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Abstract. Bisimulation-based information flow properties were intro-
duced by Focardi and Gorrieri [6] as a way of specifying security prop-
erties for transition system models. These properties were shown to be
decidable for finite-state systems. In this paper, we study the problem
of verifying these properties for some well-known classes of infinite state
systems. We show that all the properties are undecidable for each of
these classes of systems.
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1 Introduction

Information flow properties are a way of specifying security properties of systems,
dating back to the work of Goguen and Meseguer [8] in the eighties. In this
framework, a system is modelled as having high-level (or confidential) events
as well as low-level (or public) events, and a typical property requires that the
high-level events should not influence the outcome of low-level events. In other
words, the sequence of low-level events observed from a system execution, should
not reveal “too much” information about the high-level events that may have
taken place during the execution.

There is a great variety of information flow properties proposed in the lit-
erature and can be broadly classified into the following categories. The original
formulation of non-interference by Goguen and Meseguer was state-based in the
sense that it spoke about the state of the system after a sequence of events: the
state reached by the system after executing a sequence of low and high-level
events, must be the same (from the low-level observer’s point of view) as the
state reached after executing only the low-level events in the sequence. As non-
interference is often too strong a requirement (for example a typical password
checking program is interferent), many relaxations to non-interference have been
proposed in the literature. Some information flow properties are trace-based in
that they specify information flow security as a property of the set of traces or
executions produced by the system and its variants. For example, the strong non-
deterministic non-interference (SNNI) property [6] states that the set of traces
after hiding high-level events (replacing them with ε-transitions) should be the



same as the set of traces with high-level events deleted. This corresponds to
non-inference of the occurrence of high-level events, as every low-level observa-
tion of a trace is itself a possible trace in the system. Finally there are prop-
erties based on the structure of the system model. For example, the property
Bisimulation-based Strong Non-deterministic Non-interference (BSNNI) is the
same as SNNI except that the check is on bisimulation equivalence rather than
trace equivalence. These properties are termed bisimulation based information
flow properties and are studied by Focardi and Gorrieri in [6].

We motivate bisimulation-based information flow properties with an example
adapted from Focardi and Gorrieri [6]. Consider the component of an access-
control system implementing the no read up policy as described by the state
transition system in Fig. 1. The transition lRl represents a low user requesting
to read a low object. Similarly lRh, hRl and hRh represent low reading high,
high reading low and high reading high requests respectively. The acc grantl and
acc granth transitions grant the read access request originating from low and
high users respectively. The acc denyl transition denies the read access request
from a low user on a high object. Here the events lRl, lRh, acc grantl and
acc denyl are low events and hRl, hRh and acc granth are high events. The
attacker observes only the low-level events in any execution of the system. We
want the semantic property of non-inference: the attacker should not be able
to infer the occurrence or non-occurrence of high-level events in any system
execution.
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Fig. 1. Implementation of no read up without high interrupts

It is easy to see that the system satisfies the property of non-inference. This
system satisfies both SNNI and BSNNI.

Consider a slight modification of the example with high-level interrupts as
shown in Fig. 2. High-level interrupts h stop1, h stop2, h stop3 and h stop4 when
fired halts the system by taking it to a trap-state. This system satisfies SNNI
but not non-inference. A low user can never conclude that a high-level interrupt
has been executed; however when he asks to reads a low object and if he sees
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Fig. 2. Implementation of no read up with high interrupts

acc grantl then he knows that the h stop1 event did not happen. This subtle
information flow can be exploited in order to construct an information channel
from high level to low level. In order to detect these kind of flows, bisimulation-
based information flow properties are used. As we show in Section 2, the system
in Fig. 2 does not satisfy BSNNI.

In general bisimulation-based equivalence is a finer equivalence than trace-
based equivalence and detects possible high level deadlocks that can compromise
the security of the system [6]. The problem of checking bisimulation-based prop-
erties has been shown to be decidable for finite-state systems and has been
implemented in a tool called CoSec [7, 1].

The problem of model-checking most of the known trace-based information
flow properties is shown to be decidable [4]. However the problem of model-
checking these trace-based properties for pushdown systems is shown to be un-
decidable [2].

A natural question that arises is whether the bisimulation-based properties
continue to be decidable for well-known classes of infinite state systems like
pushdown systems, Petri nets and process algebras [14]. We show in this paper
that the problem of checking any of these bisimulation properties is undecidable
for each of these classes of systems. To show these, we adapt the proofs by

– Srba [15] showing the undecidability of checking weak bisimilarity for push-
down systems.

– Jancar [11] showing the undecidability of checking strong bisimilarity for
Petri nets.

– Srba [16] showing the undecidability of checking weak bisimilarity for process
algebras.

We note that the problem of checking bisimulation-based properties appears
to be weaker than the problem of checking bisimilarity for given classes of sys-



tems, in the sense that the former reduces to the latter in the case when the
class is closed under the hiding and deletion of transitions. However, our re-
sults nonetheless show that the problem of checking these bisimulation-based
properties continues to be undecidable for the classes mentioned above.

2 Bisimulation relations and games

We begin by defining the basic system model of labelled transition systems.
For binary relations R and S, we denote relational composition and reflexive
transitive closure by R ·S and R∗ respectively. For an alphabet Σ, we use Σ∗ to
denote the set of all finite words on Σ. The concatenation of two words u and v
will be denoted by u · v or simply uv.

A labelled transition system (LTS) M is a tuple (Q, Σ, →, s0) where Q is
a set of states, Σ is a set of labels, →⊆ Q × (Σ ∪ {ε}) × Q is a set of labelled

transitions and s0 ∈ Q is the initial state. We sometimes write s
a→ t instead

of (s, a, t) ∈→. For q ∈ Q, we write Mq to denote the LTS (Q,Σ,→, q). For

c ∈ Σ ∪ {ε}, we define
c→= {(s, t) | s c→ t}. The weak transition relation (⇒)

induced by M is defined as follows. Let c ∈ Σ ∪ {ε}:

c⇒=

{
ε→
∗
· c→ · ε→

∗
if c ∈ Σ

ε→
∗

if c = ε.

The language generated by M , denoted by L(M), is the set {a1a2 · · · an
∈ Σ∗ | ∃s1, s2, . . . , sn, s

a1⇒ s1
a2⇒ · · · an⇒ sn }.

Let M1 = (Q1, Σ,→1, s1) and M2 = (Q2, Σ,→2, s2) be two LTS’s. A relation
R ⊆ Q1×Q2 is a weak bisimulation between M1 and M2 if and only if whenever
(s, t) ∈ R and s

c→1 s
′ with c ∈ Σ ∪ {ε} then there exists t′ ∈ Q2 such that

t
c⇒2 t

′ and (s′, t′) ∈ R and conversely, whenever t
c→2 t

′ with c ∈ Σ ∪ {ε} then

there exists s′ ∈ Q1 such that s
c⇒1 s

′ and (s′, t′) ∈ R. For p1 ∈ Q1, p2 ∈ Q2, we
write p1 ≈ p2 if and only if there exists a weak bisimulation containing (p1, p2).
M1 is said to be weakly bisimilar to M2, written M1 ≈M2, if and only if s1 ≈ s2.
It is easy to see that the union Rmax of all weak bisimulations between M1 and
M2 is also a weak bisimulation. Two states p and q of an LTS M are said to
be weakly bisimilar, written p ≈ q, if and only if there is a weak bisimulation
between two copies of M containing (p, q).

Weak bisimilarity has an elegant characterisation in terms of bisimulation
games. Though the results in the section are folklore in the literature, the details
are not readily availabile in our experience. Hence we include the proofs of these
results.

Definition 1. Let p1 and p2 be two states in LTS M1 and M2 respectively.
A bisimulation game starting from p1 and p2 is a game between two players:
an attacker and a defender. The game is played in rounds. In each round the
players change the current states q1 and q2 (initially p1 and p2) according to the
following rule.



1. The attacker chooses an i ∈ {1, 2}, c ∈ Σ∪{ε} and q′i ∈ Qi such that qi
c→i q

′
i.

2. The defender responds by choosing a q′3−i ∈ Q3−i such that q3−i
c⇒3−i q

′
3−i.

3. The states q′1 and q′2 become the current states.

Let K = ({1, 2} ×Σ ×Q1 ×Q2) · (Q1 ×Q2). A finite play is a string in the
language (Q1 × Q2) · K∗. An infinite play is a string in (Q1 × Q2) · Kω. The
positions 1+2i, i ≥ 0, in a play, are the positions of the attacker (where it is his
turn to make a move). A valid move by the attacker extends this string with an
element from ({1, 2}×Σ×Q1×Q2) representing his selection of the component
and the transition. The positions 2i, i ≥ 0, in a play, are the positions of the
defender. A valid move by the defender extends this string with an element from
(Q1 ×Q2) representing his selection of the transition obeying the above rule. A
play is valid if and only if it is formed by the alternate sequence of valid moves
from the attacker and the defender. Let the set of valid plays be denoted by Plays.
Let PlaysA and PlaysD denote the set of valid plays ending with the attacker’s
position and the defender’s position respectively. Then Plays = PlaysA]PlaysD .
A partial map associating valid moves to plays in PlaysP , is a strategy for the
player P . A play α is according to a strategy π of a player P if and only if at
every position of the player P in α, the move prescribed by π is taken. A strategy
π is valid for a player P if and only if for every play in PlaysP according to π,
π is defined. A valid strategy for the defender is also a winning strategy for her.
A valid strategy fπ for the attacker is winning if and only if there is no infinite
play according to π.

The following result is well known [9, 17]. See also [3] for a detailed proof.

Lemma 1. Let M1 and M2 be two LTS’s with countable number of states. Let
p and q be states in M1 and M2 respectively. Then

1. p ≈ q iff the defender has a winning strategy starting from p and q.
2. p 6≈ q iff the attacker has a winning strategy starting from p and q.

ut

3 Bisimulation-based information flow properties

We recall different bisimulation-based information flow properties defined in the
literature.

Let M = (Q,Σ,→, s) be an LTS and X ⊆ Σ. Then M \ X denotes the
LTS obtained from M by deleting all transitions labelled by elements in X.
M/X denotes the LTS obtained from M by replacing all transitions labelled by
elements in X with ε (silencing).

Let the set of events Σ (or synonymously actions) be partitioned into inputs
(I) and outputs (O). Let Σ again be partitioned into high (H) and low (L)
events. Each event a in Σ has a complementary action which we denote by
ā in Σ. We assume the sets H and L are closed under complementation i.e,
H̄ = {ā | a ∈ H} = H and L̄ = {ā | a ∈ L} = L. Let EH denote the set of all
systems whose language over Σ is a subset of H∗.



Given M1 = (Q1, Σ,→1, s1), M2 = (Q2, Σ,→2, s2), the composition of M1

and M2 denoted by M1|M2 is defined to be (Q1 × Q2, Σ,→, (s1, s2)) where

(p, q)
c→ (p′, q′) if p

c→1 p
′ or q

c→2 q
′ and (p, q)

ε→ (p′, q′) if p
a→1 p

′ and q
ā→2 q

′.

The bisimulation-based information flow properties [6] are variants of the
trace-based non-deterministic non-interference (NNI), a natural generalization
of non-interference [8] to non-deterministic systems. The basic idea is that an
LTS satisfies NNI when nothing about the execution of high input events leaks
to the observation of a low-user. More precisely, an LTS M satisfies NNI if and
only if L((M \ (H ∩ I))/H) = L(M/H). The following defintions are taken from
[6]. In the definition below we fix an LTS M = (Q,Σ,→, s) over Σ partitioned
into I,O and H, L.

Definition 2. a. Bisimulation-based Non-deterministic Noninterfer-
ence (BNNI). M satisfies BNNI iff M/H ≈ (M \ (I ∩ H))/H.

b. Bisimulation-based Strong Non-deterministic Non-interference (BSNNI).
M satisfies BSNNI iff M/H ≈M \ H.

c. Bisimulation-based Non Deducibility on Compositions (BNDC).
M satisfies BNDC iff ∀M ′ ∈ EH, M/H ≈ (M |M ′) \ H.

d. Strong BNNI (SBNNI). M satisfies SBNNI iff for all reachable states q
in M , Mq satisfies BNNI.

e. Strong BSNNI (SBSNNI). M satisfies SBSNNI iff for all reachable
states q in M , Mq satisfies BSNNI.

f. Strong BNDC (SBNDC). M satisfies SBNDC iff for all reachable states

q, r and for all h ∈ H, such that q
h→ r in M , Mq \ H ≈Mr \ H.

There are other bisimulation-based properties proposed in [5] – persistent
BNDC and dynamic BNDC. They both are shown to be equivalent to SB-
SNNI [5]. Hence we focus on the properties listed in Definition 2.

Consider the example LTS M in Fig. 2. We show that M does not satisfy
BSNNI by describing the winning strategy for the attacker in the bisimulation
game on M \ H and M/H. The attacker chooses the transition 0

ε→ 2 in M/H.
There are no ε-transitions from state 0 in M \ H. Hence the defender is forced

to stay at state 0. The attacker chooses the transition 2
ε→ 4 in M/H. Again

the defender is forced to stay at state 0. Now the attacker chooses the transition

0
lRl→ 1 in M \ H. The defender is required to make a coresponding move from

state 4 in M/H on lRl. As there is no such move, the attacker wins. Thus the
attacker has a winning strategy and hence M \ H 6≈ M/H. Thus M does not
satisfy BSNNI.

4 Model-checking Pushdown Systems

We now consider the problem of model-checking pushdown systems for bisimulation-
based information flow properties. We first define some required notions.



Definition 3. A pushdown system (PDS) is of the form P = (Q,Σ, Γ,→
, s0, S), where Q is a finite set of control states, Σ is a finite input alphabet,
Γ is a finite stack alphabet, →⊆ ((Q× (Σ ∪ {ε})× Γ )× (Q× Γ ∗)) is the transi-
tion relation, s0 ∈ Q is the starting state, and S ∈ Γ is the initial stack symbol.
If ((p, a,A), (q,B1B2 · · ·Bk)) ∈→, this means that whenever the machine is in
state p with A on top of the stack, it can do an a-labelled transition to pop A off
the stack, push B1B2 · · ·Bk onto the stack (such that B1 becomes the new top
of the stack symbol), and enter state q. If ((p, ε, A), (q,B1B2 · · ·Bk)) ∈→, this
means that whenever the machine is in state p with A on top of the stack, it
can do an ε-labelled transition to pop A off the stack, push B1B2 · · ·Bk onto the
stack and enter state q.

A PDS P = (Q,Σ, Γ,−→, s0, S) induces an LTS MP = (Q × Γ ∗, Σ,→
, (s0, S)). The configurations of P form the states of MP . A configuration of
P describes the current state and the current stack contents. Given a config-
uration (p,Aβ) for some A ∈ Γ and β ∈ Γ ∗, the next configuration relation
→ on any c ∈ Σ ∪ {ε} gives (q, γβ) if ((p, c, A), (q, γ)) ∈−→. This is written

(p,Aβ)
c→ (q, γβ). We will write a configuration of the form (p, α) as simply pα

in the sequel.
The problem of model checking a bisimulation-based information flow prop-

erty θ for PDS’s is – given a PDS P , does MP satisfy θ? We show that this
problem is undecidable for each of the properties in Definition 2.

Srba in [15] shows that the problem of checking weak bisimilarity between two
pushdown systems is undecidable. The idea is to reduce the halting problem of
Minsky machines with two counters to the problem of checking weak bisimilarity
between two pushdown systems.

Definition 4. A Minsky machine R with two counters c1 and c2 is a finite se-
quence R = (L1 : I1, L2 : I2, . . . , Ln−1 : In−1, Ln : halt), where n ≥ 1, L1, . . . , Ln
are pairwise different labels, and I1, . . . , In−1 are instructions of the following
two types– increment: cr := cr + 1; goto Lj, test and decrement: if cr = 0
then goto Lj else cr := cr − 1; goto Lk, where 1 ≤ r ≤ 2 and 1 ≤ j, k ≤ n.
A configuration of a Minsky machine R is a triple (Li, v1, v2) where Li is the
instruction label (1 ≤ i ≤ n), and v1, v2 are nonnegative integers representing
the values of counters c1 and c2 respectively. The transition relation on configu-
rations is defined in a natural way.

The problem of deciding whether a Minsky machine R halts with an initial
counter values set ot zero is undecidable [12].

Given a Minsky machine R with two counters c1, c2, Srba constructs a push-
down system PR on a stack alphabet {C1, C2, S} and two configurations of PR:
p1S and p′1S such that R halts if and only if p1S ≈ p′1S. The proof idea is as
follows. A configuration of R, (Li, v1, v2), is represented by a pair of processes
piγS and p′iγ

′S where γ, γ′ ∈ {C1, C2}∗ such that the number of occurrences of
C1 and C2 in γ (and also in γ′) is equal to v1 and v2 respectively. The instruction
of the type Li : cr := cr + 1; goto Lj , where 1 ≤ j ≤ n and 1 ≤ r ≤ 2, is simu-

lated by piX
a→ pjCrX and p′iX

a→ p′jCrX. To simulate a test and decrement



instruction, say Li : if cr = 0 then goto Lj else cr := cr − 1; goto Lk, where
1 ≤ j, k ≤ n and 1 ≤ r ≤ 2, consider the bisimulation game at (piγS, p

′
iγ
′S).

The attacker forces the defender to rearrange the stack contents at γ and γ′ such
that Cr’s are brought on top. Then Cr is popped if there is one at both γ and

γ′. The crucial transition distinguishing pn and p′n is: pnX
halt→ pnX. When R

halts, the attacker’s aim is to reach pn by faithfully simulating R’s halting com-
putation. Then he chooses halt transition for which the defender cannot match.
Hence the attacker wins and p1S 6≈ p′1S. When R diverges, the defender forces
the attacker to correctly simulate the moves of R. The attacker never reaches
pn, hence inducing an infinite game. Thus the defender wins and p1S ≈ p′1S.
The reader is referred to [15] for the detailed proof.

Theorem 1 ([15]). R halts iff p1S 6≈ p′1S in MPR
. ut

From Srba’s construction, we observe that:

1. p1S has no ε-transitions
2. if there is a winning strategy for the attacker from (p1S, p′1S) then there is

one from (p1S, p′1S) beginning with a transition from p1S.

In general, let P be a PDS and p1α, p2β its configurations satisfying the
conditions:

1. p1α has no ε-transitions
2. if there is a winning strategy for the attacker from (p1α, p2β) then there is

one from (p1α, p1β) beginning with a transition from p1α.

Then we call the problem of checking whether p1α ≈ p2β the restricted PDS
bisimulation problem. It follows then from the construction in [15] that:

Theorem 2. The restricted PDS bisimulation problem is undecidable. ut

We now reduce the restricted PDS bisimulation problem to the problem of
checking each of the bisimulation-based information flow properties for PDS’s.
Let the PDS P = (Q,Σ, Γ,−→, s0, S) and its configurations p1α, p2β be an
instance of the restricted PDS bisimulation problem. We construct P ′ from P
such that P ′ = (Q∪{s}, Σ ∪{k, k̄}, Γ,−→′, s, S) such that s 6∈ Q and −→′=−→
∪ {((s, k, S), (p1, α)), ((s, ε, S), (p2, β))} where k, k̄ are the only high (and input)
events. That is H = I = {k, k̄}. Informally, the induced LTS MP ′ of P ′ has a new

start state sS with a high-event k edge – sS
k→ p1α and an ε-edge – sS

ε→ p2β.
The initial part of the induced LTS MP ′ is shown in Fig. 3. We fix the PDS
P , its configurations p1α, p2β and the PDS P ′ constructed from P as described
above for the rest of the section.

Lemma 2. The configurations p1α and p2β are weakly bisimilar i.e., p1α ≈ p2β
in MP iff MP ′ satisfies BSNNI.



sS

p1α p2β

k ε
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Proof. (⇐:) Suppose p1α 6≈ p2β in MP . Then we have a winning strategy π for
the attacker from p1α and p2β in MP beginning with a move from p1α. We claim
that the attacker has a winning strategy in the game starting at sS (of MP ′ \H)
and sS (of MP ′/H). We now describe that strategy. The attacker chooses sS of
MP ′/H and takes the edge ε to p1α (Fig. 4). The defender now has to make a
move from sS of MP ′ \ H (Fig. 5) and has many choices.

– Defender makes an ε-move to p2β. The attacker plays π and wins.
– Defender stays at sS. The attacker makes the first move according to
π. From the definition of the restricted PDS bisimulation problem, the first
move of π is a non-ε edge from p1α, say p1α

a→ r, for some state r in MP ′/H.
The defender is forced to respond with the same non-ε move from p2β, say
sS

ε→ p2β
a⇒ r′ for some state r′ in MP ′ \ H. Now the attacker can play

according to π and win, since π also serves as the winning strategy for the
attacker from (r, r′).

– Defender takes sS
ε→ p2β

ε⇒ q. Note that the non-ε responses enabled at
q are also enabled at p2β. Hence the attacker can play according to π and
win.

Thus the attacker has a winning strategy and hence sS (of MP ′ \H) and sS
(of MP ′/H) are not weakly bisimilar. Thus MP ′ does not satisfy BSNNI.

(⇒:) Suppose p1α ≈ p2β in MP . Then we have a winning strategy π for the
defender from p1α and p2β in MP . We now describe the winning strategy for
the defender from sS (of MP ′ \ H) and sS (of MP ′/H). There are three cases:

– Attacker chooses the transition sS
ε→ p1α in MP ′/H. The defender

chooses sS
ε→ p2β of MP ′ \ H and thereafter plays π to win.

– Attacker chooses the transition sS
ε→ p2β in MP ′/H. The defender

chooses sS
ε→ p2β of MP ′ \H and imitates the attacker from here on. Either

the attacker gets stuck or goes on to play the infinite bisimulation game. In
both cases, the defender wins.

– Attacker chooses sS
ε→ p2β in MP ′ \ H. The defender chooses sS

ε→ p2β
of MP ′/H and and imitates the attacker from here on. Either the attacker
gets stuck or goes on to play the infinite bisimulation game. In both cases,
the defender wins.

Thus the defender has a winning strategy and hence MP ′ \H ≈MP ′/H. Thus
MP ′ satisfies BSNNI. ut



Lemma 3. MP ′ satisfies BSNNI iff MP ′ satisfies BNNI.

Proof. As H = I = {k, k̄}, we have H ∩ I = H. Hence MP ′ \ (H ∩ I) = MP ′ \ H.
Hence MP ′ satisfies BNNI iff MP ′ satisfies BSNNI. ut

We now consider the problem of checking BNDC for pushdown systems. Let
M = (QM ,H,→M ,m0) be any LTS in EH. We define an equivalence relation ≡
on the states of (MP ′ |M) \H as (qγ,m) ≡ (q′γ′,m′) if and only if qγ = q′γ′. For
every state (qγ,m) of (MP ′ |M) \H, let [qγ] = {(q′γ′,m′) | (q′γ′,m′) ≡ (qγ,m)}
denote its equivalence class. Let N = (QN , Σ,→N , [sS]) denote the quotient LTS

((MP ′ |M) \ H)/ ≡, where QN = {[qγ] | qγ is a state in MP ′}, [qγ]
c→N [q′γ′],

c ∈ Σ ∪ {ε}, if and only if there exist states m,m′ in M such that (qγ,m)
c→

(q′γ′,m′) in (MP ′ |M)\H. Let N ′ be the LTS same as N with all the ε self loops

deleted. The Fig. 6 shows a part of the LTS N ′. The transition [sS]
ε→N [p1α]

is represented using dotted arrow indicating that the transition may or may not
be present. This transition is present if and only if there is a transition of the

form m0
k̄⇒M m for some state m. We note that M can have only transitions

with labels k, k̄ or ε. Thus the ε-transitions from M and the ε-transitions due to
synchronization between M and MP ′ on k, k̄, are the only possible contributions
from M to N .

[sS]

[p1α] [p2β]

ε ε

Fig. 6. N ′

Let R and S be two LTS’s. Let Rε be any LTS constructed from R by adding
ε self loops arbitrarily. Then it is easy to see that:

Lemma 4. R ≈ S iff Rε ≈ S.

Lemma 5. (MP ′ |M) \ H ≈ N ′.

Proof. We construct the winning strategy for the defender. The strategy is es-
sentially to mimic the moves of the attacker. The defender chooses to main-
tain the game at same positions (with respect to MP ′). That is, at any point
the attacker starts from ((qγ,m) and [qγ]) where qγ and m are states of MP ′

and M respectively. Consider the case when the attacker chooses the transition
[sS]

ε→N [p1α] in N ′. We observe that this happens only when M has a transition

of the form m0
k̄⇒M m for some state m. The defender chooses the transition

(sS,m0)
ε⇒ (p1α,m) in (MP ′ |M) \ H, leaving the attacker to play from [p1α] of



N ′ and (p1α,m) of (MP ′ |M) \H. All the other cases are easy to see. Eventually
either the attacker gets stuck or goes on to play the infinite bisimulation game.
In both cases, the defender wins. Hence (MP ′ |M) \ H ≈ N ′. for the attacker’s
initial choices. ut

Lemma 6. The configurations p1α and p2β are weakly bisimilar i.e., p1α ≈ p2β
in MP iff MP ′ satisfies BNDC.

Proof. (⇐:) Suppose p1α 6≈ p2β in MP . From Lemma 2, we know that MP ′ does
not satisfy BSNNI. That is, MP ′ \H 6≈MP ′/H. Consider the LTS M = ({m}, H,
∅, m). We note that M ∈ EH. It is easy to see that MP ′ |M is isomorphic to MP ′ .
This implies that (MP ′ |M) \ H 6≈MP ′/H. Hence MP ′ does not satisfy BNDC.

(⇒:) Suppose p1α ≈ p2β in MP . Then we have a winning strategy π for the
defender from p1α and p2β in MP . Let M = (QM ,H,→M ,m) be any LTS in
EH. From Lemma 5, we know that (MP ′ |M) \ H ≈ N ′. It is easy to see that the
subtrees of [p1α] and [p2β] in N ′ are isomorphic to the subtrees of p1α and p2β
in MP ′ respectively. We now show that N ′ ≈ MP ′/H. We construct a winning
strategy for the defender. Consider the different cases for the attacker’s choices.

– Attacker chooses the transition [sS]
ε→N [p2β] in N ′. The defender

chooses sS
ε→ p2β of MP ′/H. The defender imitates the attacker choices

(with respect to the states from MP ′) from here on. Either the attacker gets
stuck or goes on to play the infinite bisimulation game. In both cases, the
defender wins.

– Attacker chooses the transition [sS]
ε→N [p1α] in N ′. The defender

chooses sS
ε→ p1α from MP ′/H. The defender imitates the attacker choices

(with respect to the states of MP ′) from here on. Either the attacker gets
stuck or goes on to play the infinite bisimulation game. In both cases, the
defender wins.

– Attacker chooses the transition sS
ε→ p2β in MP ′/H. The defender

chooses [sS]
ε→ [p2β]. The defender imitates the attacker choices (with re-

spect to the states of MP ′) from here on. Either the attacker gets stuck or
goes on to play the infinite bisimulation game. In both cases, the defender
wins.

– Attacker chooses the transition sS
ε→ p1α in MP ′/H. Note that there

may not be a transition of the form [sS]
ε→N [p1α] as shown in Fig. 6. The

defender chooses [sS]
ε→ [p2β]. The defender plays π from here on and wins.

Hence the defender has a winning strategy and thus N ′ ≈ MP ′/H. From
Lemma 5 and the transitive property of ≈, we have (MP ′ |M) \ H ≈MP ′/H for
any M ∈ EH . Thus MP ′ satisfies BNDC. ut

It follows from Lemmas 2, 3 and 6 that the problem of checking BNNI,
BSNNI and BNDC for pushdown systems is undecidable. Now we consider the
properties SBNNI, SBSNNI and SBNDC.

Lemma 7. The configurations p1α and p2β are weakly bisimilar i.e., p1α ≈ p2β
in MP iff MP ′ satisfies SBSNNI.



Proof. (⇐:) Suppose p1α 6≈ p2β in MP . Then from Lemma 2, MP ′ does not
satisfy BSNNI. Hence MP ′ does not satisfy SBSNNI.

(⇒:) Suppose MP ′ does not satisfy SBSNNI. Then there exists some state m
in MP ′ such that m of MP ′ \H and m of MP ′/H are not weakly bisimilar. Then
there exists a winning strategy π for the attacker from m of MP ′/H and m of

MP ′ \H. Note that there are no H-edges in MP ′ except for sS
k→ p1α. Hence for

all states m other than sS, m of MP ′/H and m of MP ′ \H are weakly bisimilar.
This implies that sS of MP ′/H and sS of MP ′ \H are not weakly bisimilar. Then
MP ′ does not satisfy BSNNI. From Lemma 2, we have p1α 6≈ p2β in MP . ut

Lemma 8. MP ′ satisfies SBSNNI iff MP ′ satisfies SBNNI.

Proof. From Lemma 3, MP ′ satisfies BSNNI if and only if MP ′ satisfies BNNI.
Hence MP ′ satisfies SBSNNI if and only if MP ′ satisfies SBNNI. ut

Lemma 9. The configurations p1α and p2β are weakly bisimilar i.e., p1α ≈ p2β
in MP iff MP ′ satisfies SBNDC.

Proof. (⇐:) Suppose p1α 6≈ p2β in MP . Then there is a winning strategy π for
the attacker from p1α and p2β in MP begining with p1α. We show that the
strategy π serves as the winning strategy for the attacker from sS and p1α of
MP ′ \H as well. From the definition of the restricted PDS bisimulation problem,
the attacker chooses a non-ε transition from p1α in π as the first move, say
p1α

a→ q for some a ∈ Σ and q ∈ Q × Γ ∗. The defender is forced to choose
sS

ε→ p2β
a⇒ q′ for some q′ ∈ Q× Γ ∗. For any choice of q′ from the defender, π

serves as the winning strategy for the attacker from sS and p1α of MP ′ \ H as
well. Thus sS of MP ′ \ H and p1α of MP ′ \ H are not weakly bisimilar. Hence
MP ′ does not satisfy SBNDC.

(⇒:) Suppose p1α ≈ p2β. Then there is a winning strategy π for the defender
from p1α and p2β in MP . We now describe the winning strategy for the defender
from sS and p1α ofMP ′\H. Consider the different cases for the attacker’s choices.

– Attacker chooses sS
ε→ p2β. The defender stays at p1α itself. From the

next round, the defender plays according to π and wins.

– Atacker chooses some transition from p1α. The defender chooses the
transition from p2β according to π after sS

ε→ p2β.

Thus defender has a winning strategy and hence sS ≈ p1α in MP ′ \H. Hence
MP ′ satisfies SBNDC. ut

Finally from Lemmas 2, 3, 6, 7, 8 and 9 we have:

Theorem 3. The problem of model-checking pushdown systems for any of the
bisimulation-based properties - BNNI, BSNNI, BNDC, SBNNI, SBSNNI and
SBNDC is undecidable. ut



5 Model checking Petri nets

We study the problem of model checking each of the bisimulation-based infor-
mation flow properties in Definition 2 for Petri nets. We begin by defining a
Petri net. Let N denote the set of nonnegative integers.

Definition 5. A Petri net (PN) is a tuple N = (P, T,Σ, F, L,M0), where P
and T are finite disjoint sets of places and transitions respectively, Σ is a finite
set of actions, F : (P × T ) ∪ (T × P ) 7→ N is a flow function, L : T 7→ Σ ∪ {ε}
is a labelling and M0 is an initial marking (a marking is a function M : P 7→ N
that gives the number of tokens for each place).

A PN N = (P, T,Σ, F, L,M0) naturally induces an LTS MN = (Q,Σ,→
,M0) where Q is the set of markings and→ is the set of transitions. A transition

t is enabled at a marking M , denoted by M
t→, if M(p) ≥ F (p, t), for every

p ∈ P . A transition t enabled at a marking M may fire yiedling the marking M ′,

denoted by M
t→M ′, where M ′(p) = M(p)−F (p, t) +F (t, p), for all p ∈ P . For

any c ∈ Σ ∪ {ε}, by M
c→M ′ we mean that M

t→M ′ for some t with L(t) = c.

The problem of model checking a bisimulation-based information flow prop-
erty θ for PN’s is – given a PN N , does MN satisfy θ? We show that this problem
is undecidable for each of the properties in Definition 2.

Jancar [11] shows that the problem of checking strong bisimilarity for PN’s
is undecidable by a reduction from the halting problem of Minsky machines.
Given a Minsky machine R with two counters c1 and c2 (cf. Definition 4), he
constructs PN’s N1 = (P1, T1, F1, L1,M1) and N2 = (P2, T2, F2, L2,M2) such
that R halts if and only if M1 6≈ M2. For every instruction label Li, 1 ≤ i ≤ n,
of R, the places s1

i and s2
i are created in N1 and N2 respectively. The places

c11, c
1
2 and c21, c

2
2 are created corresponding to the counters c1 and c2 of R in N1

and N2 respectively. The PN’s N1 and N2 simulate the moves of R. At s1
n the

transition t1F is enabled only when s1
n has at least one token. The transition t2F is

not enabled even when s2
n has tokens. So, when R halts, the attacker simulates

R’s halting computation in N1 forcing the defender to simulate R’s moves in N2.
The attacker reaches the marking with s1

n having at least one token. He wins by
making a t1F move for which the defender does not have a matching response.
Hence the attacker wins and M1 6≈ M2. When R diverges, the defender forces
the attacker to simulate R moves either in N1 or N2. This induces an infinite
game and the defender wins. Thus M1 ≈M2.

As in the case of Srba’s pushdown system construction, here also we observe
that if there is a winning strategy for the attacker from (M1,M2), there is one
beginning with M1. There are no ε-transitions in N1 and N2. Hence in general,
let M1 and M2 be markings in N1 and N2 respectively such that M1 does not
have any ε-transitions and if there is a winning strategy for the attacker from
(M1,M2), then there is one beginning with M1. Then we call the problem of
checking whether M1 ≈ M2, the restricted PN bisimulation problem. It follows
then from Jancar’s construction that:

Theorem 4. The restricted PN bisimulation problem is undecidable. ut



We reduce the restricted PN bisimulation problem to the problem of checking
each of the bisimulation-based information flow properties for PN’s. Let the PN’s
N1 = (P1, T1, F1, L1,M1) and N2 = (P2, T2, F2, L2,M2) be an instance of the
restricted PN bisimulation problem. We assume that the sets P1, P2 and T1, T2

are disjoint. We construct a PN N from N1 and N2 such that N = (P1∪P2∪{s},
T1 ∪ T2 ∪ {tk, tε}, Σ ∪ {k, k̄}, F , L, M) where k, k̄ are the only high (and input)
events. That is H = I = {k, k̄}. The initial marking M has one token at s and no
tokens at all other places i.e., M(s) = 1 and M(p) = 0, p 6= s. The components
F and L are described in Fig. 7.

F (x, y) =



F1(x, y) if both x and y are in N1

F2(x, y) if both x and y are in N2

1 if (x, y) = (s, tk)
1 if (x, y) = (s, tε)
M1(y) if x = tk and y in N1

M2(y) if x = tε and y in N2

L(t) =


L1(t) if t ∈ T1

L2(t) if t ∈ T2

k if t = tk
ε if t = tε

Fig. 7. Description of PN N

1 s

ktk ε tε

0

p1

0

p2

0

q1

0

q2

N1 N2

· · · · · ·

· · · · · ·

1 1

M1(p1) M1(p2) M2(q1) M2(q2)

Fig. 8. Constructed Petri net N

The PN N is shown in Fig. 8. Informally, the induced LTS MN of N has

the initial marking M with a high-event k edge – M
k→ M ′ where M ′(s) = 0,

M ′(p) = M1(p) when p ∈ P1, M ′(p) = 0 when p ∈ P2, and an ε-edge – M
ε→M ′′

where M ′′(s) = 0, M ′′(p) = 0 when p ∈ P1, M ′′(p) = M2(p) when p ∈ P2. The
initial part of the induced LTS MN is shown in Fig. 9. We fix the PN’s N1, N2,
its markings M1,M2 respectively and the PN N constructed from N1, N2 as
described above for the rest of the section.



M

M ′ M ′′

k ε

Fig. 9. MN

M

M ′ M ′′

ε ε

Fig. 10. MN/H

M

M ′ M ′′

ε

Fig. 11. MN \ H

Lemma 10. The markings M1 and M2 are weakly bisimilar i.e., M1 ≈ M2 iff
MN satisfies BSNNI.

Proof. From Definition 2, we need to show that M1 ≈ M2 if and only if M of
MN/H (cf. Fig. 10) and M of MN \ H (cf. Fig. 11) are weakly bisimilar. It is
easy to prove this from the arguments similar to the arguments in the proof of
Lemma 2. ut

Likewise from the similar arguments as in Section 4, we have:

Theorem 5. The problem of model-checking Petri nets for any of the bisimulation-
based properties - BNNI, BSNNI, BNDC, SBNNI, SBSNNI and SBNDC is un-
decidable. ut

6 Model checking Process algebras

We now study the problem of model checking each of the bisimulation-based
information flow properties in Definition 2 for process algebras. We begin by
defining a process algebra.

Definition 6. Let Const be a set of process constants. The class of process
expressions over Const is given by E ::= ε | X | E.E | E‖E where ‘ε’ is the
empty process, X ranges over Const, ‘.’ is the operator of sequential composition,
and ‖ stands for parallel composition.

A process algebra (PA) N is a tuple (P,Σ,∆) where P is the initial process

expression, Σ is an alphabet and ∆ is a finite set of rules of the form X
c−→ E

where X ∈ Const, c ∈ Σ ∪ {ε} and E is a process expression.
A PA N = (P,Σ,∆) determines an LTS MN = (Q,Σ,→, P ) where the states

in Q are process expressions and the transition → is the least relation satisfying
the following rules. Let c ∈ Σ ∪ {ε}.

(X
c→ E) ∈ ∆
X

c→ E

E
c→ E′

E.F
c→ E′.F

E
c→ E′

E‖F c→ E′‖F
F

c→ F ′

E‖F c→ E‖F ′

The problem of model checking a bisimulation-based information flow prop-
erty θ for PA’s is – given a PA N , does MN satisfy θ? We show that this problem
is undecidable for each of the properties in Definition 2.



Srba [16] has shown that the problem of checking weak bisimilarity for process
algebras is undecidable by a reduction from Post’s correspondence problem. The
Post’s correspondence problem (PCP) is defined as – given a nonempty alphabet
Σ and two lists A = [u1, u2, . . . , un] and B = [v1, v2 . . . , vn] where n > 0 and
uk, vk ∈ Σ+ for all k, 1 ≤ k ≤ n, the question is to decide whether the (A,B)-
instance has a solution, i.e., whether there is an integer m ≥ 1 and a sequence
of indices i1, i2, . . . , im ∈ {1, 2, . . . , n} such that ui1ui2 · · ·uim = vi1vi2 · · · vim .
According to the classical result due to Post, this problem is undecidable [13].

Given a (A,B)-instance of PCP, Srba constructs a PA N and two process
expressions X‖C and X ′‖C such that (A,B)-instance has a solution if and only if
X‖C ≈ X ′‖C. As in the case of Srba’s pushdown system construction, here also
we observe that if there is a winning strategy for the attacker from (X‖C,X ′‖C),
there is one beginning with X‖C. There are no ε-transitions at X‖C. Hence in
general, let E and F be two process expressions of a PA N such that E does not
have any ε-transitions and if there is a winning strategy for the attacker from
(E,F ), then there is one beginning with E. Then we call the problem of checking
whether E ≈ F , the restricted PA bisimulation problem. It follows then from
Srba’s construction that:

Theorem 6. The restricted PA bisimulation problem is undecidable. ut

We reduce the restricted PA bisimulation problem to the problem of checking
each of the bisimulation-based information flow properties for PA’s. Let the PA
N = (P,Σ,∆) and its process expressions E,F be an instance of the restricted
PA bisimulation problem. Then we construct N ′ from N such that N ′ = (S,Σ∪
{k, k̄}, ∆ ∪ {S k→ E,S

ε→ F}) where S 6∈ Consts of N , k, k̄ are the only high
(and input) events. That is H = I = {k, k̄}.

From the similar arguments as in Section 4 and using the construction of N ′

as described above, we have:

Theorem 7. The problem of model-checking process algebras for any of the
bisimulation-based properties - BNNI, BSNNI, BNDC, SBNNI, SBSNNI and
SBNDC is undecidable. ut

7 Conclusions

We have shown that model-checking bisimulation-based information flow prop-
erties, proposed in the literature, for some well-known classes of infinite state
systems is undecidable.

The problem of checking when two deterministic pushdown systems are
weakly bisimilar has been shown to be decidable in [18]. This does not imply
directly the decidability of checking bisimulation-based properties for determin-
istic pushdown systems. This is because the hiding operation may make the
system non-deterministic.

Basic process algebras (BPAs) and Basic parallel processes (BPPs) are sub-
classes of pushdown systems. The decision problem of checking two BPAs or two



BPPs for weak bisimilarity is still open. However it is decidable to check whether
two totally normed BPAs or two totally normed BPPs are weakly bisimilar [10].
It will be interesting to explore the model-checking problem for these classes.
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