ ∈ L with δ ∈ (N ′)∗ and
β′ =N β.

5

11. L satisfies SR (Strict Removal) iff for all τ ∈ L we have τ ↾C∈ L.

12. L satisfies SD (Strict Deletion) iff for all αcβ ∈ L such that c ∈ C and
β ↾C= ǫ, we have αβ ∈ L.

13. L satisfies SI (Strict Insertion) iff for all αβ ∈ L such that β ↾C= ǫ, and
for every c ∈ C, we have αcβ ∈ L.

14. Let X ⊆ Σ. L satisfies SIA (Strict Insertion of Admissible events) w.r.t.
X iff for all αβ ∈ L such that β ↾C= ǫ and there exists γc ∈ L with c ∈ C

and γ ↾X= α↾X , we have αcβ ∈ L.

We also recall the definitions of some of the trace-based properties in Man-
tel’s taxonomy [17]. These properties are defined w.r.t. a partition of Σ into
high (H) and low (L) events, and another partition of Σ into input (I) and output
(O) events. We write HI for H ∩ I and LI for L ∩ I. We denote by H the view
(L, ∅,H), and by HI the view (L,H \HI,HI) induced by such a partition. In the
logical formulas below, the quantification is assumed to be over the strings in
Σ∗ unless specified otherwise.

Non-inference (NF) [20, 19, 25] property states that for every trace pro-
duced by the system, its projection to low events must also be a possible
trace of the system. Thus if a system satisfies the non-inference informa-
tion flow property, a low-level user who observes the visible behavior of
the trace is unable to infer whether or not any high-level behavior has
taken place. Formally, L satisfies NF if

∀τ ∈ L (τ ↾L ∈ L).

This property is expressed as the BSP R w.r.t. the view H.

Separability (SEP) [19] requires that every possible low-level behavior in-
terleaved with every possible high-level behaviour must be a possible be-
haviour of a system. Formally, L satisfies SEP if

∀τ1, τ2 ∈ L (interleaving(τ1, τ2) ⊆ L),

where interleaving(τ1, τ2) = {τ | τ ↾H= τ1 ↾H ∧ τ ↾L= τ2 ↾L}.

This property is expressed as the conjunction of the BSPs BSIA w.r.t. the
set H, and BSD , both w.r.t. the view H.

Generalized Non-Interference (GNI) [18] requires that for every possible
trace and every possible perturbation there is a correction to the pertur-
bation such that the resulting trace is again a possible trace of the system.
Formally, L satisfies GNI if

∀τ1, τ2, τ3 ((τ1τ2 ∈ L ∧ τ2 ↾Σ\HI= τ3 ↾Σ\HI) ⇒ ∃τ4 (τ1τ4 ∈ L ∧ τ4 ↾L∪HI= τ3 ↾L∪HI)).

This property is expressed as the conjunction of BSPs BSD and BSI ,
w.r.t. the view HI.

6

Forward Correctability (FC) [14] is a weaker version of an earlier infor-
mation flow property called Restrictiveness retaining its compositionality
property. Formally, L satisfies FC if

∀τ1τ2 ∀c ∈ HI ∀v′ ∈ LI

((τ1v
′τ2 ∈ L ∧ τ2 ↾HI= ǫ) ⇒ ∃τ3 (τ1cv

′τ3 ∈ L ∧ τ3 ↾L= τ2 ↾L ∧ τ3 ↾HI= ǫ)∧
(τ1cv

′τ2 ∈ L ∧ τ2 ↾HI= ǫ) ⇒ ∃τ3 (τ1v
′τ3 ∈ L ∧ τ3 ↾L= τ2 ↾L ∧ τ3 ↾HI= ǫ)).

This property is expressed as the conjunction of the BSPs BSD , BSI , and
FCD w.r.t. the sets LI, ∅,HI, and FCI w.r.t. the sets LI, ∅,HI; all w.r.t.
the view HI.

Non-deducibility for Outputs (NDO) [13] Non-deducibility for Outputs per-
mits non-critical information flow from the low level to the high level to
some extent. More specifically, the high-level behavior may depend on
input that is provided by low-level users. The possible user inputs are
modelled by a set UI ⊆ I. Formally, L satisfies NDO if

∀τ1, τ2 ∈ L ∀τ3 ((τ3 ↾L= τ1 ↾L ∧ τ3 ↾H∪(L∩UI)= τ2 ↾H∪(L∩UI)) ⇒ τ3 ∈ L).

This property is expressed as the conjunction of the BSPs BSIA w.r.t. the
set UI and BSD , w.r.t. the view H.

3 Expressing BSPs Language-Theoretically

In this section we introduce a number of language-theoretic operations that will
be used to characterize Mantel’s Basic Security Predicates.

Let L be a language over Σ and M a marked language over Σ. Let V =
(V,N,C) be a view of Σ. We now describe the language-theoretic operations
on L w.r.t. the view V .

1. Let X ⊆ Σ. The projection of the language L to X , written L ↾X , is
defined to be {τ ↾X | τ ∈ L}.

2. l-del(L) = {αβ | c ∈ C, β ↾C= ǫ, and αcβ ∈ L}. Thus the operation l-del
corresponds to the deletion of the last confidential event in a string. More
precisely, l-del(L) contains all strings than can be obtained from a string
in L by deleting the last C-event.

3. l-ins(L) = {αcβ | c ∈ C, β ↾C= ǫ, and αβ ∈ L}. Thus l-ins corresponds
to the insertion of a confidential event in strings of L, only at a position
after which no confidential events occur.

7

4. Let X ⊆ Σ. Then l-ins-admX(L) is defined to be the set

{αcβ | c ∈ C, αβ ∈ L, β ↾C= ǫ, and ∃γc ∈ L : γ ↾X= α↾X}.

Operation l-ins-adm (w.r.t. X) corresponds to insertion of “X-admissible”
confidential events in strings of L. The insertion of a C-event is X-
admissible after a prefix α in a string τ iff there exists another string
γc ∈ L with γ projected to X being the same as α projected to X .

5. l-del-mark(L) = {α♮β | c ∈ C, αcβ ∈ L, and β ↾C= ǫ}. The operation
l-del-mark corresponds to the “marked” deletion of the last confidential
event. More precisely, this operation replaces the last C-event in every
string of L by the special mark symbol ♮.

6. l-ins-mark(L) = {αc♮β | c ∈ C, αβ ∈ L, β ↾C= ǫ}. The operation
l-ins-mark corresponds to the “marked” insertion of a confidential event.
It is similar to the operation l-ins, but additionally introduces a mark ♮
after the newly inserted C-event.

7. Let X ⊆ Σ. Then we define l-ins-adm-markX(L) to be the set

{αc♮β | c ∈ C, αβ ∈ L, β ↾C= ǫ, and ∃γc ∈ L : γ ↾X= α↾X}.

Operation l-ins-adm-mark (w.r.t. X) corresponds to the marked insertion
of X-admissible events. This operation is similar to l-ins-adm, but a mark
♮ is introduced after the newly inserted X-admissible event.

8. mark(L) = {α♮β | αβ ∈ L}. Thus operation mark corresponds to the
insertion of a mark at an arbitrary position in strings of L.

9. Let X ⊆ Σ. Then the marked projection of the marked language M to
X , written M ↾mX , is defined as

M ↾mX= {α♮β′ | α♮β ∈M and β′ = β ↾X}.

Thus marked projection operates on a marked language M and is similar
to projection, but leaves every string intact upto the mark and projects
to set X the suffix after the mark.

10. Let C′ ⊆ C and V ′ ⊆ V . Then l-del-con-markC′,V ′(L) is defined to be the
set

{αv♮β | c ∈ C′, v ∈ V ′, αcvβ ∈ L and β ↾C= ǫ, }.

Thus the operation l-del-con-mark (w.r.t. C′ and V ′) corresponds to
marked deletion in the “context” of an event in V ′. This operation deletes
the last confidential event c in a string and inserts a mark, provided c

belongs to C′ and and is immediately followed by a V ′-event in the string.
For convenience we place the mark after the V ′-event.

8

11. Let C′ ⊆ C and V ′ ⊆ V . Then l-ins-con-markC′,V ′(L) is defined to be the
set

{αcv♮β | c ∈ C′, v ∈ V ′, αvβ ∈ L, and β ↾C= ǫ}.

Operation l-ins-con-mark (w.r.t. C′ and V ′) thus corresponds to marked
insertion of C′-events in the “context” of a V ′ event, in the sense above.

12. Let X ⊆ Σ, C′ ⊆ C and V ′ ⊆ V . Then l-ins-adm-con-markXC′,V ′(L) is
defined to be the set

{αcv♮β | c ∈ C′, v ∈ V ′, αvβ ∈ L, β ↾C= ǫ, and ∃γc ∈ L, γ ↾X= α↾X}.

The operation l-ins-adm-con-mark (w.r.t. X , C′ and V ′) corresponds to
the marked insertion of X-admissible C′-events in the context of a V ′

event. It is similar to l-ins-con-mark but allows only the insertion of X-
admissible C′-events.

13. Let N ′ ⊆ N and V ′ ⊆ V . Then erase-con-markN ′,V ′(L) is defined to be
the set

{αv♮β | v ∈ V ′, and ∃δ ∈ (N ′)∗ : αδvβ ∈ L}.

The operation erase-con-mark (w.r.t. N ′ and V ′) corresponds to the
marked erasure of N ′-events in the context of V ′-events. More precisely,
erase-con-markN ′,V ′(L) contains all strings obtained from a string in L by
the erasure of a consecutive sequence of zero or more N ′ events which end
before a V ′ event v. The mark symbol is inserted after the event v in the
string.

We can now express the BSPs in terms of the language-theoretic operations
just defined.

Lemma 1 The BSPs of Mantel can be characterized in terms of language the-
oretic operations as follows. Let L be a language over Σ and V = (V,N,C) be
a view over Σ. In the following statements we assume the properties are w.r.t.
the view V. Then:

1. L satisfies R iff L↾V ⊆N L.

2. L satisfies D iff l-del(L) ⊆N L.

3. L satisfies I iff l-ins(L) ⊆N L.

4. L satisfies IA w.r.t. X iff l-ins-admX(L) ⊆N L.

5. L satisfies BSD iff l-del-mark(L)↾m
N

⊆ mark(L)↾m
N
.

6. L satisfies BSI iff l-ins-mark(L)↾m
N

⊆ mark(L)↾m
N
.

7. L satisfies BSIA w.r.t. X iff l-ins-adm-markX(L)↾m
N

⊆ mark(L)↾m
N
.

8. L satisfies FCD w.r.t. V ′, C′, N ′ iff

l-del-con-markC′,V ′(L)↾m
N

⊆ erase-con-markN ′,V ′(L)↾m
N

9

9. L satisfies FCI w.r.t. V ′, C′, N ′ iff

l-ins-con-markC′,V ′(L)↾m
N

⊆ erase-con-markN ′,V ′(L)↾m
N

10. L satisfies FCIA w.r.t. X,V ′, C′, N ′ iff

l-ins-adm-con-markXC′,V ′(L)↾m
N

⊆ erase-con-markN ′,V ′(L)↾m
N
.

11. L satisfies SR iff L↾C⊆ L.

12. L satisfies SD iff l-del(L) ⊆ L.

13. L satisfies SI iff l-ins(L) ⊆ L.

14. L satisfies SIA iff l-ins-admX(L) ⊆ L.

Proof

1. Suppose L satisfies R. Let τ ∈ L↾V . Then there exists some τ ′ in L such
that τ ′ ↾V = τ . Since L satisfies R and τ ′ ∈ L, there exists τ ′′ in L such
that τ ′′ ↾C= ǫ and τ ′′ ↾V = τ ′ ↾V = τ ↾V . Since both τ ′′ and τ don’t contain
any C-events, they differ from each other only on N -events (i.e. τ =N τ ′′).
Thus τ belongs to L modulo a correction on N -events. Hence L↾V ⊆N L.

Suppose L ↾V ⊆N L. Let τ ∈ L. Since L ↾V ⊆N L, there exists a string
τ ′ in L, such that τ ′ =N τ ↾V . Since τ ↾V has no C-events, τ ′ ↾C= ǫ and
τ ′ ↾V = (τ ↾V)↾V = τ ↾V . Hence R is satisfied.

2. Assume L satisfies D and consider a string τ in l-del(L). Then τ must
be of the form αβ and there must exist αcβ ∈ L such that c ∈ C, and
β ↾C= ǫ. Since L satisfiesD, we must have α′β′ ∈ L such that α′ =N α and
β′ =N β. But this just means that τ = αβ =N α′β′. Hence l-del(L) ⊆N L.

Suppose l-del(L) ⊆N L. Consider a string αcβ in L with c ∈ C and
β ↾C= ǫ. By the definition of l-del(L), we have αβ ∈ l-del(L). Since
l-del(L) ⊆N L, there exists τ ∈ L such that αβ =N τ . Thus τ ′ can be
expressed as α′β′ with α =N α′ and β =N β′. Hence D is satisfied.

3. Assume L satisfies I and consider a string τ in l-ins(L). Then τ will be
of the form αcβ for some c ∈ C and there must exist αβ ∈ L such that
β ↾C= ǫ. Since L satisfies I, there exists α′cβ′ ∈ L such that α′ =N α and
β′ =N β. But this just means that τ = αcβ =N α′cβ′. Hence l-ins(L)
⊆N L.

Suppose l-ins(L) ⊆N L. Consider a string αβ ∈ L with β ↾C= ǫ. By
the definition of l-ins(L), for any c ∈ C, we have αcβ ∈ l-ins(L). Since
l-ins(L) ⊆N L, there exists τ ∈ L such that αcβ =N τ . Thus τ can be
expressed as α′cβ′ where α′ =N α and β =N β. Hence I is satisfied.

The remaining proofs are similar and can be found in Appendix A. �

10

4 Model-Checking BSPs for Finite-State Sys-

tems

We now show how the language-theoretic characterisations of BSPs lead to a
decision procedure for checking whether a finite-state system satisfies a given
BSP. We first introduce the necessary terminology, beginning with the required
notions in finite-state automata.

A (finite-state) transition system over an alphabet ∆ is a structure of the
form T = (Q, s,−→), where Q is a finite set of states, s ∈ Q is the start state,

and −→⊆ Q × ∆ × Q is the transition relation. We write p
a

−→ q to stand
for (p, a, q) ∈−→, and use p

α
−→ ∗q to denote the fact that we have a path

labelled α from p to q in the underlying graph of the transition system T . The
language accepted (or generated) by the transition system T is defined to be

L(T) = {α ∈ ∆∗ | s
α

−→∗q for some q ∈ Q}.
A (finite-state) automaton (FSA) over an alphabet ∆ is of the form A =

(Q, s,−→, F) where (Q, s,−→) forms a transition system and F ⊆ Q is a set
of final states. The language accepted by A is defined to be L(A) = {α ∈

∆∗ | s
α

−→∗q for some q ∈ F}. A transition system can thus be thought of as
an automaton in which all states are final.

It will be convenient to make use of automata with ǫ-transitions. Thus
the automaton is also allowed transitions of the form p

ǫ
−→ q. The language

accepted by automata with ǫ-transitions is defined similarly, except that the ǫ
labels don’t contribute to the label of a path. As is well-known ǫ-transitions
don’t add to the expressive power of automata.

The class of languages accepted by FSA’s is termed the class of regular
languages. Regular languages are effectively closed under intersection and com-
plementation. Moreover their language emptiness problem – i.e. given an FSA
A, is L(A) = ∅? – is efficiently decidable (by simply checking if there is a final
state reachable from the initial state). It follows that the language inclusion
problem (whether L(A) ⊆ L(B)?) is also decidable for automata, since we can
check equivalently that L(A) ∩ (∆∗ − L(B)) = ∅.

Returning now to our problem of verifying BSPs, we say that a system
modelled as a finite-state transition system T satisfies a given BSP P iff L(T)
satisfies P . In the previous section we showed that the question of whether a
language L satisfies P boils down to checking whether L1 ⊆ L2, where L1 and
L2 are obtained from L by successive applications of some language-theoretic
operations. If L is a regular language to begin with, and if each language-
theoretic operation op of Section 2 is regularity preserving (in the sense that if
M is a regular language, then so is op(M)), then L1 and L2 are also regular
languages and the question L1 ⊆ L2 can be effectively answered. To obtain a
decision procedure for our BSP verification problem, it is thus sufficient to show
that the language-theoretic operations are regularity preserving. In the rest of
this section we concentrate on showing this.

The language operations of Section 3 are of the following kinds: they either
take a language over Σ and return a language over Σ, or they take a language
over Σ and return a marked language over Σ, or they take a marked language
over Σ and return a marked language over Σ. In all cases we show that if they
take a regular language, they return a regular language. Once again we assume
the operations below are w.r.t. a view V = (V,N,C) of Σ.

11

1. Projection: Let L be a language over Σ accepted by an FSA A, and let
X ⊆ Σ. Then we can construct A′ accepting L ↾X by simply replacing
transitions in A of the form p

a
−→ q, with a 6∈ X , by ǫ-transitions p

ǫ
−→ q.

2. l-del: Let L be a language over Σ, with L = L(A). We construct A′ for
l-del(L) as follows. We create two copies of A. The initial state of A′

is the initial state of the first copy. In the second copy all transitions of
the form p

c
−→ q with c ∈ C are deleted. In the first copy we add an

ǫ-transition from a state p in the first copy to state q in the second copy
if p

c
−→ q in A, with c ∈ C. The final states in the first copy are marked

non-final and the final states in the second copy are retained as final.

This construction can be described formally as follows. Let A = (Q, s,−→
, F). Define A′ = (Q′, s′,−→′, F ′) where Q′ = Q×{1, 2}, s′ = (s, 1), −→′

is given by

(p, 1)
a

−→′ (q, 1) iff p
a

−→ q in A

(p, 1)
ǫ

−→′ (q, 2) iff p
c

−→ q in A with c ∈ C

(p, 2)
a

−→′ (q, 2) iff p
a

−→ q and a 6∈ C,

and F ′ = F × {2}.

ǫ

a a

c

Figure 1: l-del(L)

The construction is depicted in Fig. 1. The first and the second boxes
represent the first and the second copy of the given automaton A. The
thick dots represent the states, circled dots represent the final states, and
arcs represent the transitions.

3. l-ins: Let L be a language over Σ with L = L(A). We construct A′ for
l-ins(L) as follows. We make two copies of A. The start state of A′ is
the start state of the first copy, and the final states are the final states of
the second copy. In the first copy for every state p we add a c transition
(for every c ∈ C) from p in the first copy to p in the second copy. The
c-transitions for c ∈ C are deleted from the second copy. The construction
is depicted in Fig 2.

4. l-ins-adm: Let L be a language over Σ with L = L(A), and let X ⊆ Σ. We
construct A′ for l-ins-admX(L) as follows. We have two copies of A. In
the first copy, the states have two components: the first component keeps
track of a state from A, while the second keeps track of a set of states of
A that are reachable by words that are X-equivalent to the current word
being read. We have a transition labelled c, with c ∈ C, from a state
(p, T) in the first copy to p in the second copy, provided T contains a state
t from which it is possible to do a c and reach a final state. Once in the

12

c

a a

c

Figure 2: l-ins(L)

second copy, we allow only non-C transitions and retain the original final
states. The construction is depicted in Figure 3.

More formally, we can define A′ as follows. Let A = (Q, s,−→, F) and let
B be the automaton obtained from A by replacing transitions of the form

p
a

−→ q by p
ǫ

−→ q whenever a 6∈ X . Then A′ = (Q′, s′,−→′, F ′) where

Q′ = (Q× 2Q) ∪Q; s′ = (s, S) where S = {q ∈ Q | s
ǫ

−→∗q in B}; −→′ is
given below:

(p, T)
a

−→′ (q, T) if p
a

−→ q and a 6∈ X

(p, T)
a

−→′ (q, U) if p
a

−→ q, a ∈ X, and

U = {r | ∃t ∈ T, t
a

−→∗r in B}

(p, T)
c

−→′ p if ∃t ∈ T, q ∈ F : t
c

−→ q and c ∈ C;

p
a

−→′ q if p
a

−→ q and a 6∈ C.

and F ′ = F .

c

Figure 3: l-ins-admX(L)

The constructions for the rest of the language-theoretic operations are given in
the appendix B.

Using the observations made in this section, we conclude that:

Theorem 1 The problem of model checking BSPs for finite-state systems is
decidable. �

The running time of our procedure can be seen to be exponential in the
number of states of the given finite-state transition system, in the worst case.
This is because the automata constructions for the language-theoretic operations
involve a blow-up in states of O(n) in most cases, and 2O(n) in the case of the
BSPs based on the admissibility clause (here n is the number of states in the
given transition system). Furthermore, no operation used on the right hand

13

side of the containment (recall that our characterisations are typically of the
form op1(L) ⊆ op2(L)) introduces an exponential blow-up. Thus in checking
containment, we have to complement an automaton of size at most O(n), and
hence we have a bound of 2O(n) in the worst case. The algorithms can also be
seen to run in PSPACE. This is because one can do reachability in a graph in
log-space (in the size of the graph). It follows that our emptiness checks can be
done in O(n) space, where n is the size of the given system model.

As a simple consequence of Theorem 1 and Mantel’s characterization, we
can see that the problem of model-checking the trace-based non-interference
properties of Section 2 is decidable for finite-state systems.

5 Model-Checking BSPs for Pushdown Systems

In this section we show that if the system is modelled as a pushdown system,
the problem of model-checking BSPs becomes undecidable.

The notion of a pushdown system we consider is that of a pushdown automa-
ton with all accepting states. Thus a pushdown system (PDS) is of the form P =
(Q,ΣP ,ΓP ,∆, s,⊥), where Q is a finite set of control states, ΣP is a finite input
alphabet, ΓP is a finite stack alphabet, ∆ ⊆ ((Q× (ΣP ∪{ǫ})×ΓP)× (Q×Γ∗

P))
is the transition relation, s ∈ Q is a starting state, and ⊥ ∈ ΓP is an initial
stack symbol. If ((p, a, A), (q, B1B2 · · ·Bk)) ∈ ∆, this means that whenever the
machine is in state p reading input symbol a on the input tape and A on top
of the stack, it can pop A off the stack, push B1B2 · · ·Bk onto the stack (such
that B1 becomes the new top of the stack symbol), move its read head right one
cell past the a, and enter state q. If ((p, ǫ, A), (q, B1B2 · · ·Bk)) ∈ ∆, this means
that whenever the machine is in state p and A on top of the stack, it can pop A
off the stack, push B1B2 · · ·Bk onto the stack (such that B1 becomes the new
stack top symbol), leave its read head unchanged and enter state q.

A configuration of P is an element of Q × Σ∗
P × Γ∗

P describing the current
state, the portion of the input yet to be read and the current stack contents.
For example, when x is the input string, the start configuration is (s, x,⊥).
The next configuration relation −→ is defined for any y ∈ Σ∗

P and β ∈ Γ∗
P , as

(p, ay,Aβ) −→ (q, y, γβ) if ((p, a, A), (q, γ)) ∈ ∆ and (p, y, Aβ) −→ (q, y, γβ) if
((p, ǫ, A), (q, γ)) ∈ ∆. Let −→∗ be defined as the reflexive transitive closure of
−→. Then P accepts w iff (s, w,⊥) −→∗ (q, ǫ, γ) for some q ∈ Q, γ ∈ Γ∗

P .
Pushdown systems also appear in other forms in literature, like Recursive

State Machines [1] and Boolean Programs [2]. Pushdown systems thus capture
an interesting class of system models.

The class of languages accepted by pushdown systems is closely related to
context free languages:

Lemma 2 The class of languages accepted by pushdown systems is exactly the
class of prefix-closed context-free languages.

Proof Pushdown systems can be seen as a special case of pushdown au-
tomata, in which all control states are final states. Hence pushdown systems
generate only context-free languages. It is easy to see that if a PDS accepts
a string w, then it also accepts all the prefixes of w. Hence PDSs accept only
prefix-closed context-free languages.

14

Conversely, let L be a prefix-closed context-free language. Then there exists
a context free grammar (CFG) G = (N,Σ, R, S) generating L, where N is a set
of non-terminals, R is a set of productions, and S ∈ N is the start symbol. With-
out loss of generality, we assume that there are no useless non-terminals (i.e.
those that do not generate a terminal string) and all productions of G are of the
form A→ cB1B2 · · ·Bk where c ∈ Σ ∪ {ǫ}, B1, B2 · · ·Bk ∈ N and k ≥ 0. Using
a standard construction (see for example [15]) we can construct a language-
equivalent non-deterministic pushdown system P = ({q},Σ, N, δ, q, S), where q
is the only state, Σ is the input alphabet, N is the stack alphabet, q is the start-
ing state, S is the initial stack symbol, and δ is defined as: for each production
A → cB1B2 · · ·Bk, it contains the transition ((q, c, A), (q, B1B2 · · ·Bk)). We
now argue that L(G) = L(P). The construction satisfies the following property

(see [15]): for each w, z ∈ Σ∗, γ ∈ N∗, and A ∈ N , A
n

−→G wγ via a leftmost

derivation iff (q, wz,A)
n

−→P (q, z, γ). Now for any string w ∈ L(G), we have
S −→∗

G w via a leftmost derivation. From the claim above, we have a run for
w in P , and hence w ∈ L(P). Conversely, for any run of P on a string w, we
have S −→∗

G wγ via a leftmost derivation, for some γ ∈ N∗ (again from the
above claim). Since there are no useless non-terminals in G, there exists some
terminal string x such that S −→∗

G wx. Thus wx ∈ L(G) and since G is a
prefix-closed language w ∈ L(G). Hence the class of languages generated by
PDSs are exactly the prefix-closed context-free languages. �

The problem we now consider, which we call the problem of model checking
pushdown systems for BSPs, is the following: Given a PDS M over an input
alphabet Σ, and a BSP P w.r.t. a view V of Σ, does L(M) satisfy P?

We show that this problem is undecidable. We use a reduction from the
emptiness problem of a Turing machine, which is known to be undecidable.

We recall that a Turing machineM is of the form (Q,ΣM ,ΓM ,⊢,⊔, δ, s, t, r),
where Q is a finite set of states, ΣM is a finite input alphabet, ΓM is a finite
tape alphabet containing ΣM , ⊢ ∈ ΓM \ΣM is the left end-marker, ⊔ ∈ ΓM \ΣM

is the blank symbol, δ : Q× ΓM → Q× ΓM × {L,R} is the transition function,
s ∈ Q is the start state, t ∈ Q is the accept state and r ∈ Q is the reject
state with r 6= t and transitions out of r and t remain in r and t respectively.
The configuration x of M at any instant is defined as a triple (q, z, n) where
q ∈ Q is a state, z = y⊔ω is the infinite string describing the tape contents
with y ∈ Γ∗

M , and n is a non-negative integer describing the head position. The
next configuration relation is defined as (p, xaβ, n) (q, xbβ, n + 1), when
δ(p, a) = (q, b, R) and |x| = n. Similarly (p, xaβ, n) (q, xbβ, n − 1), when
δ(p, a) = (q, b, L).

We can represent a configuration ofM as a finite string x in (ΓM×{−})∗(ΓM×
Q)(ΓM ×{−})∗. The string x will encode the “non-blank” part of the tape (the
smallest prefix y of the tape contents which contains the tape head and such
that the contents of the tape is y⊔ω) along with the head position and the cur-
rent state. A pair in ΓM × (Q ∪ {−}) is written vertically with the element of
ΓM on top. The pair (b, q) represents that the machine is currently reading the
symbol b in state q.

We represent a computation of M as a sequence of configurations xi sepa-
rated by #. It will be of the form #x1#x2# · · ·#xn#.

We now show that the problem of model-checking pushdown systems for
BSP D is as hard as checking the language emptiness problem of a Turing

15

machine. Let M = (Q,ΣM ,ΓM ,⊢,⊔, δ, s, t, r) be a Turing machine. Let Σ =
(ΓM × (Q∪ {−}))∪ {#}. Consider the language LM over the alphabet Σ∪ {c}
defined to be the prefix closure of L1 ∪ L2 where:

L1 = {c ·#x1#x2 · · ·xn# | x1 is a starting configuration,
xn is the only accepting configuration among
x1, . . . , xn}

L2 = {#x1#x2 · · ·xn# | x1 is a starting configuration,
xn is the only accepting configuration among
x1, . . . , xn,

exists i ∈ {1, . . . , n− 1} : xi 6 xi+1}.

Lemma 3 LM satisfies BSP D w.r.t. a view V = (Σ, ∅, {c}) ⇔ L(M) = ∅.

Proof (⇐:) Let us assume L(M) = ∅. Now, consider any string containing
a confidential event in LM . The string has to be of the form cτ in L1 or a prefix
of it. The string τ cannot be a valid computation of M , since L(M) = ∅. So, if
we delete the last c, we will get τ , which is included in L2. Also, all the prefixes
of cτ and τ will be in LM , as it is prefix closed. Hence LM satisfies D.

(⇒:) If L(M) is not empty then there exists some string τ which is a valid
computation. L1 contains cτ . If we delete the last c, the resulting string τ is
not present in LM . Thus D is not satisfied. Hence L(M) is empty, when LM

satisfies the BSP D. �

To complete the reduction, we need to show how to translate M into a PDS
accepting LM . Since CFLs are closed under the prefix operation (adding the
prefixes of the strings in the language) and as prefix closed CFLs are equivalent
to PDS (from Lemma 2), it is enough to show that L1 ∪ L2 is a CFL.

Consider the above defined language L2 ⊆ Σ∗. L2 can be thought of as the
intersection of languages A1, A2, A3, A4 and ¬A5, where

A1 = {w | w begins and ends with #}
A2 = {w | the string between any two #s must be a valid configuration}
A3 = {#x#w | x ∈ (Σ \ {#})∗ is a starting configuration}
A4 = {w#x# | x ∈ (Σ \ {#})∗ is the only accepting configuration in w#x#}
A5 = {#x1# · · ·#xn# | ∀i 1 ≤ i < n : xi xi+1}.

We now show that the languages from A1 to A4 are regular, and ¬A5 is con-
text free. Since CFLs are closed under intersection with regular languages, it fol-
lows that L2 is context free. Note that L1 is the result of language-concatenation
of {c} with intersection of A1, A2, A3 and A4, and hence regular. Since CFLs
are closed under union, L1 ∪ L2 will also be context free.

The languages A1 to A4 are regular. The language A1 can be generated
by the regular expression #(Σ \ {#})∗#. For A2, we only need to check that
between every #’s there is exactly one symbol with a state q on the bottom,
and ⊢ occurs on the top immediately after each # (except the last) and nowhere
else. This can be easily checked with a finite automaton. The set A3 can be
generated by the regular expression #(⊢, s)K∗#Σ∗, with K = Γ \ {⊢} × {−}.

16

To check that a string is in A4, we only need to check that the accepting state t
appears exactly once in the string. This can be easily checked by an automaton.

For ¬A5, we construct a nondeterminstic pushdown automaton (NPDA).
Consider a string · · ·#α#β# · · · in the intersection of languages A1 to A4.
Note that if α β, then the two configurations must agree in most symbols
except for a few near the position of the head; and the differences that can occur
near the position of the head must be consistent with the action of δ. We can
check that α β by checking for all three-element substrings (triples) u of α
that the corresponding triple v of β differs from u in a way that is consistent with
the operation of δ. By “corresponding” we mean occuring at the same distance
from the closest # to its left. We can write down a table with all consistent
pairs of triples over Σ. For any configurations α and β, if α β, then all
corresponding triples of α and β are consistent. Conversely, if all corresponding
triples of α and β are consistent, then α β. Thus to check that α β

does not hold, we need only check that there exists a triple of α such that the
corresponding triple of β is not consistent with the action of δ. To be precise the
consistency check may involve checking a triple against a corresponding pair (or
vice-versa) when the head is at the right-most position of the non-blank part of
the tape.

We now give an NPDA accepting ¬A5. The NPDA nondeterministically
guesses i for xi and then it guesses the triple in xi. It pushes the symbols from
the start of xi till the position of the guessed triple on to the stack, and records
the triple starting at this position in xi in its finite control. It then skips to
the start of xi+1. It now simultaneously reads a symbol from xi+1 and pops
the top of the stack till the stack is empty. It has now found the start position
of the corresponding triple in xi+1. It reads the triple starting at this position
in xi+1. If the triple read is not consistent with the triple of xi recorded in its
finite control, the NPDA accepts the input; else it rejects the input. This check
is standard and can be found for example in [15].

It now follows that L1 is regular and L2 is context free. As languages ac-
cepted by pushdown systems coincide with prefix-closed context-free languages
(Lemma 2), LM is a language of a pushdown system. Since the emptiness
problem of Turing machine is undecidable, we get the following result:

Lemma 4 The problem of model-checking pushdown systems for BSP D is un-
decidable. �

Undecidability for the rest of the BSPs can be shown in a similar fashion.
For the BSPs R, SR, SD , BSD we can use the same language LM and get:

Lemma 5 LM satisfies BSP R (similarly SR, SD, BSD) w.r.t. a view V =
(Σ, ∅, {c}) ⇔ L(M) = ∅. �

To show undecidability of BSPs I, BSI , and SI , we consider LI
M to be the

prefix closure of L3 ∪ L4 where:

17

L3 = {#x1#x2 · · ·xn# | x1 is a starting configuration,
xn is the only accepting configuration among
x1, . . . , xn}

L4 = {w ∈ (Σ ∪ {c})∗ | w ↾Σ = #x1#x2 · · ·xn#,
x1 is a starting configuration,
xn is the only accepting configuration among
x1, . . . , xn,

∃i ∈ {1, . . . , n− 1} : xi 6 xi+1}.

Lemma 6 LI
M satisfies BSP I (similarly SI , BSI) w.r.t. a view V = (Σ, ∅, {c}) ⇔

L(M) = ∅. �

Let X ⊆ Σ. To show undecidability of the BSPs IA w.r.t. X , BSIA w.r.t.
X , and SIA w.r.t. X , we consider LIAX

M to be the prefix closure of L3 ∪L4 ∪L5

where:

L5 = X∗ · {c}.

Lemma 7 LIAX
M satisfies BSP IA(similarly SIA, BSIA) w.r.t. X and the view

V = (Σ, ∅, {c}) ⇔ L(M) = ∅. �

Let V ′ ⊆ Σ, N ′ = ∅, C′ = {c} with v ∈ V ′. To show undecidability of BSP
FCD , we consider language LFCD

M to be the prefix closure of L6 ∪ L7 where:

L6 = {cv ·#x1#x2 · · ·xn# | x1 is a starting configuration,
xn is the only accepting configuration among
x1, . . . , xn}

L7 = {v ·#x1#x2 · · ·xn# | x1 is a starting configuration,
xn is the only accepting configuration among
x1, . . . , xn,

∃i ∈ {1, . . . , n− 1} : xi 6 xi+1}.

Lemma 8 LFCD
M satisfies BSP FCD w.r.t. V ′, N ′, C′ and the view V = (Σ, ∅, {c}) ⇔

L(M) = ∅. �

Let V ′ ⊆ Σ, N ′ = ∅, C′ = {c} with v ∈ V ′. To show undecidability of BSP
FCI , we consider language LFCI

M to be the prefix closure of L8 ∪ L9 where:

L8 = {v ·#x1#x2 · · ·xn# | x1 is a starting configuration,
xn is the only accepting configuration among
x1, . . . , xn}

L9 = {w ∈ (Σ ∪ C′)∗ | w ↾Σ= v ·#x1#x2 · · ·xn#,
x1 is a starting configuration,
xn is the only accepting configuration among
x1, . . . , xn,

∃i ∈ {1, . . . , n− 1} : xi 6 xi+1}.

18

Lemma 9 LFCI
M satisfies FCI w.r.t. V ′, N ′, C′ and the view V = (Σ, ∅, {c}) ⇔

L(M) = ∅. �

Let X ⊆ Σ. Let V ′ ⊆ Σ, N ′ = ∅, C′ = {c} with v ∈ V ′. To show undecid-
ability of BSP FCIA, we consider language LFCIAX

M to be the prefix closure of
L8 ∪ L9 ∪ L10 where:

L10 = X∗ · C′.

Lemma 10 LFCIAX
M satisfies BSP FCIA w.r.t. X,V ′, N ′, C′ and the view V =

(Σ, ∅, {c}) ⇔ L(M) = ∅. �

The complete proofs of undecidability for these BSPs can be found in Ap-
pendix C.

We can now conclude:

Theorem 2 The problem of model-checking pushdown systems for any of the
BSPs is undecidable. �

In fact, we can see that even if we restrict the model-checking problem to
pushdown systems over an input alphabet of size 3, with respect to a view
(V,N,C) with |V | = 2 and |C| = 1, the problem remains undecidable. The ar-
guments follow the same constructions above, except that we now need to encode
the computation sequence using the limited alphabet. Let Σ′ = {v1, v2, c} and
let V be the view ({v1, v2}, ∅, {c}) of Σ′. Each letter in (ΓM×(Q∪{−}))∪{#} is
encoded as a string of v1’s and a computation sequence in (ΓM×(Q∪{−}))∪{#}
is represented as a string of v1’s and v2’s, with v2 used as a separator. We can
now use the same languages L1 to L10, except that we replace the computation
sequence #x1# · · ·#xn# by its encoding using the letters of Σ′, as described
above.

Theorem 3 The problem of model-checking pushdown systems over an input
alphabet of size 3, for any of the BSPs with respect to a view (V,N,C) with
|V | = 2 and |C| = 1, is undecidable. �

We can conclude from Theorem 2 that it is not possible to algorithmically
check BSPs – which are useful security properties in their own right – for general
pushdown system models.

6 Model-Checking Non-interference properties

for Pushdown systems

The undecidability result from the preceding section does not immediately tell
us that verifying the non-interference properties in the literature (which Man-
tel showed can be expressed as conjunctions of his BSPs) is undecidable for
pushdown systems. In this section, we consider the problem of model-checking
pushdown systems for some well-known non-interference properties.

Let L be a language over Σ and recall that H, L and I,O are two partitions
of Σ into high and low events, and input and output events.

19

Recall that L satisfies Non-inference (NF) if

∀τ ∈ L, τ ↾L ∈ L.

With the view ofH, the property NF is simply the BSP R. We see that, checking
NF is undecidable for pushdown systems, since we have already proved that
checking R is undecidable for pushdown systems (Section 5).

Consider now Generalized Non-Interference (GNI). Recall that L satisfies
GNI if

∀τ1, τ2, τ3 (τ1τ2 ∈ L ∧ τ2 ↾Σ\HI= τ3 ↾Σ\HI) ⇒ ∃τ4 (τ1τ4 ∈ L ∧ τ4 ↾L∪HI= τ3 ↾L∪HI).

Consider the language LI
M (from Section 5) with the view of HI.

Lemma 11 LI
M satisfies GNI ⇔ L(M) = ∅.

Proof (⇐:) Let us assume L(M) = ∅. Let us see if the prefix closure of
L4 independently satisfies GNI. Pick τ1, τ2 and τ3 such that τ1τ2 is in this set
and τ2 ↾Σ\HI= τ3 ↾Σ\HI. Now we can pick τ4 to be τ3 itself and we will have
τ1τ4 in the set from the construction of this set. Hence the prefix closure of L4

independently satisfies GNI. Now consider string τ1, τ2 and τ3 such that τ1τ2
in the prefix closure of L3. Since there are no valid computations as L(M)
is empty, we will have τ1τ2 in the prefix closure of L4 also. From the above
argument, we can say that LI

M satisfies GNI.
(⇒:) If L(M) is not empty then there exists a valid computation. Then we

have strings τ1, τ2 and τ3 such that τ1τ2 is in the prefix closure of L3 and not
in the prefix closure of L4 and τ3 = cτ2 where c ∈ HI. Now, we cannot find
any string τ4 such that τ1τ4 is in LI

M and τ4 ↾L∪HI= τ3 ↾L∪HI. Hence GNI is not
satisfied. Hence, L(M) is empty when LI

M satisfies GNI. �

We can use the same language LI
M and similar arguments for proving the

undecidability of checking the property Separability (SEP) and Non-deducibility
for outputs (NDO) for pushdown systems.

Recall that L satisfies Forward Correctability (FC) if

∀τ1τ2 ∀c ∈ HI ∀v′ ∈ LI

((τ1v
′τ2 ∈ L ∧ τ2 ↾HI= ǫ) ⇒ ∃τ3 (τ1cv

′τ3 ∈ L ∧ τ3 ↾L= τ2 ↾L ∧ τ3 ↾HI= ǫ)∧
(τ1cv

′τ2 ∈ L ∧ τ2 ↾HI= ǫ) ⇒ ∃τ3 (τ1v
′τ3 ∈ L ∧ τ3 ↾L= τ2 ↾L ∧ τ3 ↾HI= ǫ))).

Consider the view HI. This property is vacuously true for LI = ∅. We
will prove undecidability for nonempty LI. Consider the language LFCI

M with
V ′ = LI, N ′ = ∅, C′ = HI.

Lemma 12 LFCI
M satisfies FC ⇔ L(M) = ∅.

Proof (⇐:) Let us assume L(M) = ∅. Now, L8 ⊆ L9. It is enough to prove
that the set L9 independently satisfies FC. Consider a string of the form τ1v

′τ2
in L9 with τ2 ↾HI= ǫ and v′ ∈ V ′. From the construction of L9, the strings with
events from HI at arbitrary points in τ1v

′τ2 are also in L9. Now, consider the
string τ1cv

′τ2 in L9 with τ2 ↾HI= ǫ and c ∈ HI. Again by construction we have
the string τ1v

′τ2 in L9. Hence L9 satisfies FC. Hence LFCI
M satisfies FC.

(⇒:) If L(M) is not empty, there exists a valid computation ofM . It means
that there is a string v2τ in L8 and not in L9. This string becomes a candidate

20

for LFCI
M not satisfying FC, as we cannot find any string of the form cv2τ in the

language with some c ∈ HI. Hence FC is not satisfied. Hence, L(M) is empty
when LFCI

M satisfies FC. �

Hence we get the following theorem:

Theorem 4 The problem of model-checking pushdown systems for Generalized
Non-Interference, Non-inference, Separability, Non-deducibility of outputs and
Forward Correctability is undecidable.

In fact, it is apparent to see the undecidability holds for a restricted class of
pushdown systems:

Theorem 5 The problem of model-checking pushdown systems for

1. Generalized Non-Interference and Forward Correctability for systems with
at least two low events and one high-input event, and

2. Non-inference, Separability and Non-deducibility of outputs for systems
with at least two low events and one high event

is undecidable. �

7 Weak Non-Inference

In this section we introduce a natural information flow property which we call
Weak Non-Inference (WNI) as it is weaker than most of the properties proposed
in the literature. We show that model-checking this property even for finite-
state transition systems is undecidable.

A set of traces L over Σ is said to satisfy WNI iff

∀τ ∈ L, ∃τ ′ ∈ L : (τ ↾C 6= ǫ ⇒ (τ ↾V = τ ′ ↾V ∧ τ ↾C 6= τ ′ ↾C)).

The property essentially says that by observing a visible system trace a low-
level user cannot pinpoint the exact sequence of confidential events that have
taken place in the system.

The classical non-inference property can be phrased as ∀τ ∈ L, ∃τ ′ ∈ L :
(τ ′ = τ ↾V). Thus it is easy to see that any language that satisfies non-inference
also satisfies WNI .

We show that checking whether a finite-state transition system satisfies this
property is undecidable, by showing a reduction from Post’s Correspondence
Problem (PCP). We recall that an instance of PCP is a collection of dominos
P = {(x1, y1), (x2, y2), . . . , (xn, yn)} where each xi, yi ∈ ∆+ where ∆ is a finite
alphabet (recall that ∆+ is the set of non-empty words over ∆). A match in P
is a sequence i1, i2, . . . il such that xi1 · · ·xil = yi1 · · · yil . The PCP problem is
to determine if a given instance P has a match, and this problem is known to
be undecidable.

We construct a transition system TP = (Q, s1,→) on the alphabet Σ′ =
V ∪ C, where V = {v1, . . . , vn} , C = ∆ and the transition relation → is as
shown in Fig. 4. The states s2 and s3 have n loops each on them: state s3 has
loops on the strings v1x1v1 through vnxnvn, and s3 has loops on the strings
v1y1v1 through vnynvn. We choose each vi to be different from the symbols in
∆.

21

xn

x1

s2

vn

yn

y1

s1

ǫ

ǫ

s3

vn

v1

vn

vn

v1

v1v1

Figure 4:

We call a string “interesting” if it is of the form vi1wi1vi1vi2wi2vi2 · · · vikwikvik
for some i1, . . . , ik with k ≥ 1, and wij in ∆∗ – in other words, the string must
be non-empty and each event from V occurs twice in succession. Thus every
interesting string generated by TP will end up in state s2 or in state s3. We
observe that for every interesting string z in L(TP), there is exactly one other
string z′ in L(TP) with the same projection to V , which is moreover also an in-
teresting string. If z passes through state s2, then z

′ is the string which mimics
the run of z but through s3. Any other string will have a different projection
to V .

Lemma 13 A PCP instance P has a match iff TP does not satisfy WNI .

Proof (⇐:) Suppose TP does not satisfy WNI . Then there must exist a
string τ in L(TP) with non-empty projection to C events such that there is no
other string in L(TP) with the same projection to V and different projection
to C. Now τ must be an interesting string – all uninteresting strings trivially
satisfy the WNI condition since we can append or remove one confidential event
from each of these strings. By our earlier observation, we know that there exists
an interesting string τ ′ in L(TP) which takes the symmetric path in TP and has
the same projection to V as τ . Now by our choice of τ , the projection of τ ′ on
C is the same as the projection of τ on C. But this means that we have found
a match for P , given by the indices corresponding to the loops traced out by τ
and τ ′.

(⇒:) Let i1, i2, . . . , il, l ≥ 1, be a match for P . Thus xi1 · · ·xil = yi1 · · · yil .
Consider the interesting string τ = vi1xi1vi1 · · · vilxilvil in L(T). Now there is
exactly one other string τ ′ with the same projection to V , given by vi1yi1vi1 · · · vilyilvil .
However, as the indices chosen are a match for P , the projections of τ and τ ′

to C are non-empty and identical. Thus T does not satisfy WNI . �

This completes the reduction of PCP to the problem of model-checkingWNI
for finite-state systems, and we conclude:

Theorem 6 The problem of model-checking the property WNI for finite-state
systems is undecidable. �

22

We note that the problem is still undecidable if we restrict the view of the
finite-state system to have two confidential events and two visible events. This
is because (a) PCP is undecidable for an alphabet |Σ| = 2, which are modeled
by confidential events and (b) the events v1 · · · vn can appropriately be modeled
by two events, say v′1 and v′2 and we can consider v′1 and v′2 to be the only two
visible events.

We also note that if the property WNI were expressible as a boolean combi-
nation of BSPs, the decision procedure for model-checking BSPs for finite-state
systems in [9] would imply that model-checking WNI for finite-state systems is
decidable. Hence we can conclude that:

Corrollary 1 The property WNI is not expressible as a boolean combination
of Mantel’s BSPs. �

However, we can show that a restricted version of the problem is decidable.
If we have a system model (finite-state or pushdown) that uses only one con-
fidential event and one visible event, the problem of checking WNI becomes
decidable.

Theorem 7 The problem of model-checking WNI for pushdown systems when
|V | = 1 and |C| = 1, is decidable.

Proof Consider an alphabet Σ = {v, c}, where v is the only visible event and
c is the only confidential event. Recall that the Parikh vector of a string x over
Σ, denoted ψ(x), is the vector (nv, nc) where nv is the number of occurrences
of event v in x and nc is the number of occurrences of event c in x. For a
language L over Σ, its Parikh map ψ(L) is defined to be the set of vectors
{ψ(x) | x ∈ L}. By Parikh’s theorem (see [15]), we know that whenever L
is context-free, its Parikh map ψ(L) forms a “semi-linear” set of vectors. To
explain what this means, let us first introduce some notation. For a finite set
of vectors X = {(m1, n1), . . . , (mk, nk)} we denote the set of vectors generated
by X , with initial vector (m0, n0), to be the set gen(m0,n0)(X) = {(m0, n0) +
t1(m1, n1) + · · ·+ tk(mk, nk) | t1, . . . , tk ∈ N}. Then ψ(L) is semi-linear means
that there exist finite non-empty sets of vectors X1, . . . , Xl, and initial vectors
(m1

0, n
1
0), . . . , (m

l
0, n

l
0), such that

ψ(L) =
⋃

i∈{1,...,l}

gen(mi
0
,ni

0
)(Xi).

Now let L be the given context-free language over the alphabet Σ = {v, c},
with its Parikh map given by the setsX1, . . . , Xl, and initial vectors (m1

0, n
1
0), . . .,

(ml
0, n

l
0). Let each Xi = {(mi

1, n
i
1), . . . , (m

i
ki
, ni

ki
)}. To verify WNI property for

L, we need to check that for every vector in ψ(L), whose confidential event count
is non-zero, there exists another vector which is in gen(mi

0
,ni

0
)(Xi) for some i,

such that their visible event count is the same, and confidential event count is
different. For l = 1, L satisfies WNI iff the following formula in Presburger
arithmetic is valid (Presburger arithmetic is the first-order theory of natural
numbers with addition which is known to be decidable in double-exponential
time):

23

∀t1, . . . , tk1
∈ N

(

n1
0 + t1n

1
1 + · · ·+ tk1

n1
k1
> 0 =⇒

∃t′1, . . . , t
′
k1

∈ N
(

m1
0 + t1m

1
1 + · · ·+ tk1

m1
k1

= m1
0 + t′1m

1
1 + · · ·+ t′k1

m1
k1

∧

n1
0 + t1n

1
1 + · · ·+ tk1

n1
k1

6= n1
0 + t′1n

1
1 + · · ·+ t′k1

n1
k1

)

)

.

The validity of this formula can be found using the decision procedure for
Presburger arithmetic. The formula is extended in the expected way for higher
values of l. �

In fact any property which just asks for the counting relationship between
visible and confidential events can be decided using the above technique. For
example, let us consider the BSP R. For a view with |C| = 0, the BSP R

is vacuously satisfied. For a view with |V | = 0, L satisfies BSP R when L =
ǫ∨L∩N∗ 6= ǫ. This is decidable for PDS as it amounts to checking the emptiness
of the given PDS language or with its intersection with a regular language N∗.
For a view with |C| = 1 and |V | = 1, the BSP R can be seen as a property with
the counting relationship between visible and confidential events. The exact
presburger formula is:

∀t1, . . . , tk1
∈ N

(

n1
0 + t1n

1
1 + · · ·+ tk1

n1
k1
> 0 =⇒

∃t′1, . . . , t
′
k1

∈ N
(

m1
0 + t1m

1
1 + · · ·+ tk1

m1
k1

= m1
0 + t′1m

1
1 + · · ·+ t′k1

m1
k1

∧

n1
0 + t′1n

1
1 + · · ·+ t′k1

n1
k1

= 0
)

)

.

Corrollary 2 The problem of model-checking BSP R (and SR and Non-inference
(NF)) for pushdown systems is decidable for a view V = (V,N,C) with |V | ≤ 1
and |C| ≤ 1. �

8 Conclusion

We have demonstrated in this paper a way to algorithmically verify trace-based
information flow properties for finite-state systems. We give characterisations
of the properties in terms of language-theoretic operations on the set of traces
of a system, rather than in terms of the structure of the system which is a
stronger notion. This perhaps explains why we are able to obtain complete
characterisations unlike the previous techniques in the literature that are based
on unwinding relations.

We also considered the problem of model-checking trace-based information
flow properties for pushdown systems. We have shown that this problem is
undecidable in general.

We also studied the model-checking problem for a property called WNI
which is a weak form of the property of non-inference. We show that this
problem is undecidable, not just for pushdown systems but also for finite-state
systems. It follows from this result that WNI is not expressible in Mantel’s
BSP framework. We also show that for a restricted class of systems (with only
one visible and confidential event) this property is decidable for both finite-state
and pushdown system models.

24

An interesting future direction to pursue is whether the technique of this
paper can be extended to a more general logical language. The BSPs are all of
the form “for every string in the language satisfying some conditions, there exists
a string satisfying some other conditions”, which are special cases of a first order
logic interpreted over languages of strings. It would be interesting to investigate
the decidability of such a logic when interpreted over regular languages, and to
identify a natural decidable subclass of it which properly contains the BSPs of
Mantel.

Another open question is whether the model-checking problem continues to
be undecidable even when we consider deterministic pushdown systems.

Acknowledgements

We thank Janardhan Kulkarni for fruitful discussions on Weak Noninference
property. We also thank the anonymous referees for several useful inputs.

References

[1] Rajeev Alur, Michael Benedikt, Kousha Etessami, Patrice Godefroid,
Thomas Reps, and Mihalis Yannakakis. Analysis of recursive state ma-
chines. ACM Transactions on Programming Languages and Systems,
27(4):786–818, 2005.

[2] Thomas Ball and Sriram K. Rajamani. Bebop: A symbolic model checker
for boolean programs. In Klaus Havelund, John Penix, and Willem Visser,
editors, SPIN, volume 1885 of Lecture Notes in Computer Science, pages
113–130. Springer, 2000.

[3] Ahmed Bouajjani, Javier Esparza, and Oded Maler. Reachability analysis
of pushdown automata: Application to model-checking. In CONCUR ’97:
Proceedings of the 8th International Conference on Concurrency Theory,
pages 135–150, London, UK, 1997. Springer-Verlag.

[4] Gérard Boudol and Ilaria Castellani. Noninterference for concurrent pro-
grams and thread systems. Theoretical Computer Science, 1-2(281):109–
130, 2002.

[5] Mads Dam. Decidability and proof systems for language-based nonin-
terference relations. In POPL ’06: Conference record of the 33rd ACM
SIGPLAN-SIGACT symposium on Principles of programming languages,
pages 67–78, New York, NY, USA, 2006. ACM.

[6] Dorothy E. Denning and Peter J. Denning. Certification of programs for
secure information flow. Commun. ACM, 20(7):504–513, 1977.

[7] Deepak D’Souza, Raveendra Holla, Janardhan Kulkarni, Raghavendra K
R, and Barbara Sprick. On the decidability of model-checking information
flow properties. In Proceedings of International Conference on Information
Systems Security (ICISS), 2008.

[8] Deepak D’Souza and Raghavendra K. R. Checking unwinding conditions
for finite state systems. In Proceedings of VERIFY workshop, 2006.

25

[9] Deepak D’Souza, Raghavendra K. R., and Barbara Sprick. An automata
based approach for verifying information flow properties. Proceedings of
the second workshop on Automated Reasoning for Security Protocol Anal-
ysis (ARSPA 2005), Electronic Notes in Theoretical Computer Science,
135(1):39–58, July 2005.

[10] Riccardo Focardi and Roberto Gorrieri. A classification of security proper-
ties for process algebras. Journal of Computer Security, IOS Press, 3(1):5–
33, 1995.

[11] Riccardo Focardi and Roberto Gorrieri. The compositional security checker:
A tool for the verification of information flow security properties. Software
Engineering, 23(9):550–571, 1997.

[12] Joseph A. Goguen and José Meseguer. Security policies and security mod-
els. In Proceedings of IEEE Symposium on Security and Privacy, pages
11–20, April 1982.

[13] Joshua D. Guttman and Mark E. Nadel. What needs securing. In Proceed-
ings of Computer Security Foundations Workshop, pages 34–57, 1988.

[14] Dale M. Johnson and F. Javier Thayer. Security and the composition of
machines. Proceedings of Computer Security Foundations Workshop, pages
72–89, 1988.

[15] Dexter Kozen. Automata and Computability. Springer-Verlag, New York,
1997.

[16] Heiko Mantel. Possibilistic Definitions of Security – An Assembly Kit. In
Proceedings of the 13th IEEE Computer Security Foundations Workshop,
pages 185–199, Cambridge, UK, July 3–5 2000. IEEE Computer Society.

[17] Heiko Mantel. A Uniform Framework for the Formal Specification and
Verification of Information Flow Security. PhD thesis, Universität des
Saarlandes, 2003.

[18] Daryl McCullough. Specifications for multilevel security and a hookup
property. In Proceedings of 1987 IEEE Symposium Security and Privacy,
1987.

[19] John McLean. A general theory of composition for trace sets closed under
selective interleaving functions. In Proceedings of IEEE Symposium on
Research in Security and Privacy, pages 79 – 93. IEEE Computer Society
Press, 1994.

[20] Colin O’Halloran. A calculus of information flow. In Proceedings of the
European Symposium on Research in Computer Security, ESORICS 90,
1990.

[21] Willard V. Quine. Concatenation as a basis for finite arithmetic. Journal
of Symbolic Logic, 11(4), 1946.

[22] Andrej Sabelfeld and David Sands. A per model of secure information flow
in sequential programs. Higher-Order and Symbolic Computation, 1(14):59–
91, 2001.

26

[23] David Sutherland. A model of information. In Proceedings of the 9th
National Computer Security Conference, 1986.

[24] Ron van der Meyden and Chenyi Zhang. Algorithmic verification of non-
interference properties. Electronic Notes in Theoretical Computer Science,
168:61–75, 2007.

[25] A. Zakinthinos and E. S. Lee. A general theory of security properties. In
SP ’97: Proceedings of the 1997 IEEE Symposium on Security and Privacy,
page 94, Washington, DC, USA, 1997. IEEE Computer Society.

27

Appendix A

Here are the proofs for the rest of the claims in Lemma 1 characterizing BSPs
in terms of language theoretic operations.

1. L satisfies IA w.r.t. X iff l-ins-admX(L) ⊆N L.

Proof (⇒:) Assume L satisfies IA and consider a string τ in l-ins-admX(L).
Then τ will be of the form αcβ for some c ∈ C and there must exist αβ ∈ L

such that β ↾C= ǫ and also γc ∈ L with γ ↾X= α ↾X . Since L satisfies IA,
there exists α′cβ′ ∈ L with α′ =N α and β′ =N β. But this just means
that τ = αcβ =N α′cβ′. Hence l-ins-admX(L) ⊆N L.

(⇐:) Suppose l-ins-admX(L) ⊆N L. Consider a string αβ ∈ L with
β ↾C= ǫ and there exists γc ∈ L for some c ∈ C with γ ↾X= α ↾X . By
the definition of l-ins-admX(L), we have αcβ ∈ l-ins-admX(L). Since
l-ins-admX(L) ⊆N L, there exists τ ∈ L such that αcβ =N τ . Thus τ
can be expressed as α′cβ′ such that α′ =N α and β′ =N β. Hence IA is
satisfied. �

2. L satisfies BSD iff l-del-mark(L)↾m
N
⊆ mark(L)↾m

N
.

Proof (⇒:) Assume L satisfies BSD and consider a string τ belonging
to l-del-mark(L)↾m

N
. Then τ must be of the form α♮β′, which comes from

a string of the form α♮β in l-del-mark(L) with β ↾N= β′, which in turn
must be such that αcβ ∈ L for some c ∈ C with β ↾C= ǫ. Since L satisfies
BSD , we have αβ′′ ∈ L such that β =N β′′. By the definition of mark(L),
we have α♮β′′ ∈ mark(L). Deleting N -events from β′′ results in β′. Thus
α♮β′ = τ must be in mark(L) ↾m

N
. Hence l-del-mark(L) ↾m

N
is a subset of

mark(L)↾m
N
.

(⇐:) Suppose l-del-mark(L)↾m
N
⊆ mark(L)↾m

N
. Consider a string αcβ ∈ L,

with c ∈ C and β ↾C= ǫ. By the definition of l-del-mark(L), we have α♮β ∈
l-del-mark(L) and hence α♮β′ ∈ l-del-mark(L) ↾m

N
where β′ is obtained

from β by deleting N -events. Since l-del-mark(L) ↾m
N

⊆ mark(L) ↾m
N
, we

have α♮β′ ∈ mark(L) ↾m
N
. Then there must exist α♮β′′ ∈ mark(L) where

β′′ ↾N= β′. Thus β′′ =N β. By the definition of mark(L), we have
αβ′′ ∈ L. Hence BSD is satisfied. �

3. L satisfies BSI iff l-ins-mark(L)↾m
N
⊆ mark(L)↾m

N
.

Proof (⇒:) Assume L satisfies BSI and consider a string τ belonging
to l-ins-mark(L) ↾m

N
. Then τ will be of the form αc♮β′ which comes from

a string of the form αc♮β in l-ins-mark(L) which in turn must be such
that β ↾N= β′, c ∈ C, αβ ∈ L and β ↾C= ǫ. Since L satisfies BSI , we
have αcβ′′ ∈ L such that β =N β′′. By the definition of mark(L), we
have αc♮β′′ ∈ mark(L). Deleting N -events from β′′ results in β′. Thus
αc♮β′ = τ must be in mark(L) ↾m

N
. Hence l-ins-mark(L) ↾m

N
is a subset of

mark(L)↾m
N
.

(⇐:) Suppose l-ins-mark(L) ↾m
N
⊆ mark(L) ↾m

N
. Consider a string αβ ∈ L

such that β ↾C= ǫ. By the definition of l-ins-mark(L), we have αc♮β ∈
l-ins-mark(L) for any c ∈ C and hence αc♮β′ ∈ l-ins-mark(L) ↾m

N
where

β′ is obtained from β by deleting N -events. Since l-ins-mark(L) ↾m
N

⊆
mark(L)↾m

N
, we have αc♮β′ ∈ mark(L)↾m

N
. Then there must exist αc♮β′′ ∈

28

mark(L) where β′′ ↾N= β′. Thus β′′ =N β. By the definition of mark(L),
we have αcβ′′ ∈ L. Hence BSI is satisfied. �

4. L satisfies BSIA w.r.t. X iff l-ins-adm-markX(L)↾m
N
⊆ mark(L)↾m

N
.

Proof (⇒:) Assume L satisfies BSIA and consider a string τ belonging
to l-ins-adm-markX(L)↾m

N
. Then τ will be of the form αc♮β′, which comes

from a string of the form αc♮β in l-ins-adm-markX(L) with β ↾N= β′,
which in turn must be such that β ↾C= ǫ, c ∈ C, αβ ∈ L, β ↾C= ǫ and there
exists γc ∈ L with γ ↾X= α↾X . Since L satisfies BSIA, we have αcβ′′ ∈ L

where β =N β′′. By the definition ofmark(L), we have αc♮β′′ ∈ mark(L).
Deleting N -events from β′′ results in β′. Thus αc♮β′ = τ must be in
mark(L)↾m

N
. Hence l-ins-adm-markX(L)↾m

N
is a subset of mark(L)↾m

N
.

(⇐:) Suppose l-ins-adm-markX(L)↾m
N
is a subset ofmark(L)↾m

N
. Consider

a string αβ ∈ L such that β ↾C= ǫ and there exists γc ∈ L with c ∈ C and
γ ↾X= α ↾X . By the definition of l-ins-adm-markX(L), we have αc♮β ∈
l-ins-adm-markX(L) and hence αc♮β′ ∈ l-ins-adm-markX(L) ↾m

N
where β′

is obtained from β by deleting N -events. Since l-ins-adm-markX(L) ↾m
N

is a subset of mark(L) ↾m
N
, we have αc♮β′ ∈ mark(L) ↾m

N
. Then there

must exist αc♮β′′ ∈ mark(L) where β′′ ↾N= β′. Thus β′′ =N β. By the
definition of mark(L), there exists αcβ′′ ∈ L. Hence BSIA is satisfied. �

5. L satisfies FCD w.r.t. V ′, C′, N ′ iff

l-del-con-markC′,V ′(L)↾m
N

⊆ erase-con-markN ′,V ′(L)↾m
N

Proof (⇒:) Assume L satisfies FCD and consider a string τ belonging to
l-del-con-markC′,V ′(L)↾m

N
. Then τ will be of the form αv♮β′ which comes

from a string αv♮β in l-del-con-markC′,V ′(L) with β ↾N= β′. Then we
must have a string αcvβ ∈ L with β ↾C= ǫ, c ∈ C′ and v ∈ V ′. Since L
satisfies FCD , we have αδvβ′′ ∈ L where β′′ =N β. By the definition of
erase-con-markN ′,V ′(L), we have αv♮β′′ ∈ erase-con-markN ′,V ′(L). Delet-
ingN symbols from β′′ results in β′. Thus αv♮β′ must be in erase-con-markN ′,V ′(L)↾m

N
.

Hence l-del-con-markC′,V ′(L)↾m
N

is a subset of erase-con-markN ′,V ′(L)↾m
N
.

(⇐:) Suppose l-del-con-markC′,V ′(L) ↾m
N

⊆ erase-con-markN ′,V ′(L) ↾m
N
.

Consider a string αcvβ ∈ L, with c ∈ C′, v ∈ V ′ and β ↾C= ǫ. From the
definition of l-del-con-markC′,N ′(L), we have αv♮β ∈ l-del-con-markC′,N ′(L).
Thus αv♮β′ ∈ l-del-con-markC′,N ′(L) ↾m

N
where β′ is obtained from β by

deletingN -events. Since l-del-con-markC′,V ′(L)↾m
N
⊆ erase-con-markN ′,V ′(L)↾m

N
,

we have αv♮β′ ∈ erase-con-markN ′,V ′(L) ↾m
N
. Then there must exist

αv♮β′′ ∈ erase-con-markN ′,V ′(L) where β′′ ↾N= β′. Thus β′′ =N β. By
the definition of erase-con-markN ′,V ′(L), we have αδvβ′′ ∈ L for some δ
such that δ ∈ (N ′)∗. Hence FCD is satisfied. �

6. L satisfies FCI w.r.t. V ′, C′, N ′ iff

l-ins-con-markC′,V ′(L)↾m
N

⊆ erase-con-markN ′,V ′(L)↾m
N

Proof (⇒:) Assume L satisfies FCI and consider a string τ belonging
to l-ins-con-markC′,V ′(L) ↾m

N
. Then τ will be of the form αcv♮β′ which

29

comes from some string αcv♮β in l-ins-con-markC′,V ′(L) which in turn
must be such that c ∈ C′, v ∈ V ′, β′ = β ↾N , αvβ ∈ L and β ↾C=
ǫ. Since L satisfies FCI , we have αcδvβ′′ ∈ L for some δ such that
δ ∈ (N ′)∗ and β′′ =N β. By the definition of erase-con-markN ′,V ′(L),
we have αcv♮β′′ ∈ erase-con-markN ′,V ′(L). Deleting N -symbols from β′′

results in β′. Thus αcv♮β′ = τ must be in erase-con-markN ′,V ′(L) ↾m
N
.

Hence l-ins-con-markC′,V ′(L)↾m
N

is a subset of erase-con-markN ′,V ′(L)↾m
N
.

(⇐:) Suppose l-ins-con-markC′,V ′(L) ↾m
N

⊆ erase-con-markN ′,V ′(L) ↾m
N
.

Consider a string αvβ ∈ L with v ∈ V ′ and β ↾C= ǫ. By the definition
of l-ins-con-markC′,V ′(L), we have αcv♮β ∈ l-ins-con-markC′,V ′(L) for
any c ∈ C′ and hence αcv♮β′ ∈ l-ins-con-markC′,V ′(L) ↾m

N
where β′ is

obtained from β by deleting N -events. Since l-ins-con-markC′,V ′(L)↾m
N

⊆
erase-con-markN ′,V ′(L) ↾m

N
, we have αcv♮β′ ∈ erase-con-markN ′,V ′(L) ↾m

N
.

Then there must exist αcv♮β′′ ∈ erase-con-markN ′,V ′(L) where β′′ ↾N =
β′. Thus β′′ =N β. By the definition of erase-con-markN ′,V ′(L), we have
αcδvβ′′ ∈ L. Hence FCI is satisfied. �

7. L satisfies FCIA w.r.t. X , V ′, C′, N ′ iff

l-ins-adm-con-markXC′,V ′(L)↾m
N

⊆ erase-con-markN ′,V ′(L)↾m
N
.

Proof (⇒:) Suppose L satisfies FCIA w.r.t. X,V ′, C′, N ′. Consider a
string τ ∈ l-ins-adm-con-markXC′,V ′(L) ↾m

N
. τ must be of the form αcv♮β′,

which comes from some string of the form αcv♮β in l-ins-adm-con-markXC′,V ′(L)
which in turn must be such that β′ = β ↾N , c ∈ C′, v ∈ V ′, αvβ ∈ L,
β ↾C= ǫ, and there exists γc ∈ L with γ ↾X= α ↾X . Now since αvβ ∈ L

and L satisfies FCIA, there must exist αcδvβ′′ ∈ L with δ ∈ (N ′)∗

and β′′ =N β. From the definition of erase-con-markN ′,V ′(L), we have
αcv♮β′′ ∈ erase-con-markN ′,V ′(L). Deleting N events from β′′ results
in β′. Thus αcvβ′ = τ must be in erase-con-markN ′,V ′(L) ↾m

N
. Hence

l-ins-adm-con-markXC′,V ′(L)↾m
N

is a subset of erase-con-markN ′,V ′(L)↾m
N
.

(⇐:) Assume l-ins-adm-con-markXC′,V ′(L)↾m
N
⊆ erase-con-markN ′,V ′(L)↾m

N
.

Consider a string of the form αvβ ∈ L, such that v ∈ V ′, β ↾C= ǫ,
and there exists γc ∈ L with c ∈ C′ and γ ↾X= α ↾X . By the defini-
tion of l-ins-adm-con-markXC′,V ′(L), αcv♮β ∈ l-ins-adm-con-markXC′,V ′(L).

Thus αcv♮β′ is in l-ins-adm-con-markXC′,V ′(L) ↾m
N

where β′ is obtained

from β by deleting N -events. Since l-ins-adm-con-markXC′,V ′(L) ↾m
N

⊆
erase-con-markN ′,V ′(L) ↾m

N
, we have αcv♮β′ ∈ erase-con-markN ′,V ′(L) ↾m

N
.

Hence αcv♮β′′ must belong to erase-con-markN ′,V ′(L) for some β′′ such
that β′′ ↾N = β′. Thus β′′ =N β. By the definition of erase-con-markN ′,V ′(L),
there exists δ ∈ (N ′)∗ such that αcδvβ′′ ∈ L. Hence L satisfies FCIA. �

8. L satisfies SR iff L↾C⊆ L.

Proof (⇒:) Assume L satisfies SR and consider any string τ in L ↾C .
There must exist some τ ′ ∈ L such that τ ′ ↾C= τ . Since L satisfies SR,
we have τ = τ ′ ↾C ∈ L. Hence L↾C⊆ L.

(⇐:) Suppose L ↾C⊆ L. Consider any string τ in L. Then τ ↾C ∈ L ↾C .
Since L↾C⊆ L, we have τ ↾C∈ L. Hence SR is satisfied. �

30

9. L satisfies SD iff l-del(L) ⊆ L.

Proof (⇒:) Assume L satisfies SD and consider a string τ in l-del(L).
Then τ will be of the form αβ which comes from a string of the form
αcβ ∈ L such that c ∈ C and β ↾C= ǫ. Since L satisfies SD , we have
αβ ∈ L. Hence l-del(L) ⊆ L.

(⇐:) Suppose l-del(L) ⊆ L. Consider a string αcβ ∈ L with c ∈ C and
β ↾C= ǫ. By the definition of l-del(L), we have αβ ∈ l-del(L). Since
l-del(L) ⊆ L, we have αβ ∈ L. Hence SD is satisfied. �

10. L satisfies SI iff l-ins(L) ⊆ L.

Proof (⇒:) Assume L satisfies SI and consider a string τ ∈ l-ins(L).
Then τ will be of the form αcβ which comes from a string of the form
αβ ∈ L such that c ∈ C and β ↾C= ǫ. Since L satisfies SI , we have
αcβ ∈ L. Hence l-ins(L) ⊆ L.

(⇐:) Suppose l-ins(L) ⊆ L. Consider a string αβ ∈ L such that β ↾C= ǫ.
By the definition of l-ins(L), we have αcβ ∈ l-ins(L) for any c ∈ C. Since
l-ins(L) ⊆ L, we have αcβ ∈ L. Hence SI is satisfied. �

11. L satisfies SIA w.r.t. X iff l-ins-admX(L) ⊆ L.

Proof (⇒:) Assume L satisfies SIA and consider a string τ ∈ l-ins-admX(L).
Then τ will be of the form αcβ which comes from the string of the form
αβ ∈ L such that c ∈ C, β ↾C= ǫ and there exists γc ∈ L with c ∈ C

and γ ↾X= α ↾X . Since L satisfies SIA, we have τ = αcβ ∈ L. Hence
l-ins-admX(L) ⊆ L.

(⇐:) Suppose l-ins-admX(L) ⊆ L. Consider a string αβ ∈ L such that
β ↾C= ǫ and there exists γc ∈ L with c ∈ C and γ ↾X= α ↾X . By the
definition of l-ins-admX(L), αcβ ∈ l-ins-admX(L). Since l-ins-admX(L) ⊆
L, αcβ ∈ L. Hence SIA is satisfied. �

31

Appendix B

The following arguments show that the language theoretic operations are regu-
larity preserving and effectively so.

1. l-del-mark: This construction is similar to l-del except that the label of
the ǫ-transitions we add from the first copy to the second, is now ♮.

2. l-ins-mark: The construction is similar to l-ins. Here instead of inserting a
transition labelled c from the first copy to the second, we need to insert a
transition labelled c♮ from the first copy to the second. This can be carried
out by having a third copy of A placed between the first and second. The
third copy has all its transitions deleted, and all its states are non-initial
and non-final. A c transition from p in the first copy now goes to p in the
third copy, and from p in the third copy we add a ♮ transition to p in the
second copy.

3. l-ins-adm-mark: The construction is similar to l-ins-adm. Instead of
adding a c transition from the first copy to the second, we add one la-
belled c♮ (once again this can be achieved using a third copy of A).

4. mark: Given A for L ⊆ Σ∗, we construct A′ which accepts the marked
language mark(L). A is obtained from A as follows. We again use two
copies of A. The initial state of A′ is the initial state of the first copy, and
the final states are only those of the second copy. From every state in the
first copy we add a transition labelled ♮ to its copy in the second.

5. Marked projection: Given a marked languageM , an FSA A accepting M ,
and X ⊆ Σ, we construct A′ which accepts the marked language M ↾mX .
Once again we use two copies of A. The initial state of the first copy is
the initial state of A′ and the final states of the second copy are the final

states of A′. From the first copy we delete transitions of the form p
♮

−→ q

and add a transition labelled ♮ from p in the first copy to q in the second
copy. In the second copy, we replace transition labels which are not in X
by ǫ.

♮

a ǫ

♮

Figure 5: L↾mX

6. l-del-con-mark: Let L be a language over Σ and A be an FSA accepting L.
Let C′ ⊆ C and V ′ ⊆ V . We construct A′ accepting the marked language
l-del-con-markC′,V ′(L) as follows. We have four copies of A. The second
and third copies have all transitions deleted from them, and the fourth
copy has all C transitions deleted from it. The initial state of the first
copy is the initial state of A′ and the final states of the fourth copy are

32

the final states of A′. For every transition p
c′

−→ q with c′ ∈ C′, we add
an ǫ-transition from p in the first copy to q in the second copy. We add
a v′-transition from a state r in the second copy to a state t in the third

copy iff r
v′

−→ t, with v′ ∈ V ′, is a transition in A. Finally, we add a
♮-transition from each state u in the third copy to u in the fourth copy.

ǫ

a

c′

v′
a

v′

v′

♮

Figure 6: l-del-con-markC′,V ′(L)

7. l-ins-con-mark: Let L be a language over Σ and A be an FSA accepting L.
Let C′ ⊆ C and V ′ ⊆ V . We construct A′ accepting the marked language
l-ins-con-markC′,V ′(L) as follows. We have four copies of A. The second
and third copies have all transitions deleted from them, and the fourth
copy has all C transitions deleted from it. The initial state of the first
copy is the initial state of A′ and the final states of the fourth copy are

the final states of A′. For every transition p
v′

−→ q with v′ ∈ V ′, we add a
c′-transition (for every c′ ∈ C′) from p in the first copy to p in the second
copy. We add a v′-transition from a state r in the second copy to a state t

in the third copy iff r
v′

−→ t, with v′ ∈ V ′, is a transition in A. Finally, we
add a ♮-transition from each state u in the third copy to u in the fourth
copy.

a

c

v′
a

v′

v′

♮

c′

Figure 7: l-ins-con-markC′,V ′(L)

8. l-ins-adm-con-mark: Let L be a language over Σ with L = L(A), and let
X ⊆ Σ. Let C′ ⊆ C and V ′ ⊆ V . We construct A′ for the language
l-ins-adm-con-markXC′,V ′(L) as follows. We use four copies of A. The first

copy is exactly the same as in l-ins-admX(L), where the states have two
components, the first component keeping track of a state from A, while
the second keeps track of a set of states of A that are reachable by words
that are X-equivalent to the current word being read. The second and
third copies of A have all transitions deleted from them, and the fourth

33

copy has all C transitions deleted from it. The initial state of the first
copy is the initial state of A′ and the final states of the fourth copy are
the final states of A′. We have a transition labelled c′, with c′ ∈ C′, from
a state (p, T) in the first copy to p in the second copy, provided T contains
a state t from which it is possible to do a c′ and go to a final state. We
add a v′-transition from a state r in the second copy to a state u in the

third copy iff r
v′

−→ u, with v′ ∈ V ′, is a transition in A. Finally, we add
a ♮-transition from each state w in the third copy to w in the fourth copy.

c′

v′ v′

v′

♮

Figure 8: l-ins-adm-con-markXC′,V ′(L)

9. erase-con-mark: Let L ⊆ Σ∗ and let A be an FSA with L = L(A). Let
N ′ ⊆ N and V ′ ⊆ V . We construct A′ accepting erase-con-markN ′,V ′(L)
as follows. We have four copies of A. The first and fourth copy have
all their original transitions intact, the second has all transitions labeled
with a 6∈ N ′ deleted and transitions labelled n′, with n′ ∈ N ′, replaced
by ǫ-transitions; and the third has all its transitions deleted. We add an
ǫ-transition from every state p in the first copy to p in the second copy;

For every state p in the second copy such that p
v′

−→ q in A, we add a
v′-transition from p in the second copy to q in the third copy. From every
state r in the third copy we add a transition labelled ♮ to r in the fourth
copy. The initial states of A′ are the initial states of the first copy and
the final states those of the fourth copy.

ǫ

a

n′

v′

a

n′

v′

ǫ

v′ ♮

Figure 9: erase-con-markN ′,V ′(L)

34

Appendix C

Now we prove the Lemmas 6 to 10. Each of the following context-free languages
can be used to prove undecidability for a set of BSPs. We will give the proof
only for one BSP out of each group. The other proofs follow analogously.

We use language LI
M , to prove Lemma 6. Lemma 6 says:

LI
M satisfies BSP I (similarly SI , BSI) w.r.t. a view V = (Σ, ∅, {c}) ⇔ L(M) =

∅.

Proof (⇐:) Let us assume L(M) = ∅. Clearly, prefix closure of L4 indepen-
dently satisfies BSP I. Consider any string τ in L3. τ is not a valid computation
since L(M) = ∅. Note that τ interspersed with strings of c’s is present in L4.
Also all the prefixes of τ interspersed with strings of c’s are in LI

M . Hence LI
M

satisfies I.
(⇒:) If L(M) is not empty then there exists a valid computation τ and it

can be found in L3. If we insert events from C at arbitrary points in τ , the
resulting string will not be present in LI

M . Hence I is not satisfied. Hence,
L(M) is empty when LI

M satisfies BSP I. �

We can use a construction similar to the one of the LM to show that this
language is also accepted by a pushdown system. We note that L3 = A1 ∩A2 ∩
∩A3 ∩A4 and thus a regular language. Let P be the PDS for L2 with δP as its
transition function and R be the finite automaton accepting {c}∗ with δR as its
transition function. We can construct a PDS accepting L4 with the transition
function δ defined as:

δ((q1, q2), a, A) = {((q′1, q2), B1 · · ·Bk) | (q′1, B1 · · ·Bk) ∈ δP (q1, a, A)}
∪ {((q1, δR(q2, a)), A)}

Hence LI
M is accepted by a pushdown system. The rest of the languages

used in the appendix also can be shown to be accepted by pushdown systems
in a similar fashion.

We use language LIAX
M to prove Lemma 7. Lemma 7 says:

LIAX
M satisfies BSP IA(similarly SIA, BSIA) w.r.t. X and the view V =

(Σ, ∅, {c}) ⇔ L(M) = ∅.

Proof (⇐:) Let us assume L(M) = ∅. Clearly, prefix closure of L4 ∪ L5

satisfies BSP IAX independently. Consider any string of the form τ in L3. The
string τ is not a valid computation, since L(M) = ∅. Since X∗ · {c} is a subset
of LIAX

M , we can insert c’s at arbitrary points in τ and we will have the resulting
string in L4. Similarly for the prefixes of L3, the corresponding strings which
satisfies the condition will be present in L4. Hence L

IAX
M satisfies IAX .

(⇒:) If L(M) is not empty, there exists some string τ in L3 and not in L4

which is a valid computation. Since we haveX∗ ·{c} as a subset of LIAX
M , we can

insert c’s at arbitrary points in τ . So, the resulting string will not be present in
LIAX
M . Hence IAX is not satisfied. Hence L(M) is empty, when LIAX

M satisfies
IAX . �

We use language LFCD
M to prove Lemma 8. Lemma 8 says:

LFCD
M satisfies BSP FCD w.r.t. V ′, N ′, C′ and the view V = (Σ, ∅, {c}) ⇔

L(M) = ∅.

35

Proof (⇐:) Let us assume L(M) = ∅. Consider any string containing
confidential event in LFCD

M . That string will be of the form cvτ in L6. The string
τ is not a valid computation since L(M) = ∅. Since v ∈ V ′ and c ∈ C′, the
string after deleting c is included in L7. The strings corresponding to prefixes of
the strings in L8 will be found in prefixes of strings in L9. Hence L

FCD
M satisfies

FCD .
(⇒:) If L(M) is not empty, there exists some string τ which is a valid

computation. L6 contains cvτ . The resulting string after deleting the last c is
not included in the language LFCD

M . Hence FCD is not satisfied. Hence L(M)
is empty when LFCD

M satisfies FCD . �

We use language LFCI
M to prove Lemma 9. Lemma 9 says:

LFCI
M satisfies FCI w.r.t. V ′, N ′, C′ and the view V = (Σ, ∅, {c}) ⇔ L(M) = ∅.

Proof (⇐:) Let us assume L(M) = ∅. Clearly, prefix closure of L9 inde-
pendently satisfies FCI . Consider any string of the form vτ in L8. The string τ
is not a valid computation since L(M) = ∅. The string after inserting an event
from C′ preceding v is included in L9. For any prefix of the string in L8, the
corresponding string will be the prefix of a string in L9. Hence LFCI

M satisfies
FCI .

(⇒:) If L(M) is not empty, there exists some string τ in L8 and not in L9

which is a valid computation. The resulting string after inserting c preceding v
is not included in LFCI

M .Hence FCI is not satisfied. Hence L(M) is empty when
LFCI
M satisfies FCI . �

We use language LFCIAX
M to prove Lemma 10. Lemma 10 says:

LFCIAX
M satisfies BSP FCIA w.r.t. X,V ′, N ′, C′ and the view V = (Σ, ∅, {c}) ⇔

L(M) = ∅.

Proof (⇐:) Let us assume L(M) = ∅. Clearly, prefix closure of L9 ∪ L10

independently satisfies FCIAX . Consider any string of the form vτ in L8. The
string τ is not a valid computation since L(M) = ∅. Since v ∈ V ′ and X∗ · C′

is contained in LFCIAX
M , the string after inserting an event from C′ preceding v,

is included in L9. For any prefix of the string in L8, the corresponding string
which satisfies the condition is included in the prefix of a string from L9. Hence
LFCIAX
M satisfies FCIAX .
(⇒:) If L(M) is not empty, there exists some string τ in L8 and not in L9

which is a valid computation. The resulting string after inserting a c from C′

preceding v is not included in LFCIAX
M . Hence FCIAX is not satisfied. Hence

L(M) is empty when LFCIAX
M satisfies FCIAX . �

36

