An Automata Based Approach for Verifying
Information Flow Properties*

Deepak D’Souza?, Raghavendra K. R.? and Barbara Sprick 2

8 Department of Computer Science and Automation
Indian Institute of Science, Bangalore, India.

Abstract

We present an automated verification technique to verify trace based information
flow properties for finite state systems. We show that the Basic Security Predi-
cates (BSP’s) defined and shown by Mantel [1] to be the building blocks of known
trace based information flow properties, can be characterised in terms of regular-
ity preserving language theoretic operations. This leads to a decision procedure for
checking whether a finite state system satisfies a given BSP. Verification techniques
in the literature (e.g. unwinding) are based on the structure of the transition sys-
tem and are incomplete in some cases. In contrast, our technique is language based
and complete for all information flow properties that can be expressed in terms of
BSP’s.

Key words: Verification, security, information flow

1 Introduction

Granting, restricting and controlling the flow of information is a core part of
computing system security. In particular, confidential data needs to be pro-
tected from undesired accesses. Access control policies are defined to serve this
task by specifying which accesses are allowed for which users. In general we
distinguish between two types of policies: discretionary and mandatory access
control policies. In discretionary access control — implemented for example in
the UNIX operating system — every user can define which access is allowed

* A preliminary version of this paper appeared as [2].

Email addresses: deepakd@csa.iisc.ernet.in (Deepak D’Souza),
raghavendrakr@csa.iisc.ernet.in (Raghavendra K. R.),
sprick@csa.iisc.ernet.in (Barbara Sprick).

Preprint submitted to Elsevier Science

for which users for his data. Mandatory access control models are rule based
and control the global flow of information. Objects as well as subjects are
hierarchically ordered and then access is granted in such a way that informa-
tion can flow only from higher level subjects to lower level subjects. However,
access control methods can only restrict direct information flow (over open
channels). Information leakage over covert channels (e.g. Trojan Horses, ob-
servable behaviour and time or space availability, etc) is not controllable by
access control methods.

In [3], Goguen and Meseguer first introduced the notion of Non-Interference
as a means to control both direct as well as indirect information flow. Infor-
mally, Goguen and Meseguer distinguish between high level and low level users
and describe non-interference as: What one group of users does using a certain
ability has no effect on what some other group of users does [3]. More generally
in this paradigm, a system is modelled in terms of high-level (or confidential)
events and low-level (or “visible”) events. A low-level user in the system has
a good idea of the way the system works (in other words, he knows the model
of the system). However, his view of events in the system is restricted to the
visible events only. The question of how “secure” the system is in terms of
information about confidential events being leaked, can be phrased as: given a
sequence of visible events representing the “visible” view of a trace of the sys-
tem, how much can a low-level user infer about the occurrence of confidential
events in that trace?

Since Goguen and Meseguer’s initial work, many such information flow prop-
erties have been proposed in the literature, which restrict in varying degrees
the kind of information a low-level user may infer about confidential events
in the system. These security properties include, among others, non-inference
[4-6] (which requires that each system trace projected to low-level events is
itself a possible trace of the system), separability [5] (which requires that every
possible low-level subtrace interleaved with every possible high-level subtrace
must be a possible behaviour of a system), generalized non-interference [7]
(which requires that for every possible trace and every possible “perturba-
tion” via deletion and insertions of confidential events, there is a “correction”
via deletion and insertion of non-confidential events to the perturbation such
that the resulting trace is again a possible trace of the system), and several
others including nondeducability [8], restrictiveness [7], the perfect security

property [6].

To give a simple example which illustrates the use of the non-inference prop-
erty as a security property, consider the e-banking example below which is
adapted from [9]. A bank user Alice is required to periodically change her
PIN and register it with the bank. Alice can either generate a new PIN and
send it to the bank, or simply send her old PIN to the bank. The bank replies
with an acknowledgment (“accept”) only in case she sends them a new PIN.

snd-enc-new rCcU-enc-acc e f
° ° .

o
snd-enc-old
B — e]

— @
Fig. 1. System model T, and its abstraction 7}

All communication is encrypted and sent over an open channel accessible to
an adversary. The system is modelled as the transition system 7j in Fig 1.

Both Alice and the bank are high-level users, while the adversary is a low-
level user. The event gen-new-pin is the only confidential event in the system.
However, though the events snd-enc-new (send encrypted PIN to the bank)
and rcv-enc-acc (receive encrypted acknowledgment “accept” from the bank)
are visible, the adversary can only make out the direction of the messages,
and not their contents.

To model this, we further abstract the system as the transition system 77 in
Fig 1 where the visible event e represents the encrypted PIN sent by Alice to
the bank, and the visible event f represents the acknowledgment sent by the
bank to Alice.

It is evident that the system T does not satisfy the non-inference property
since the projection of the trace gen-new-pin - e - f to visible events is e - f
which is not a trace of the system. Thus, the adversary who sees the sequence
of events e - f can infer that the event gen-new-pin must have occurred (and
hence that Alice has changed her pin).

However, if the bank also replies with an acknowledgment (“reject”) in the case
when Alice sends her old PIN, then we get the system model 7} which contains
the rcv-enc-rej (receive encrypted acknowledgment “reject” from the bank)
and its abstraction 77 of Fig 2 which does indeed satisfy the non-inference

property.

snd-enc-new rcU-enc-acc e f
° ° °

Fig. 2. System model T} and its abstraction 77

In [10,1] Mantel has presented an approach to uniformly formalize all known
trace based information flow properties. Based on sets of traces as the system
model, he defines a set of basic security predicates (BSP’s). Roughly, all BSP’s
require that for every trace and every “allowed” perturbation via deletion and

insertion of confidential events, there is an “allowed” correction via deletion
or insertion of non-confidential and non-visible events that results again in
a trace of the system. The exact definition of “allowed” is given by each
particular BSP. Mantel shows that all trace based security properties in the
literature can be represented as conjunctions of these BSP’s. For example
generalized noninterference can be defined as the conjunction of the two BSP’s
insertion (I) and deletion (D). A set of traces L satisfies the BSP I if for every
perturbation of a trace that is obtained by inserting a confidential event after
the last confidential event, there exists a correction of this perturbation such
that the resulting trace is also in the language L. A set of traces L satisfies
the BSP D if for every perturbation that is obtained by deleting the last
confidential event, there exists a correction of this perturbation such that the
resulting trace is also in the language L.

Our work is based on this modular framework of Mantel presented in [1]. We
present an automated verification technique to check whether a finite state
system satisfies a given basic security predicate. We define a set of language
theoretic operations that represent the allowed perturbations and corrections
for each BSP and show that the question of whether a set of traces L satisfies
a BSP P boils down to checking whether a language L; is contained in a
language Lo, where L, and L, are obtained from L by successive applications of
the language-theoretic operations. Finally we show that the language-theoretic
operations are regularity preserving. Thus if L is specified by a finite state
transition system (and is hence regular), then L; and L, are also regular, and
the question of whether L; C L, can be answered effectively.

As has been observed earlier in the literature, information flow properties
are properties of sets of traces rather than properties of a single trace and
hence cannot be handled by classical temporal logic based model checking
approaches. Nevertheless our work shows it is possible to “model check” these
properties by reducing them to the language inclusion problem for finite state
systems.

Previous work dealing with the verification of such information flow properties
(e.g. [11-14]) mainly employ “unwinding” theorems as the verification tech-
nique. These techniques are typically sufficient but not always necessary. We
feel that this may be due to the fact that unwinding relations are based on
the structure of the system rather than on the language of traces generated
by the system. The only other work we are aware of which gives a decision
procedure based on language inclusion is [15]. While they have addressed the
properties of non-deterministic noninterference and strong non-deterministic
noninterference (which is equivalent to the definition of noninference given in
[5] and [4]), our approach gives a decision procedure for the whole class of
information flow properties that can be expressed in terms of BSP’s.

In the next section we introduce the language-theoretic operations we need to
express the BSP’s. In Section 3 we give equivalent definitions for the BSP’s
using these language-theoretic operations. Finally in Section 4 we show that
the language-theoretic operations we have defined are regularity preserving.

2 Language-Theoretic Operations

By an alphabet we will mean a finite set of symbols representing events or
actions of a system. For an alphabet ¥ we use ¥* to denote the set of finite
strings over X. The null or empty string is represented by the symbol €. For
two strings a and 8 in X* we write af for the concatenation of o and 5. A
language L over X is just a subset of ¥*.

A marked language M over an alphabet X is a language over the alphabet
Y U {1}, where ‘f’ is a special “mark” symbol different from those in ¥, and
each string in M contains exactly one occurrence of f.

For the rest of the paper we fix an alphabet of events ¥. We assume a partition
of ¥ into V, C, N, which in the framework of [1] correspond to events that are
vistble, confidential, and neither visible nor confidential, from a particular
user’s point of view.

Let L be a language over X and let M be a marked language over . We define
the following language-theoretic operations on L:

(1) Let X C X. The projection of a string 7 € ¥* to X is written 7 [x and
is obtained from 7 by deleting all events that are not elements of X.
The projection of the language L to X, written L [x, is defined to be

{rlx | 7€ L}.

(2) l-del(L) = {apf | c€ C, Blc=¢€, and acf € L}. Thus the operation [-del
corresponds to the deletion of the last confidential event in a string. More
precisely, I-del(L) contains all strings than can be obtained from a string
in L by deleting the last C-event.

(3) l-ins(L) = {acB | c € C, Blc=¢€, and af € L}. Thus l-ins corresponds
to the insertion of a confidential event in strings of L, only at a position
after which no confidential events occur.

(4) Let X C . Then l-ins-adm™ (L) is defined to be the set
{acf | ce C, aB e L, flc=¢ and Iyc€ L: v[x=alx}.

Operation [-ins-adm (w.r.t. X') corresponds to insertion of “X-admissible”

(10)

(11)

confidential events in strings of L. The insertion of a C-event is X-
admissible after a prefix o in a string 7 iff there exists another string
vc € L with v projected to X being the same as a projected to X.

l-del-mark(L) = {af | ¢ € C, acB € L, and S [¢c= €}. The operation
I-del-mark corresponds to the “marked” deletion of the last confidential
event. More precisely, this operation replaces the last C-event in every
string of L by the special mark symbol 1.

l-ins-mark(L) = {actf | ¢ € C, af € L, B [c= €}. The operation
l-ins-mark corresponds to the “marked” insertion of a confidential event.
It is similar to the operation [-ins, but additionally introduces a mark f
after the newly inserted C-event.

Let X C X. Then we define l-ins-adm-mark™ (L) to be the set
{actB | ce C, af €L, Blc=¢€, and Iyc€ L: y[x=alx}.

Operation l-ins-adm-mark (w.r.t. X) corresponds to the marked insertion
of X-admissible events. This operation is similar to [-ins-adm, but a mark
7 is introduced after the newly inserted X-admissible event.

mark(L) = {afB | af € L}. Thus operation mark corresponds to the
insertion of a mark at an arbitrary position in strings of L.

Let X C X. Then the marked projection of the marked language M to
X, written M ¢, is defined as

M1g={af' | asB € M and p'= B[x}.

Thus marked projection operates on a marked language M and is similar
to projection, but leaves every string intact upto the mark and projects
to set X the suffix after the mark.

Let C' C C and V' C V. Then [l-del-con-marke: v+ (L) is defined to be the
set
{avyBlce C',v e V', acvf € L and Blc=c¢, }.

Thus the operation [-del-con-mark (w.r.t. C' and V') corresponds to
marked deletion in the “context” of an event in V. This operation deletes
the last confidential event ¢ in a string and inserts a mark, provided ¢
belongs to C' and and is immediately followed by a V’-event in the string.
For convenience we place the mark after the V'-event.

Let C' C C and V' C V. Then l-ins-con-marker v+ (L) is defined to be the
set
{acvtf | ceC', ve V' avf € L, and Blc= €}.

Operation [-ins-con-mark (w.r.t. C' and V') thus corresponds to marked
insertion of C’-events in the “context” of a V' event, in the sense above.

(12) Let X C ¥, C" C C and V' C V. Then l—ins—adm—con—markg,,v,(L) is
defined to be the set

{acvhB | ce C', ve V', avB €L, Blc=¢, and Iyc € L, v[x=alx}.

The operation l-ins-adm-con-mark (w.r.t. X, C' and V') corresponds to
the marked insertion of X-admissible C'-events in the context of a V'’
event. It is similar to l-ins-con-mark but allows only the insertion of X-
admissible C’-events.

(13) Let N' C N and V' C V. Then erase-con-marky: y+(L) is defined to be

the set
{avyB | v € V' and 36 € (N')* : advf € L}.

The operation erase-con-mark (w.r.t. N’ and V') corresponds to the
marked erasure of N'-events in the context of V'-events. More precisely,
erase-con-marky: (L) contains all strings obtained from a string in L
by the erasure of a consecutive sequence of N’ events which end before a
V' event v. The mark symbol is inserted after the event v in the string.

3 Expressing BSP’s Language-Theoretically

We now express the basic security predicates (BSP’s) of Mantel in terms of
the language-theoretic operations defined in the previous section. We recall
the definition of each predicate and show how it can be characterised using
our language-theoretic operations.

For convenience we make use of the notation o =y [where o, f € ¥X* and
Y C ¥, to mean « and [are the same “modulo a correction on Y-events”.
More precisely, a =y 3 iff a [y= 8 I3, where Y denotes ¥ — Y. By extension,
for languages L and M over X, we say L Cy M iff L [y+C M |y

In the definitions below, we assume L to be a language over X.

Definition 1 (R) L satisfies the BSP R (Removal of events) iff for allT € L
there exists 7' € L such that 7' [c=¢€ and 7' [yv=T|v.

Lemma 2 L satisfies R iff Ly Cx L.

PROOQOF. (=-:) Suppose L satisfies R. Let 7 € L [y. Then there exists some
7' in L such that 7' [yy= 7. Since L satisfies R and 7' € L, there exists 7" in L

such that 7" [¢c= € and 7 [y= 7' [yv= 7 [v. Since both 7" and 7 don’t contain
any C-events, they differ from each other only on N-events (i.e. 7 =5 7").
Thus 7 belongs to L modulo a correction on N-events. Hence L [y Cpx L.

(«<:) Suppose L[y Cy L. Let 7 € L. Since L [y Cy L, there exists a string
7' in L, such that 7/ =5 7 [y. Since 7 [y has no C-events, 7" [¢= € and
7' Tv=(7]v) [v=7[v. Hence R is satisfied. O

Definition 3 (D) L satisfies D (stepwise Deletion of events) iff for all acf €
L, such that ¢ € C and B [¢= €, we have /B’ € L with o/ =5 « and ' =x .

Lemma 4 L satisfies D iff I-del(L) Cy L.

PROOF. (=-:) Assume L satisfies D and consider a string 7 in [-del(L). Then
7 must be of the form «f and there must exist acf € L such that ¢ € C, and
B 1c= €. Since L satisfies D, we must have o/ € L such that o =y « and
B' =n B. But this just means that 7 = a8 =y o'f’. Hence I-del(L) Cy L.

(«=:) Suppose l-del(L) Cy L. Consider a string acf in L with ¢ € C and S [c=
e. By the definition of I-del(L), we have af8 € I-del(L). Since [-del(L) Cx L,
there exists 7 € L such that a8 =y 7. Thus 7’ can be expressed as o' with
a =y o and 8 =5 B'. Hence D is satisfied. O

Definition 5 (I) L satisfies I (Insertion of events) iff for all aff € L such
that B [c= €, and for every ¢ € C, we have /¢’ € L, with ' =5 B and
o =y a.

Lemma 6 L satisfies I iff l-ins(L) Cy L.

PROOF. (=:) Assume L satisfies I and consider a string 7 in l-ins(L). Then
7 will be of the form acf for some ¢ € C' and there must exist af € L such
that 8 [c= €. Since L satisfies I, there exists o/c’ € L such that o =5 a and
B' =n B. But this just means that 7 = acf =y o'cf’. Hence [-ins(L) Cy L.

(«=:) Suppose l-ins(L) Cxn L. Consider a string a8 € L with 3 [¢= €. By the
definition of l-ins(L), for any ¢ € C, we have acf € l-ins(L). Since l-ins(L) Cn
L, there exists 7 € L such that ac8 =y 7. Thus 7 can be expressed as o/cf’
where o/ =5 a and 8 =y 3. Hence I is satisfied. O

Definition 7 (IA) Let X C X. Then L satisfies IA (Insertion of Admissible
events) w.r.t X iff for all a8 € L such that B [c= € and for some c € C, there
exists yc € L with v [x= a[x, we have o/cf' € L with B’ = 5 and o/ =y «.

Lemma 8 L satisfies IA iff l-ins-adm™ (L) Cy L.

PROOF. (=) Assume L satisfies IA and consider a string 7 in l-ins-adm™ (L).
Then 7 will be of the form acf for some ¢ € C' and there must exist a8 € L
such that 8 [¢= € and also y¢ € L with v [x= « [x. Since L satisfies IA,
there exists o/c¢f' € L with o =5 « and ' =x . But this just means that
T = acf =§ o'cf'. Hence l—ins—ade(L) Cy L.

(<=:) Suppose < l-ins-adm™ (L) Cn L. Consider a string a8 € L with 3 [c= €
and there exists yc € L for some ¢ € C with 7 [x= «a [x. By the definition
of l-ins-adm™ (L), we have acB € l-ins-adm™ (L). Since Il-ins-adm™ (L) Cy L,
there exists 7 € L such that ac8 =y 7. Thus 7 can be expressed as o’c’ such
that o/ =y « and B’ =5 5. Hence IA is satisfied. |

Definition 9 (BSD) L satisfies BSD (Backwards Strict Deletion) iff for all
acf € L such that c € C and B [c= €, we have a8’ € L with ' =y B.

Lemma 10 L satisfies BSD iff I-del-mark(L) ['2C mark(L) [%.

PROOF. (=:) Assume L satisfies BSD and consider a string 7 belonging
to I-del-mark(L) |%. Then 7 must be of the form af’, which comes from a
string of the form ayf in I-del-mark(L) with § [%= £, which in turn must
be such that acf € L for some ¢ € C with S [¢= €. Since L satisfies BSD,
we have af" € L such that 5 =y §”. By the definition of mark(L), we have
ahB" € mark(L). Deleting N-events from 3" results in §'. Thus aff’ = 7

must be in mark(L) [Hence I-del-mark(L) [is a subset of mark(L) %

(«:) Suppose I-del-mark(L) [C mark(L) [%. Consider a string acB € L,
with ¢ € C and (3 [¢= €. By the definition of [-del-mark(L), we have aff €
l-del-mark(L) and hence a3’ € I-del-mark(L) | where §' is obtained from j
by deleting N-events. Since I-del-mark(L) ['%- C mark(L) [T, we have aff’ €
mark(L) ['2. Then there must exist aj3” € mark(L) where 3" [g= §'. Thus
B" =n B. By the definition of mark(L), we have a8 € L. Hence BSD is
satisfied. O

Definition 11 (BSI) L satisfies BSI (Backwards Strict Insertion) iff for all
aff € L such that B [¢c= €, and for every ¢ € C, we have acf € L, with
B =nB.

Lemma 12 L satisfies BSI iff l-ins-mark(L) [%C mark(L) [

PROOF. (=:) Assume L satisfies BSI and consider a string 7 belonging to
l-ins-mark(L) [%. Then 7 will be of the form ac8’ which comes from a string
of the form acyf in [-ins-mark(L) which in turn must be such that g [z= §',
c€e C,af € Land B[c= e. Since L satisfies BSI, we have acf"” € L such that
B =n B". By the definition of mark(L), we have acif” € mark(L). Deleting

N-events from 5" results in #'. Thus acf8’ = 7 must be in mark(L) [%5. Hence
l-ins-mark(L) [z is a subset of mark(L) %

(«=:) Suppose l-ins-mark(L) [2C mark(L) [. Consider a string a8 € L such
that 3 [c= €. By the definition of l-ins-mark(L), we have acif € l-ins-mark(L)
for any ¢ € C and hence acyf’ € l-ins-mark(L) [T where ' is obtained from j3
by deleting N-events. Since l-ins-mark(L) |5 C mark(L) |, we have acyf’ €
mark(L) [%. Then there must exist act8” € mark(L) where 3" [z= ('. Thus
B" =n . By the definition of mark(L), we have acf” € L. Hence BSI is
satisfied. O

Definition 13 (BSIA) Let X C X. Then L satisfies BSIA (Backwards Strict
Insertion of Admissible events) w.r.t X iff for all o € L such that B [¢= €
and there exists yc € L with ¢ € C and v [x= «a [x, we have acB' € L with

B'=n B

Lemma 14 [satisfies BSIA iff l-ins-adm-mark™ (L) [%C mark(L) [

PROOF. (=:) Assume L satisfies BSIA and consider a string 7 belonging
to l-ins-adm-mark™ (L) [%. Then 7 will be of the form acjf, which comes
from a string of the form act in l-ins-adm-mark™ (L) with 3 [z= /', which
in turn must be such that 8 [c=¢,¢c € C, aff € L, f|c= € and there exists
ve € L with v [x= « [x. Since L satisfies BSIA, we have acB” € L where
B =n B". By the definition of mark(L), we have acif” € mark(L). Deleting
N-events from 5" results in #'. Thus acf8’ = 7 must be in mark(L) [%. Hence
l-ins-adm-mark™ (L) [is a subset of mark(L) 2.
(«<=:) Suppose Il-ins-adm-mark™ (L) % is a subset of mark(L) . Consider
a string a8 € L such that 8 [¢c= € and there exists y¢ € L with ¢ € C
and v [x= a [x. By the definition of l-ins-adm-mark™ (L), we have acyff €
l-ins-adm-mark™ (L) and hence actB’ € Il-ins-adm-mark™ (L) % where (' is
obtained from 3 by deleting N-events. Since I-ins-adm-mark™ (L) 7L is a subset
of mark(L) I, we have acyf8’ € mark(L) ['Z. Then there must exist ach” €
mark(L) where 8" |7= £'. Thus " =y 5. By the definition of mark(L), there
exists acB” € L. Hence BSIA is satisfied. O

Definition 15 (FCD) Let X C X, V' CV,C'" CC, and N' C N. Then L
satisfies FCD (Forward Correctable Deletion) w.r.t V', C', N' iff for all acvf €
L such that c € C', v € V' and B [c= €, we have advp' € L where 6 € (N')*

and ' =n B.
Lemma 16 L satisfies FCD iff

I-del-con-marke v (L) 1% C erase-con-marky: v (L) 1%

10

PROOF. (=:) Assume L satisfies FCD and consider a string 7 belonging
to l-del-con-markcr y+(L) I Then 7 will be of the form av;" which comes
from a string of the form awvyf in I-del-con-marke: v (L) with 8 [= §', which
in turn must be such that 8 [¢c=¢, ¢ € C', v € V', and acvf € L. Since
L satisfies FCD, we have advpB” € L where 5" =y (3. By the definition of
erase-con-marky: v (L), we have avy"” € erase-con-marky: y+(L). Deleting N-
symbols from 3" results in #'. Thus avf3’ must be in erase-con-marky: v+ (L) 2.
Hence [-del-con-markc v+ (L) % is a subset of erase-con-markn: v (L) [%-

(«:) Suppose [-del-con-markcry(L) % C erase-con-marky: v (L) [%. Con-
sider a string acvf € L, with ¢ € C', v € V' and § [¢c= €. By the defi-
nition of [-del-con-marke: n(L), we have avhf € I-del-con-marke: (L) and
hence awyf’ € I-del-con-marke: /(L) % where ' is obtained from 3 by delet-
ing N-events. Since [-del-con-markc: v (L) IRC erase-con-marky: v+ (L) [T, we
have avif' € erase-con-marky: (L) |3 Then there must exist avjs” €
erase-con-marky: v (L) where " [w= ['. Thus " =5 (. By the definition
of erase-con-marky: (L), we have advf" € L for some ¢ such that § € (N')*.
Hence FCD is satisfied. a

Definition 17 (FCI) Let X C X, V! CV,C' CC, and N' C N. Then L
satisfies FCI (Forward Correctable Insertion) w.r.t C', V', N iff for all avp €
L such that v € V', Bc= €, and for every ¢ € C'" we have acévf' € L, with
d € (N)* and B' =n B.

Lemma 18 L satisfies FCI iff

l-ins-con-markc: v (L) [% C erase-con-marky: v+ (L) %

PROOF. (=:) Assume L satisfies FCI and consider a string 7 belonging
to l-ins-con-markcr y: (L) [%. Then 7 will be of the form acvff’ which comes
from some string of the form acvif in l-ins-con-markes (L) which in turn
must be such that ¢ € C', v € V', ' = B |y, avB € L and B [¢= e
Since L satisfies FCI, we have acdvf” € L for some ¢ such that 6 € (N')*
and " =y B. By the definition of erase-con-marky:v+(L), we have acvyp” €
erase-con-marky: v+ (L). Deleting N-symbols from " results in 5. Thus acvyf’
= 7 must be in erase-con-marky y+(L) . Hence [-ins-con-markes yi(L) [is

N N
a subset of erase-con-marky: y/(L) [T

(«=:) Suppose I-ins-con-marke v (L) % C erase-con-marky: (L) 2. Con-
sider a string avfS € L with v € V' and B [¢= €. By the definition of
l-ins-con-marker v (L), we have acvl € l-ins-con-marke v+ (L) for any c € C'
and hence acvi’ € l-ins-con-marke: v+(L) |5 where 8’ is obtained from 3 by
deleting N-events. Since l-ins-con-marke: v+ (L) 1% C erase-con-marky: v (L) 1%
we have acvif’ € erase-con-marky: v+ (L) I't. Then there must exist acvif” €

11

erase-con-marky: v (L) where " [= . Thus " =x (. By the definition of
erase-con-marky: v (L), we have acdvf” € L. Hence FCI is satisfied. O

Definition 19 (FCIA) Let X C X, V' CV,C"' C C, and N' C N. Then
L satisfies FCIA (Forward Correctable Insertion of admissible events) w.r.t.
X, V'.C'",N" iff for all avB € L such that: v € V', 3 [c= €, and there exists
ve € L, with ¢ € C' and v [x= a|x; we have acovf' € L with 6 € (N')* and

B =nB.
Lemma 20 L satisfies FCIA (w.r.t. X, V', C', N') iff

l—ins—adm—con—markg,y,(L) 1% C erase-con-marky: v+ (L) |5 .

PROOF. (=:) Suppose L satisfies FCIA w.r.t. X,V',C', N'. Consider a

string 7 € l—ins—adm—con—markg,,v,(L) [% 7 must be of the form acvif,

which comes from some string of the form accvli3 in l-ins-adm-con-markg, (L)
which in turn must be such that 8/ = 8 [, c € C', v € V', avf € L,
B lc= €, and there exists y¢ € L with v [x= « [x. Now since avf € L
and L satisfies FCIA, there must exist acdvf” € L with § € (N')* and
B" =n B. By the definition of erase-con-marky: y/(L), we have acvh” €
erase-con-marky: v+ (L). Deleting N-events from " results in 3. Thus acvf’ =
7 must be in erase-con-marky: v+ (L) ™. Hence l-ins-adm-con-markgy, (L) ™

N N

is a subset of erase-con-marky: y: (L) [

(«<:) Suppose l—ins—adm—con—markg,,v,(L) I C erase-con-marky: y:(L) 5.

Consider a string of the form avf € L, such that v € V', 5 [¢= ¢, and
there exists yc € L with ¢ € C' and v [x= « [x. By the definition of
l-ins-adm-con-mark, (L), acvyf € l-ins-adm-con-marky, (L) and hence
acvyf € l—z'ns—adm—con—markg,’v, (L) I% where (' is obtained from 8 by delet-
ing N-events. Since l—ins—adm—con—markg,,v, (L) % C erase-con-marky: v+ (L) I,
we have acvif’ € erase-con-marky:y/(L) [%. Hence acvj” must belong to
erase-con-marky: v (L) for some " such that §” [= f'. Thus " =5 B.
By the definition of erase-con-marky:y+(L), there exists § € (N')* such that
acévB" € L. Hence L satisfies FCIA. O

Definition 21 (SR) L satisfies SR (Strict Removal) iff for all T € L we have
T rae L.

Lemma 22 L satisfies SR iff L [¢C L.

PROOF. (=:) Assume L satisfies SR and consider any string 7 in L [&.
There must exist some 7' € L such that 7' [g= 7. Since L satisfies SR, we
have 7 = 7' [z € L. Hence L [C L.

12

(«<:) Suppose L [gC L. Consider any string 7 in L. Then 7 [g € L [&. Since
L5C L, we have 7 [g€ L. Hence SR is satisfied. O

Definition 23 (SD) L satisfies SD (Strict Deletion) iff for all acf € L such
that ¢ € C and B c= €, we have aff € L.

Lemma 24 L satisfies SD iff l-del(L) C L.

PROOF. (=:) Assume L satisfies SD and consider a string 7 in [-del(L).
Then 7 will be of the form a8 which comes from a string of the form acf € L
such that ¢ € C' and 8 [¢= €. Since L satisfies SD, we have a8 € L. Hence
l-del(L) C L.

(«=:) Suppose I-del(L) C L. Consider a string acff € L withc € C and B [c= €.
By the definition of [-del(L), we have af € [-del(L). Since [-del(L) C L, we
have a3 € L. Hence SD is satisfied. O

Definition 25 (SI) L satisfies SI (Strict Insertion) iff for all o € L such
that B [c= €, and for every c € C, we have acf € L.

Lemma 26 L satisfies SI iff l-ins(L) C L.

PROOF. (=:) Assume L satisfies SI and consider a string 7 € I-ins(L).
Then 7 will be of the form acf which comes from a string of the form a5 € L
such that ¢ € C' and § [¢= €. Since L satisfies ST, we have acfS € L. Hence
l-ins(L) C L.

(«=:) Suppose l-ins(L) C L. Consider a string aff € L such that S [¢= e.
By the definition of [-ins(L), we have acf € [l-ins(L) for any ¢ € C. Since
l-ins(L) C L, we have acf € L. Hence SI is satisfied. O

Definition 27 (SIA) Let X C X. L satisfies SIA (Strict Insertion of Ad-
missible events) w.r.t X iff for all af € L such that 5 [c= € and there exists
ve € L with c € C and v [x= a[x, we have acf € L.

Lemma 28 L satisfies SIA iff l-ins-adm™ (L) C L.

PROOF. (=:) Assume L satisfies SIA and consider a string 7 € l-ins-adm™ (L).
Then 7 will be of the form a.cf which comes from the string of the form a5 € L
such that ¢ € C, B[c= € and there exists yc € L with ¢ € C and 7 [x= «a[x.
Since L satisfies SIA, we have 7 = acf € L. Hence l-ins-adm™ (L) C L.

13

(<=:) Suppose l-ins-adm™ (L) C L. Consider a string o3 € L such that 3 [c= €
and there exists y¢ € L with ¢ € C and v [x= « [x. By the definition of
l-ins-adm™ (L), acB € l-ins-adm™ (L). Since l-ins-adm™ (L) C L, acB € L.
Hence SIA is satisfied. a

4 Operations are Regularity Preserving

We now show how the language-theoretic characterisations of BSP’s lead to a
decision procedure for checking whether a finite-state system satisfies a given
BSP. We first introduce the necessary terminology, beginning with the required
notions in finite state automata.

A (finite-state) transition system over an alphabet A is a structure of the
form T = (Q, s, —), where @ is a finite set of states, s € @ is the start state,
and —C @ x A x @ is the transition relation. We write p — ¢ to stand
for (p,a,q) €—, and use p —*q to denote the fact that we have a path
labelled o from p to ¢ in the underlying graph of the transition system 7. The
language accepted (or generated) by the transition system 7T is defined to be
L(T) = {a € A* | s —=*q for some q € Q}.

A (finite state) automaton (FSA) over an alphabet A is of the form A =
(Q, s,—, F) where (Q, s,—) forms a transition system and F' C @ is a set
of final states. The language accepted by A is defined to be L(A) = {a €
A* | s —%5*q for some ¢ € F'}. A transition system can thus be thought of as
an automaton in which all states are final.

It will be convenient to make use of automata with e-transitions. Thus the
automaton is also allowed transitions of the form p — ¢. The language
accepted by automata with e-transitions is defined similarly, except that the
€ labels don’t contribute to the label of a path. As is well-known e-transitions
don’t add to the expressive power of automata.

The class of languages accepted by FSA’s is termed the class of regular lan-
guages. Regular languages are effectively closed under intersection and com-
plementation. Moreover their language emptiness problem — i.e. given an FSA
A, is L(A) = (07 — is efficiently decidable (by simply checking if there is a final
state reachable from the initial state). It follows that the language inclusion
problem (whether L(.A) C L(B)?) is also decidable for automata, since we can
check equivalently that L(A) N (A* — L(B)) = 0.

Returning now to our problem of verifying BSP’s, we say that a system mod-

elled as a finite-state transition system 7T satisfies a given BSP P iff L(T)
satisfies P. In the previous section we showed that the question of whether a

14

language L satisfies P boils down to checking whether L; C Ly, where L; and
L, are obtained from L by successive applications of some language-theoretic
operations. If L is a regular language to begin with, and if each language-
theoretic operation op of section 2 is reqularity preserving (in the sense that
if M is a regular language, then so is op(M)), then L; and L, are also regular
languages and the question L; C Ly can be effectively answered. To obtain
a decision procedure for our BSP verification problem, it is thus sufficient to
show that the language-theoretic operations are regularity preserving. In the
rest of this section we concentrate on showing this.

The language operations of Section 2 are of the following kinds: they either
take a language over 2 and return a language over X, or they take a language
over X and return a marked language over X, or they take a marked language
over Y and return a marked language over .. In all cases we show that if they
take a regular language, they return a regular language.

(1) Projection: Let L be a language over 3 accepted by an FSA A, and let
X C X. Then we can construct A" accepting L [x by simply replacing
transitions in A of the form p — ¢, with a € X, by e-transitions p — g¢.

(2) [-del: Let L be a language over ¥, with L = L(A). We construct A’ for
l-del(L) as follows. We create two copies of A. The initial state of A’ is
the initial state of the first copy. In the second copy all transitions of
the form p — ¢ with ¢ € C are deleted. In the first copy we add an
e-transition from a state p in the first copy to state ¢ in the second copy
if p — ¢ in A, with ¢ € C. The final states in the first copy are marked
non-final and the final states in the second copy are retained as final.

This construction can be described formally as follows. Let A = (Q, s, —
,F). Define A' = (Q',s',—', F') where Q' = @ x{1,2}, s' = (s,1), —'

is given by
(p,1) —' (¢,1) if p——¢in A
(p, 1) —6*' (¢,2) if p— qin AwithceC
(p,2) —' (¢,2) if p—ganda¢gC,

and F' = F x {2}.

The construction is depicted in Fig. 3.

€

Fig. 3. l-del(L)

15

(3)

l-ins: Let L be a language over X with L = L(.A). We construct A’ for
l-ins(L) as follows. We make two copies of A. The start state of A’ is
the start state of the first copy, and the final states are the final states of
the second copy. In the first copy for every transition p —— ¢ we add a
¢ transition (for every ¢ € C) from p in the first copy to p in the second
copy. The c-transitions for ¢ € C' are deleted from the second copy. The
construction is depicted in Fig 4.

c

a \ a
.%. .x.
=0 °
C
./. ® L4

Fig. 4. l-ins(L)

l-ins-adm: Let L be a language over X with L = L(A), and let X C 3. We
construct A’ for l-ins-adm™ (L) as follows. We have two “copies” of A. In
the first copy, the states have two components: the first component keeps
track of a state from A, while the second keeps track of a set of states of
A that are reachable by words that are X-equivalent to the current word
being read. We have a transition labelled ¢, with ¢ € C, from a state
(p,T) in the first copy to p in the second copy, provided T contains a
state ¢ from which it is possible to do a ¢ and reach a final state. Once in
the second copy, we allow only non-C' transitions and retain the original
final states.

More formally, we can define A’ as follows. Let A = (@, s,—, F') and
let B be the automaton obtained from A by replacing transitions of the
form p — ¢ by p — ¢q whenever ¢ ¢ X. Then A' = (Q', s, —', F")
where Q' = (Q x 29) U Q; s' = (5,5) where S = {qg € Q | s —*q in B};
—' is given below:

(p,T) —' (¢, T) if p—">ganda¢ X

a

(p,T) —' (¢,U) if p - g,a € X, and
U={r|3teT,t"*rin B}

(p, T) —'p if 3teT,geF:t—=sqgandcé€C;
p—'q if p—“sqganda¢C.
and F' = F.

(5) l-del-mark: This construction is similar to [-del except that the label of

the e-transitions we add from the first copy to the second, is now §.

(6) l-ins-mark: The construction is similar to l-ins. Here instead of inserting

a transition labelled ¢ from the first copy to the second, we need to insert
a transition labelled cfj from the first copy to the second. This can be

16

(10)

W

CoN

Fig. 5. l-ins-adm™ (L)

carried out by having a third copy of A placed between the first and
second. The third copy has all its transitions deleted, and all its states
are non-initial and non-final. A ¢ transition from p in the first copy now
goes to p in the third copy, and from p in the third copy we add a f
transition to p in the second copy.

l-ins-adm-mark: The construction is similar to l-ins-adm. Instead of adding
a ¢ transition from the first copy to the second, we add one labelled cf
(once again this can be achieved using a third copy of A).

mark: Given A for L C ¥*, we construct A" which accepts the marked
language mark(L). A is obtained from A as follows. We again use two
copies of A. The initial state of A’ is the initial state of the first copy,
and the final states are only those of the second copy. From every state
in the first copy we add a transition labelled g to its copy in the second.
Marked projection: Given a marked language M, an FSA A accepting M,
and X C ¥, we construct A’ which accepts the marked language M [%.
Once again we use two copies of A. The initial state of the first copy is

the initial state of A’ and the final states of the second copy are the final

states of A’. From the first copy we delete transitions of the form p LN q

and add a transition labelled § from p in the first copy to ¢ in the second
copy. In the second copy, we replace transition labels which are not in X
by e.

Fig. 6. L |

I-del-con-mark: Let L be a language over X and A be an FSA accepting L.
Let C' C C and V' C V. We construct A’ accepting the marked language
I-del-con-marker (L) as follows. We have four copies of A. The second
and third copies have all transitions deleted from them, and the fourth
copy has all C' transitions deleted from it. The initial state of the first
copy is the initial state of A’ and the final states of the fourth copy are

the final states of A’. For every transition p AN g with ¢ € C', we add
an e-transition from p in the first copy to ¢ in the second copy. We add
a v'-transition from a state r in the second copy to a state ¢ in the third

17

(11)

(12)

copy iff r LN t, with v' € V', is a transition in A. Finally, we add a
1-transition from each state u in the third copy to u in the fourth copy.

€

W
A
[]

Fig. 7. l-del-con-markcr v+ (L)

l-ins-con-mark: Let L be a language over Y and A be an FSA accepting L.
Let C' C C and V' C V. We construct A’ accepting the marked language
l-ins-con-marker v (L) as follows. We have four copies of A. The second
and third copies have all transitions deleted from them, and the fourth
copy has all C transitions deleted from it. The initial state of the first
copy is the initial state of A’ and the final states of the fourth copy are
the final states of A’. For every transition p LN g with o' € V', we add a
’-transition (for every ¢’ € C") from p in the first copy to ¢ in the second
copy. We add a v'-transition from a state r in the second copy to a state t
in the third copy iff r N t, with v' € V', is a transition in A. Finally, we
add a p-transition from each state u in the third copy to u in the fourth
copy.

AL
v
[

Fig. 8. l-ins-con-markc v (L)

l-ins-adm-con-mark: Let L be a language over ¥ with L = L(A), and
let X C¥. Let C" C C and V' C V. We construct A’ for the language
l-ins-adm-con-markg, (L) as follows. We use four copies of A. The first
copy is exactly the same as in l-ins-adm™ (L), where the states have two
components, the first component keeping track of a state from A, while
the second keeps track of a set of states of A that are reachable by words
that are X-equivalent to the current word being read. The second and
third copies of A have all transitions deleted from them, and the fourth
copy has all C' transitions deleted from it. The initial state of the first
copy is the initial state of A’ and the final states of the fourth copy are
the final states of A’. We have a transition labelled ¢/, with ¢ € C’, from a
state (p,T) in the first copy to p in the second copy, provided T contains
a state ¢ from which it is possible to do a ¢’ and go to a final state. We

18

add a v'-transition from a state r in the second copy to a state u in the

third copy iff r -2+ u, with o' € V", is a transition in A. Finally, we add a
g-transition from each state w in the third copy to w in the fourth copy.

/

N v’
QD e« — | 7 ° °
5’@1}’ a’) o x.\ ° v’\.
. . \h‘/(@

Fig. 9. l-ins-adm- con—marké(,,vl (L)

(13) erase-con-mark: Let L C X* and let A be an FSA with L = L(A). Let
N'"C N and V' C V. We construct A" accepting erase-con-marky: v+(L)
as follows. We have four copies of A. The first and fourth copy have
all their original transitions intact, the second has all transitions labeled
with a ¢ N’ deleted and transitions labelled n', with n' € N’, replaced
by e-transitions; and the third has all its transitions deleted. We add an
e-transition from every state p in the first copy to p in the second copy;

For every state p in the second copy such that p N g in A, we add a
v'-transition from p in the second copy to ¢ in the third copy. From every
state r in the third copy we add a transition labelled f to 7 in the fourth
copy. The initial states of A’ are the initial states of the first copy and
the final states those of the fourth copy.

€

a a
.%. ° ° ° ° .x.
=e ’ o [o /
n € n
° o' ./. . ./. . ° b ° v ./©
\. o / N |7 \.

v’ i

Fig. 10. erase-con-marky: v+ (L)

5 Conclusion

We have demonstrated in this paper a way to automatically verify trace based
information flow properties of finite state systems. We give characterisations
of the properties in terms of language-theoretic operations on the set of traces
of a system, rather than in terms of the structure of the system which is a
stronger notion. This perhaps explains why we are able to obtain complete
characterisations unlike the previous techniques in the literature.

19

The running time of our procedure can be seen to be exponential in the number
of states of the given finite state transition system, in the worst case. This
is because the automata constructions for the language-theoretic operations
involve a blow-up in states of O(n) in most cases, and 2°(™ in the case of the
BSP’s based on the admissibility clause (here n is the number of states in the
given transition system). Furthermore, no operation used on the right hand
side of the containment (recall that our characterisations are typically of the
form op,(L) C op,(L)) introduces an exponential blow-up. Thus in checking
containment, we have to complement an automaton of size at most O(n), and
thus we have a bound of 2°(in the worst case.

An interesting future direction to pursue is to see whether the technique of this
paper can be extended to a more general logical language. The BSP’s are all
of the form “for every string in the language satisfying some conditions, there
exists a string satisfying some other conditions” which are special cases of a
first order logic interpreted over languages of strings. It would be interesting
to investigate the decidability of such a logic when interpreted over regular
languages, and to identify a natural decidable subclass of it which properly
contains the BSP’s of Mantel.

References

[1] H. Mantel, Possibilistic Definitions of Security — An Assembly Kit, in:
Proceedings of the 13th IEEE Computer Security Foundations Workshop, IEEE
Computer Society, Cambridge, UK, 2000, pp. 185-199.

[2] D. D’Souza, K. R. Raghavendra, B. Sprick, An automata based approach for
verifying information flow properties, ENTCS 135 (1) (2005) 39-58.
URL http://www.sciencedirect.com/science/journal/15710661

[3] J. A. Goguen, J. Meseguer, Security policies and security models, in: Proc.
IEEE Symp. on Security and Privacy, 1982, pp. 11-20.

[4] C. O’Halloran, A calculus of information flow, in: Proceedings of the European
Symposium on Research in Computer Security, ESORICS 90, 1990.

[6] J. McLean, A general theory of composition for trace sets closed under selective
interleaving functions, in: Proc. IEEE Symposium on Research in Security and
Privacy, IEEE Computer Society Press, 1994, pp. 79 — 93.

URL http://citeseer.nj.nec.com/mclean94general.html

[6] A. Zakinthinos, E. S. Lee, A general theory of security properties, in: SP "97:
Proceedings of the 1997 IEEE Symposium on Security and Privacy, IEEE
Computer Society, Washington, DC, USA, 1997, p. 94.

[7] D. McCullough, Specifications for multilevel security and a hookup property,
in: Proc. 1987 IEEE Symp. Security and Privacy, 1987.

20

[8] D. Sutherland, A model of information, in: Proceedings of the 9th National
Computer Security Conference, 1986.

[9] D. Hutter, A. Schairer, Possibilistic information flow control in the presence
of encrypted communication, in: 9th European Symposium on Research in
Computer Security, LNCS, 2004.

[10] H. Mantel, A uniform framework for the formal specification and verification of
information flow security, Ph.D. thesis, Universitat des Saarlandes (2003).

[11] J. A. Goguen, J. Meseguer, Unwinding and inference control, in: Proc. IEEE
Symp. on Security and Privacy, 1984, pp. 75-86.

[12] H. Mantel, Unwinding Possibilistic Security Properties, in: F. Cuppens,
Y. Deswarte, D. Gollmann, M. Waidner (Eds.), European Symposium on
Research in Computer Security (ESORICS), LNCS 1895, Springer, Toulouse,
France, 2000, pp. 238-254.

[13] A. Bossi, R. Focardi, C. Piazza, S. Rossi, Bisimulation and unwinding for
verifying possibilistic security properties, in: VMCAI 2003: Proceedings of the
4th International Conference on Verification, Model Checking, and Abstract
Interpretation, Springer-Verlag, London, UK, 2003, pp. 223-237.

[14] R. Focardi, R. Gorrieri, The compositional security checker: A tool for the
verification of information flow security properties, Software Engineering 23 (9)
(1997) 550-571.

URL citeseer.ist.psu.edu/article/focardi97compositional.htmjl

[15] R. Focardi, R. Gorrieri, Automatic compositional verification of some security
properties, in: Tools and Algorithms for Construction and Analysis of Systems,
1996, pp. 167-186.

URL citeseer.ist.psu.edu/article/focardi96automatic.html

21

