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Abstract. Event-driven multi-threaded programming is fast becoming a preferred
style of developing efficient and responsive applications. In this concurrency
model, multiple threads execute concurrently, communicating through shared ob-
jects as well as by posting asynchronous events. In this work, we consider partial
order reduction (POR) for this concurrency model. Existing POR techniques treat
event queues associated with threads as shared objects and reorder every pair of
events handled on the same thread even if reordering them does not lead to dif-
ferent states. We do not treat event queues as shared objects and propose a new
POR technique based on a backtracking set called the dependence-covering set.
Our POR technique reorders events handled by the same thread only if necessary.
We prove that exploring dependence-covering sets suffices to detect all deadlock
cycles and assertion violations defined over local variables. To evaluate effective-
ness of our POR scheme, we have implemented a dynamic algorithm to compute
dependence-covering sets. On execution traces of some Android applications, we
demonstrate that our technique explores many fewer transitions —often orders
of magnitude fewer— compared to exploration based on persistent sets, in which
event queues are considered as shared objects.

1 Introduction

Event-driven multi-threaded programming is fast becoming a preferred style of con-
current programming in many domains. In this model, multiple threads execute concur-
rently, and each thread may be associated with an event queue. A thread may post events
to the event queue of a target thread. For each thread with an event queue, an event-loop
processes the events from its event queue in the order of their arrival. The event-loop
runs the handler of an event only after the previous handler finishes execution but in-
terleaved with the execution of all the other threads. Further, threads can communicate
through shared objects; even event handlers executing on the same thread may share
objects. This style of programming is a staple of developing efficient and responsive
smartphone applications [22]. A similar programming model is also used in distributed
message-passing applications, high-performance servers, and many other settings.

Stateless model checking [12] is an approach to explore the reachable state space
of concurrent programs by exploring different interleavings systematically but with-
out storing visited states. The scalability of stateless model checking depends crucially
on partial order reduction (POR) techniques [32,27,11,8]. Stateless search with POR
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Fig. 1: A partial trace of an event-
driven multi-threaded program

Fig. 2: The state space reachable through all valid permuta-
tions of operations in the trace in Figure 1

defines an equivalence class on interleavings, and explores only a representative in-
terleaving from each equivalence class (called a Mazurkiewicz trace [21]), while still
providing certain formal guarantees w.r.t. exploration of the complete but possibly much
larger state space. Motivated by the success of model checkers based on various POR
strategies [14,13,29,26,5,6,33,28], in this work, we propose an effective POR strategy
for event-driven multi-threaded programs.

1.1 Motivation

We first show why existing POR techniques may not be very effective in the combined
model of threads and events. Consider a partial execution trace of an event-driven multi-
threaded program in Figure 1. The operations are labeled r1 to r5 and execute from top
to bottom. Those belonging to the same event handler are enclosed within a box labeled
with the corresponding event ID. An operation post(t,e,t′) executed by a thread t

enqueues an event e to the event queue of a thread t′. In our trace, threads t2 and t3

respectively post events e1 and e2 to thread t1. The handler of e1 posts an event e3 to
t1, whereas, those of e2 and e3 respectively write to shared variables y and x.

Figure 2 shows the state space reachable through all valid permutations of opera-
tions in the trace in Figure 1. Each node indicates a state of the program. An edge is
labeled with an operation and indicates the state transition due to that operation. The
interleaving corresponding to the trace in Figure 1 is highlighted with bold lines and
shaded states. For illustration purposes, we explicitly show the contents of the event
queue of thread t1 at some states. Events in a queue are ordered from left to right and
a box containing ⊥ indicates the rear end of the queue.

Existing POR techniques (e.g., [11,10,29,31,5]) recognize that r2 and r5 (also r1
and r4) are independent (or non-interfering) and that it is sufficient to explore any one
of them at state s6 (respectively, s10). The dashed edges indicate the unexplored tran-
sitions. However, existing POR-based model checkers will explore all other states and
transitions. Since no two handlers executed on t1 modify a common object, all the in-
terleavings reach the same state s5. Thus, existing techniques explore two redundant
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Fig. 3: A partial trace w of a program involv-
ing a multi-threaded dependence

Fig. 4: A transition system for some valid permu-
tations of operations in the trace in Figure 3

interleavings because they treat event queues as shared objects and so, mark any two
post operations that enqueue events to the event queue of the same thread as dependent.
Consequently, they explore both r1 and r2 at state s0, and r2 and r3 at state s1. These
result in unnecessary reorderings of events. More generally, if there are n events posted
to an event queue, these techniques may exploreO(n!) permutations among them, even
if exploring only one of them may be sufficient.

1.2 Contributions of This Paper

Based on the observation above, we do not consider event queues as shared objects.
Equivalently, we treat a pair of posts even to the same thread as independent. This
enables more reductions. For example, for the state space in Figure 2, our approach
explores only the initial trace (the leftmost interleaving).

Since we shall not reorder every pair of events posted to the same thread by default,
the main question is “How to determine which events to reorder and how to reorder them
selectively?”. Surely, if two handlers executing on the same thread contain dependent
transitions then we must reorder their post operations, but this is not enough. To see
this, consider a partial trace w in Figure 3. The transitions r3 and r6 are dependent and
belong to different threads. Figure 4 shows a transition system depicting a partial state
space explored by different orderings of r3 and r6. The contents of thread t1’s queue
are shown next to each state. As can be seen in the rightmost interleaving, executing
r6 before r3 requires posting e2 before e1 even though their handlers do not have
dependent transitions. Thus, operations posting events to the same thread may have to
be reordered even to reorder some multi-threaded dependences! Our first contribution is
to define a relation that captures both single-threaded and multi-threaded dependences.

We now discuss what the implications of (1) treating posts as independent and
(2) only selectively reordering them are. For multi-threaded programs, or when posts
are considered dependent, reordering a pair of adjacent independent transitions in a



transition sequence does not affect the reachable state. Hence, the existing dependence
relation [11] induces equivalence classes where transition sequences differing only in
the order of executing independent transitions are in the same Mazurkiewicz trace [21].
However, our new dependence relation (where posts are considered independent) may
not induce Mazurkiewicz traces on an event-driven multi-threaded program. First, re-
ordering posts to the same thread affects the order of execution of the corresponding
handlers. If the handlers contain dependent transitions, it affects the reachable state.
Second, one cannot rule out the possibility of new transitions (not present in the given
transition sequence) being pulled in when independent posts are reordered, which is
not admissible in a Mazurkiewicz trace. We elaborate on this in Section 2.3.

Our second contribution is to define a notion of dependence-covering sequence to
provide the necessary theoretical foundation to reason about reordering posts selec-
tively. Intuitively, a transition sequence u is a dependence-covering sequence of a tran-
sition sequence u′ if the relative ordering of all the pairs of dependent transitions in
u′ is preserved in u. While this sounds similar to the property of any pair of transition
sequences in the same Mazurkiewicz trace, the constraints imposed on a dependence-
covering sequence are more relaxed (as will be formalized in Definition 4), making it
suitable to achieve better reductions. For instance, u is permitted to have new transi-
tions, that is, transitions that are not in u′, under certain conditions.

Given a notion of POR, a model checking algorithm such as DPOR [10] uses per-
sistent sets [11] to explore representative transition sequences from each Mazurkiewicz
trace. As we show now, DPOR based on persistent sets is unsound when used with the
dependence relation in which posts are independent. Let us revisit Figure 4. The set
{r1} is persistent at state s0 because exploring any other transition from s0 does not
reach a transition dependent with r1. This set is tagged as PS in the figure. A selective
exploration using this set explores only one ordering between r3 and r6.

Our final contribution is the notion of dependence-covering sets as an alternative to
persistent sets. A set of transitions L at a state s is said to be dependence-covering if for
any sequence u′ executed from s, a dependence-covering sequence u starting with some
transition in L can be explored. We prove that selective state-space exploration based
on dependence-covering sets is sufficient to detect all deadlock cycles and violations
of assertions over local variables. The dependence-covering sets at certain states are
marked in Figure 4 as DCS. In contrast to PS, DCS at state s0 contains both r1 and r2. Let
u′ be the transition sequence along the rightmost interleaving in Figure 4. The sequence
w (the leftmost interleaving) is not a dependence-covering sequence of u′ since the
dependent transitions r3 and r6 appear in a different order. We therefore require r2 to
be explored at s0. Note that, {r2} is another dependence-covering set at s0 as both the
orderings of r3 and r6 can be explored from a state s10 reached on exploring r2.

We have implemented a proof-of-concept model checking framework called EM-
Explorer which simulates the non-deterministic behaviour exhibited by Android ap-
plications given individual execution traces. We implemented a dynamic algorithm to
compute dependence-covering sets and a selective state-space exploration based on
these sets in EM-Explorer. For comparison, we also implemented an exploration based
on DPOR, where posts to the same thread are considered dependent. We performed
experiments on traces obtained from 5 Android applications. Our results demonstrate



that our POR explores many fewer transitions —often orders of magnitude fewer—
compared to DPOR using persistent sets.

1.3 Related Work

Mazurkiewicz traces induced by an independence relation form the foundation for most
existing work on POR, and most prior work in the event-driven setting consider opera-
tions on event queues to be dependent. For example, Sen and Agha [29] and Tasharofi
et al. [31] describe dynamic POR techniques for distributed programs with actor se-
mantics where processes (actors) communicate only by asynchronous message passing
(and do not have shared variables). Both techniques explore all possible interleavings of
messages sent to the same process. Basset [17], a framework for state space exploration
of actor systems, uses the DPOR algorithm described in [29], resulting in exploration
of all valid configurations of messages sent to the same actor. In comparison, we ex-
plore only a subset of event orderings at each thread, and doing so requires relaxing
Mazurkiewicz traces to dependence-covering sequences.

Recent algorithms guarantee optimality in POR [5,28], i.e., they explore at most one
transition sequence per Mazurkiewicz trace. For example, POR using source sets and
wakeup trees [5] enables optimal exploration. However, the notion of source sets and
the corresponding algorithm assume total ordering between transitions executed on the
same thread. Hence, integrating our new dependence relation with source sets will in-
volve significant changes to the definitions and algorithms presented in [5]. Rodrı́guez
et al. [28] describe unfolding semantics parametrized on the commutativity based classi-
cal independence relation [11], and present an unfolding based optimal POR algorithm.
The unfolding semantics identifies dependent transitions with no ordering relation be-
tween them to be in conflict. Their POR algorithm backtracks and explores a new tran-
sition sequence w from a state s only if every prior transition explored from s is in
conflict with some transition in w. This is problematic in our setting where posts are
considered independent and hence trivially non-conflicting, causing unfolding based
POR to miss reordering posts when required. Establishing optimality in our setting is
an interesting but non-trivial future direction.

R4 [16] is a stateless model checker for event-driven programs like client-side web
applications. R4 adapts persistent sets and DPOR algorithm to the domain of single-
threaded, event-driven programs with multiset semantics. Each event handler is atom-
ically executed to completion without interference from other handlers, and thus an
entire event handler is considered a single transition. In contrast, our work focuses on
POR techniques for multi-threaded programs with event queues, and thus needs to be
sensitive to interference from other threads while reordering dependent transitions.

In many domains, the event-loop works in FIFO order, as is also considered in this
work. For example, Android [15,19], TinyOS [4], Java AWT [3], and Apple’s Grand
Central Dispatch [2], provide a default FIFO semantics. Abstracting FIFO order by the
multiset semantics, as in [30,9], can lead to false positives. There is a lot of recent work
on concurrency analysis for smartphone environments. For example, [15,19,7] provide
algorithms for race detection for Android applications. Our work continues this line
by describing a general POR technique. We note that the event dispatch semantics can
be diverse in general. For example, Android applications permit posting an event with



a timeout or posting a specific event to the front of the queue. We over-approximate
the effect of posting with timeout by forking a new thread which does the post non-
deterministically but do not address other variants in this work. We leave a more general
POR approach that allows such variants to event dispatch to future work.

2 Formalization

We consider event-driven multi-threaded programs comprising the usual sequential and
multi-threaded operations such as assignments, conditionals, synchronization through
locks, and thread creation. In addition, the operation post(t1, e, t2) posts an asyn-
chronous event e from the source thread t1 to (the event queue of) a destination thread
t2. Each event has a handler, which runs to completion on its thread but may inter-
leave with operations from other threads. An operation is visible if it accesses an object
shared between at least two threads or two event handlers (possibly running on the same
thread). All other operations are invisible. We omit the formal syntax and semantics of
these operations; they can be found in [19].

The local state of an event handler is a valuation of the stack and the variables or
heap objects that are modified only within the handler. The local state of a thread is
the local state of the currently executing handler. A global state of the program A is a
valuation to the variables and heap objects that are accessed by multiple threads or mul-
tiple handlers. Even though event queues are shared objects, we do not consider them
in the global state (as defined above). Instead, we define a queue state of a thread as an
ordered sequence of events that have been posted to its event queue but are yet to be
handled. This separation allows us to analyze dependence more precisely. Event queues
are FIFO queues with unbounded capacity, that is, a post operation never blocks. For
simplicity, we assume that each thread is associated with an event queue.

2.1 Transition System

Consider an event-driven multi-threaded program A. Let L, G, and Q be the sets of
local, global and queue states respectively. Let T be the set of all threads in A. A state
s of A is a triple (l, g, q) where (1) l is a partial map from T to L, (2) g is a global state
and (3) q is a total map from T toQ. A transition by a thread t updates the state ofA by
performing one visible operation followed by a finite sequence of invisible operations
ending just before the next visible operation; all of which are executed on t. Let R be
the set of all transitions in A. A transition rt,` of a thread t at its local state ` is a partial
function, rt,` : G × Q 7→ L × G × Q. A transition rt,` ∈ R is enabled at a state
s = (l, g, q) if ` = l(t) and rt,`(g, q) is defined. Note that the first transition of the
handler of an event e enqueued to a thread t is enabled at a state s, if e is at the front of
t’s queue at s and t is not executing any other handlers. We may use rt,`(s) to denote
application of a transition rt,`, instead of the more precise use rt,`(g, q).

We formalize the state space of A as a transition system SG = (S, sinit , ∆), where
S is the set of all states, sinit ∈ S is the initial state, and ∆ ⊆ S × S is the transition
relation such that (s, s′) ∈ ∆ iff ∃r ∈ R and s′ = r(s). We also use s ∈ SG instead of
s ∈ S. Two transitions r and r′ may be co-enabled if there may exist some state s ∈ S



where they both are enabled. Two events e and e′ handled on the same thread t may be
reordered if ∃s, s′ ∈ S reachable from sinit such that s = (l, g, q), s′ = (l′, g′, q′),
q(t) = e ·w · e′ ·w′ and q′(t) = e′ · v · e · v′. In Figure 2, events e1 and e2 may be
reordered but not e1 and e3.

In our setting, if a transition is defined for a state then it maps the state to a successor
state deterministically. For simplicity, we assume that all threads and events in A have
unique IDs. We also assume that the transition system is finite and acyclic. This is a stan-
dard assumption for stateless model checking [10]. The transition system SG collapses
invisible operations and is thus already reduced when compared to the transition system
in which even invisible operations are considered as separate transitions. A transition
system of this form is sufficient for detecting deadlocks and assertion violations [12].

Notation. Let next(s, t) give the next transition of a thread t in a state s. Let thread(r)
return the thread executing a transition r. If r executes in the handler of an event e on
thread t then the task of r is task(r) = (t, e). A transition r on a thread t is blocked at a
state s if r = next(s, t) and r is not enabled in s. We assume that only visible operations
may block. Function nextTrans(s) gives the set of next transitions of all threads at
state s. For a transition sequence w : r1.r2 . . . rn in SG, let dom(w) = {1, . . . , n}.
Functions getBegin(w, e) and getEnd(w, e) respectively return the indices of the first
and the last transitions of an event e’s handler in w, provided they belong to w.

Deadlock cycles and assertion violations. A pair 〈DC, ρ〉 in a state s ∈ S is said to
form a deadlock cycle if DC ⊆ nextTrans(s) is a set of n transitions blocked in s,
and ρ is a one-to-one map from [1, n] to DC such that each ρ(i) ∈ DC, i ∈ [1, n], is
blocked by some transition on a thread ti+1 = thread(ρ(i + 1)) and may be enabled
only by a transition on ti+1, and the transition ρ(n) ∈ DC is blocked and may be
enabled by two different transitions of thread t1 = thread(ρ(1)). A state s in SG is a
deadlock state if all threads are blocked in s due to a deadlock cycle.

An assertion α is a predicate over local variables of a handler and is considered
visible. A state s violates an assertion α if α is enabled at s and evaluates to false.

2.2 Dependence and Happens-before Relations

The notion of dependence between transitions is well-understood for multi-threaded
programs. It extends naturally to event-driven programs if event queues are considered
as shared objects, thereby, marking two posts to the same thread as dependent. To
enable more reductions, we define an alternative notion in which two post operations
to the same thread are not considered dependent. One reason to selectively reorder
events posted to a thread is if their handlers contain dependent transitions. This requires
a new notion of dependence between transitions of event handlers executing on the
same thread, which we refer to as single-threaded dependence.

In order to explicate single-threaded dependences, we first define an event-parallel
transition system which over-approximates the transition system SG. The event-parallel
transition system PG of a program A is a triple (SP , sinit, ∆P ). In contrast to the
transition system SG = (S, sinit, ∆) of Section 2.1 where events are dispatched in
their order of arrival and execute till completion, a thread with an event queue in PG

removes any event in its queue and spawns a fresh thread to execute its handler. This
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Fig. 5: Pseudo code of an event-driven program.
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enables concurrent execution of events posted to the same thread. Rest of the semantics
remains the same. Let T and TP be the sets of all threads in SG and PG respectively.
For each state (l, g, q) ∈ S, there exists a state (l′, g′, q′) ∈ SP such that (1) for each
thread t ∈ T , if l(t) is defined then there exists a thread t′ ∈ TP where l′(t′) = l(t),
(2) g = g′, and (3) for each thread t ∈ T , q(t) = q′(t). Let RP be the set of transitions
in PG and ep : R → RP be a total function which maps a transition rt,` ∈ R to an
equivalent transition r′t′,`′ ∈ RP such that ` = `′ and either t′ = t or t′ is a fresh thread
spawned by t in PG to handle the event to whose handler rt,` belongs in SG.

We illustrate the event-parallel transition system for the example program in Fig-
ure 5. Here, x and y are shared variables. The transitions r1 and r2 respectively run on
threads t1 and t2. The last three lines in Figure 5 give definitions of handlers of the
events e1, e2 and e3 respectively. Figure 6 shows a partial state space of the program
in Figure 5 according to the event-parallel transition system semantics. The edges are
labeled with the respective transitions. The shaded states and thick edges indicate part
of the state space that is reachable in the transition system semantics of Section 2.1 as
well, under the mapping between states and transitions described above.

Definition 1. LetRP be the set of transitions in the event-parallel transition system PG

of a programA. LetDP ⊆ RP ×RP be a binary, reflexive and symmetric relation. The
relationDP is a valid event-parallel dependence relation iff for all (r1, r2) ∈ RP×RP ,
(r1, r2) /∈ DP implies that the following conditions hold for all states s ∈ SP :

1. If r1 is enabled in s and s′ = r1(s) then r2 is enabled in s iff it is enabled in s′.
2. If r1 and r2 are both enabled in s then there exists s′ = (l′, g′, q′) = r1(r2(s)) and
s′′ = (l′′, g′′, q′′) = r2(r1(s)) such that l′ = l′′ and g′ = g′′.

This definition is similar to the definition of dependence relation in [12] except that
we do not require equality of the event states q′ and q′′ in the second condition above.



Clearly, any pair of post transitions, even if posting to the same event queue, are inde-
pendent according to the event-parallel dependence relation.

Definition 2. Let R be the set of transitions in the transition system SG of a program
A. Let DP be a valid event-parallel dependence relation for A and D ⊆ R × R be a
binary, reflexive and symmetric relation. The relation D is a valid dependence relation
iff for all (r1, r2) ∈ R×R, (r1, r2) /∈ D implies that the following conditions hold:

1. If r1 and r2 are transitions of handlers of two different events e1 and e2 executing
on the same thread then the following conditions hold:
(A) Events e1 and e2 may be reordered in SG.
(B) ep(r1) and ep(r2) are independent in DP , i.e., (ep(r1), ep(r2)) 6∈ DP .

2. Otherwise, conditions 1 and 2 in Definition 1 hold for all states s ∈ S.

Condition 1 above uses DP to define single-threaded dependence between transitions
of two handlers in SG. Condition 2 applies the constraints in Definition 1 to states in SG
to define (1) dependence among transitions of the same handler and (2) multi-threaded
dependence. Hence, all posts are considered independent of each other in SG.

Example 1. The transitions r5 and r6 in Figure 5 run in two different event handlers
but on the same thread t. Since the handlers execute concurrently in the event-parallel
transition system, we can inspect the effect of reordering r5 and r6 on a state where
they are co-enabled. In particular, at state s3 in Figure 6, the sequence r6.r5 reaches
state s14, whereas, r5.r6 reaches s12 which differs from s14 in the value of x. Therefore,
(r5, r6) ∈ DP and by condition 1.B of Definition 2, (r5, r6) ∈ D.

The condition 1.A of Definition 2 requires that the ordering between e1 and e2
should not be fixed. Suppose the handler of e1 posts e2 but the two handlers do not
have any pair of transitions that are in DP . Nevertheless, since a post transition in e1’s
handler enables e2, the transitions in the two handlers should be marked as dependent.
This requirement is met through condition 1.A.

If (ri, rj) ∈ D, we simply say that ri and rj are dependent. In practice, we over-
approximate the dependence relation, for example, by considering all conflicting ac-
cesses to shared objects as dependent. We now extend the happens-before relation de-
fined in [10] with the FIFO rule in [15,19].

Definition 3. The happens-before relation→w for a transition sequencew : r1.r2 . . . rn
in SG is the smallest relation on dom(w) such that the following conditions hold:

1. If i < j and ri is dependent with rj then i→w j.
2. If ri and rj are transitions posting events e and e′ respectively to the same thread,

such that i →w j and the handler of e has finished and that of e′ has started in w,
then getEnd(w, e)→w getBegin(w, e′). This is the FIFO rule.

3. →w is transitively closed.

The relation →w is defined over transitions in w. We overload →w to also relate
transitions in w with those in the nextTrans set in the last state, say s, reached by w.
For a task (t, e) having a transition in nextTrans(s), i→w (t, e) if either (a) task(ri)
= (t, e) or (b) ∃k ∈ dom(w) such that i→w k and task(rk) = (t, e).



2.3 Dependence-covering Sets

Mazurkiewicz trace [21] forms the basis of POR for multi-threaded programs and event-
driven programs where posts are considered dependent. Two transition sequences be-
long to the same Mazurkiewicz trace if they can be obtained from each other by reorder-
ing adjacent independent transitions. The objective of POR is to explore a representa-
tive sequence from each Mazurkiewicz trace. As pointed out in the Introduction, the
reordering of posts (independent as per Definition 2) in a transition sequence w may
not yield another sequence belonging to the same Mazurkiewicz trace (denoted [w]) for
two reasons: (1) it may reorder dependent transitions from the corresponding handlers
and (2) some new transitions, not in w, may be pulled in.

We elaborate on the second point. Suppose in w, a handler h1 executes before an-
other handler h2, both on the same thread, such that h2 is executed only partially in w.
Let us reorder the post operations for these two and obtain a transition sequence w′.
Since the handlers run to completion, in order to include all the transitions of h1 (exe-
cuted in w) in w′, we must complete execution of h2. However, as h2 is only partially
executed inw, this results in including new —previously unexplored— transitions of h2
in w′. This renders w and w′ inequivalent by the notion of Mazurkiewicz equivalence.

We therefore propose an alternative notion, suitable to correlate two transition se-
quences in event-driven multi-threaded programs, called the dependence-covering se-
quence. The objective of our reduction is to explore a dependence-covering sequence u
at a state s for any transition sequence w starting at s.

Let w : r1.r2 . . . rn and u : r′1.r
′
2 . . . r

′
m be two transition sequences from the

same state s in SG reaching states sn and s′m respectively. Let Rw = {r1, . . . , rn} and
Ru = {r′1, . . . , r′m}.

Definition 4. The transition sequence u is called a dependence-covering sequence of
w if (i) Rw ⊆ Ru and (ii) for each pair of dependent transitions r′i, r

′
j ∈ Ru such that

i < j, any one among the following conditions holds:

1. r′i and r′j are executed in w and their relative order in u is consistent with that in w.
2. r′i is executed in w and r′j ∈ nextTrans(sn).
3. r′i is not executed in w, r′j ∈ nextTrans(sn) and w can be extended in SG such

that r′i executes before r′j .
4. Irrespective of whether r′i is executed inw or not, r′j is not inRw∪nextTrans(sn).

The condition (i) above allows new transitions, that are not in w, to be part of u. The
condition (ii) restricts how the new transitions may interfere with the dependences ex-
hibited inw and also requires all the dependences inw to be maintained in u. These con-
ditions permit a dependence-covering sequence ofw to be a relaxation of Mazurkiewicz
trace [w], making it more suitable for stateless model checking of event-driven multi-
threaded programs where posts may be reordered selectively.

As an example, let w1, w2 and w3 (listed in Figure 7) be the three transition se-
quences in Figure 6 which correspond to valid sequences in the transition system SG of
the program in Figure 5. To illustrate dependence-covering sequences, we visualize the
dependences in these sequences as dependence graphs. The nodes in the dependence
graph of a sequence w represent transitions in w. If a transition ri executes before an-
other transition rj in w such that ri and rj are dependent then a directed edge is drawn



from ri to rj . Figure 7 depicts the dependence graphs of w1, w2 and w3. Sequences w1

and w2 are dependence-covering sequences of each other, as their dependence graphs
are identical (Figure 7(a)). Consider a sequence w4 = r2.r5 whose dependence graph
is the subgraph G in Figure 7. A dependence graph G′ of any dependence-covering se-
quence u of w4 contains G as a subgraph, with no incoming edge into G from any node
in G′ which is not in G. However, there are no restrictions on dependences between
nodes in G′ which are not in G. Hence, w1 and w2 (see Figure 7(a)) are dependence-
covering sequences of w4 even though w4 and w1 (or w2) do not belong to the same
Mazurkiewicz trace, whereas w3 is not a dependence-covering sequence of w4 due to
the edge r6 to r5 (see Figure 7(b)).

Definition 5. A non-empty subset L of transitions enabled at a state s in SG is a
dependence-covering set in s iff, for all non-empty sequences of transitionsw : r1 . . . rn
starting at s, there exists a dependence-covering sequence u : r′1 . . . r

′
m of w starting at

s such that r′1 ∈ L.

Example 2. All the transition sequences connecting state s0 to state s5 in Figure 2 are
dependence-covering sequences of each other. Thus, the dependence-covering set in s0
can be {r1}, {r2} or {r1, r2}. Even if we take a prefix σ of any of these sequences, the
shaded sequence in Figure 2 is a dependence-covering sequence of σ.

In Figure 4, {r2} and {r1, r2} are individually dependence-covering sets in state s0,
whereas, {r1} is not a dependence-covering set at s0.

For efficient stateless model checking of event-driven multi-threaded programs, we
can explore a reduced state space using dependence-covering sets.

Definition 6. A dependence-covering state space of an event-driven multi-threaded
program A is a reduced state space SR ⊆ SG obtained by exploring only the transitions
in a dependence-covering set at each state in SG reached from sinit.

The objective of a POR approach is to show that even while exploring a reduced
state space, no concurrency bug is missed w.r.t. the complete but possibly much larger
state space. The exploration of a dependence-covering state space satisfies this objec-
tive. The following theorem states the main result of this paper.

Theorem 1. Let SR be a dependence-covering state space of an event-driven multi-
threaded program A with a finite and acyclic state space SG. Then, all deadlock cycles
in SG are reachable in SR. If there exists a state v in SG which violates an assertion α
defined over local variables then there exists a state v′ in SR which violates α.

The proof follows from the appropriate restrictions on allowed dependences in a
dependence-covering sequence u compared to the dependences in w where w is re-
quired to reach a deadlock cycle or an assertion violation in the complete state space.
We provide a complete proof of the above theorem in Appendix A in [18].

The set {r1, r2} is both a persistent set and a dependence-covering set in state s0
in Figure 2. We observe that in general, a persistent set P at a state s ∈ SG is also
a dependence-covering set at s. Here, persistent set is defined using the dependence
relation where posts to the same event queue are dependent, whereas, dependence-
covering set is defined using the dependence relation where they are not (more formally,



using Definition 2). We present a proof of this claim in Appendix B in [18]. Note that a
dependence-covering set need not be a persistent set. As seen in Example 2, {r1} and
{r2} are both dependence-covering sets at s0 in Figure 2 but they are not persistent sets.

3 Implementation

This section provides a high-level sketch of our algorithm to dynamically compute
dependence-covering sets. Due to lack of space, we do not present the complete al-
gorithm and its soundness proof. We refer the readers to [18] for these details.

Android applications form a very popular class of event-driven multi-threaded pro-
grams. We further discuss the implementation of EM-Explorer, a proof-of-concept model
checking framework which simulates the Android concurrency semantics given an ex-
ecution trace of an Android application. We have implemented our algorithm in EM-
Explorer for experimental evaluation.

3.1 Dynamic Algorithm for Computing Dependence-covering Sets

DPOR [10] is an effective algorithm to dynamically compute backtracking choices
for selective state-space exploration. It performs DFS traversal of the transition sys-
tem of a program, but instead of exploring all the enabled transitions at a state, it
only explores transitions added as backtracking choices by the steps of the algorithm.
DPOR guarantees that it explores a persistent set at each of the visited states. Our al-
gorithm, called EM-DPOR, extends DPOR to compute dependence-covering sets for
event-driven multi-threaded programs. It differs from DPOR in the aspects of comput-
ing backtracking choices as well as the states to which the algorithm backtracks.

Let backtrack(s) refer to the backtracking set computed by EM-DPOR for a state
s. We say a task (t, e) is executable at a state s if the first transition of event e’s han-
dler is enabled in s (see Section 2.1) or the task is being executed in state s. Similar
to DPOR, on exploring a sequence w reaching a state s′, our algorithm identifies the
nearest transition r in w executed at a state s which is dependent with a transition
r′ ∈ nextTrans(s′). If r and r′ belong to two different threads then similar to DPOR,
we require that they may be co-enabled. In addition, if they belong to two different han-
dlers on the same thread then we require that they may be reordered (see Section 2.1). In
the latter case, we first identify a pair of post operations executed on different threads
which need to be reordered so as to reorder r and r′ (see [18] for the details).

We now discuss how to reorder two transitions from two different threads. Let r
and r′ be such transitions where r executes before r′ in w and s be the state from
which r executes. In order to compute backtracking choices to reorder them, EM-DPOR
computes a set of candidate tasks whose respective threads are enabled in state s, such
that each candidate task contains a transition executed after r that has happens-before
relation with r′. We select a thread t as a backtracking choice if (t, e) is a candidate task
and t is not already explored from state s. These steps are similar to the steps of DPOR
except that we use the happens-before relation of Definition 3.

A challenging case arises if the threads corresponding to all the candidate tasks are
already explored from s. As will be illustrated in Example 3, this does not imply that r



and r′ cannot be reordered in future. Unless all candidate tasks are executable at state
s, this also does not imply that they have been reordered in the already explored state
space. Therefore, the algorithm selects some candidate task (t′, e′) (if any) that is not
executable at s and attempts to reorder e′ with the event, say e′′, enqueued to the same
thread t′ and executable at s. This results in a recursive call to identify backtracking
choices as well as backtracking state. Due to this, in a future run, e′′ and e′ may be
reordered. Suppose r′′ is the transition in (t′, e′) that has happens-before with r′. The
resulting reordering of the handlers of e′′ and e′ subsequently enables exploring r′′ prior
to r which in turn, leads to the desired reordering of r and r′. Example 3 illustrates the
essential steps of EM-DPOR.

Example 3. We explain how EM-DPOR computes dependence-covering sets to explore
the state space in Figure 4 starting with transition sequence w in Figure 3. On exploring
a prefix of w and reaching state s5, r3 and r6 are identified to be dependent. When
attempting to compute backtracking choices at state s2 (the state where r3 is explored)
to reorder r3 and r6, r4 is found to have a happens-before ordering with r6 and thus
r4’s task (t1,e2) is identified as the candidate task. However, thread t1 is already
explored from state s2 and task (t1,e2) is not executable (see the event queue shown
at s2). Hence, the algorithm tries to reorder e2 with event e1 whose task is executable
at state s2. This is achieved by recursively starting another backward search to identify
the backtracking choices that can reorder e1 and e2. In this case, post operations r1
and r2 can be reordered to do so. Therefore, r2 is added to the backtracking set at s0,
exploring which leads to s8 where e2 precedes e1 in the event queue as required. Thus,
the algorithm computes {r1, r2} as a dependence-covering set at s0 and eventually
reaches state s10 where r3 and r6 are co-enabled and can be ordered as desired.

Note that even while considering the dependence between transitions r3 and r6,
EM-DPOR is able to identify a seemingly unrelated state s0 (much prior to state s2
where r3 is explored) as an appropriate state to backtrack to. Also, r3 and r6 are transi-
tions from two different threads. Even then, to reorder them, EM-DPOR had to reorder
the two post transitions r1 and r2 to the same thread t1 at s0.

Similar to DPOR, we have implemented our algorithm using a vector clocks datas-
tructure [20]. In a multi-threaded setting where all the operations executed on the same
thread are totally ordered, a clock is assigned to each thread and the components of a
vector clock correspond to clock values of the threads of the program. In an event-driven
program, the operations from different handlers on the same thread need not be totally
ordered and hence, we assign a clock to each task in the program. In addition to the
vector clock computations described in [10], we establish an order between event han-
dlers executed on the same thread if their corresponding posts have a happens-before
ordering, so as to respect the FIFO ordering of events.

3.2 EM-Explorer Framework

Building a full-fledged model checker for Android applications is a challenge in itself
but is not the focus of this work. Tools such as JPF-Android [24] and AsyncDroid [25]
take promising steps in this direction. However, presently they either explore only a



Table 1: Statistics on execution traces from Android apps and their model checking runs using
different POR techniques. Android apps: (A) Remind Me, (B) My Tracks, (C) Music Player, (D)
Character Recognition, and (E) Aard Dictionary

Apps
Trace Threads/ Memory DPOR EM-DPOR

length Events Locations Traces Transitions Time Traces Transitions Time
A 444 4/9 89 24 1864 0.18s 3 875 0.05s
B 453 10/9 108 1610684∗ 113299092∗ 4h∗ 405013 26745327 101m 30s
C 465 6/24 68 1508413∗ 93254810∗ 4h∗ 266 34333 4.15s
D 485 4/22 40 1284788 67062526 199m 28s 756 39422 6.58s
E 600 5/30 30 359961∗ 14397143∗ 4h∗ 14 4772 1.4s

limited number of sources of non-determinism [25] or require a lot of framework li-
braries to be modeled [24,23]. We have therefore implemented a prototype exploration
framework called EM-Explorer, which emulates the semantics of visible operations like
post operation, memory read/write, and lock acquire/release.

EM-Explorer takes an execution trace generated by an automated testing and race
detection tool for Android applications, called DroidRacer [19], as input. As DroidRacer
runs on real-world applications, we can experiment on real concurrency behaviors seen
in Android applications and evaluate different POR techniques on them. DroidRacer
records all concurrency relevant operations and memory reads and writes. EM-Explorer
emulates such a trace based on their operational semantics and explores all interleav-
ings of the given execution trace permitted by the semantics. Android permits user and
system-generated events apart from program-generated events. EM-Explorer only ex-
plores the non-determinism between program and system generated events while keep-
ing the order of user events fixed. This is analogous to model checking w.r.t. a fixed
data input. EM-Explorer does not track variable values and is incapable of evaluating
conditionals on a different interleaving of the trace.

Android supports different types of component classes, e.g., Activity class for the
user interface, and enforces a happens-before ordering between handlers of lifecycle
events of component classes. EM-Explorer seeds the happens-before relation for such
events in each trace before starting the model checking run, avoiding exploration of
invalid interleavings of lifecycle events. We remove handlers with no visible operations
from recorded traces before model checking.

4 Experimental Evaluation

We compare the performance of (1) EM-DPOR which computes dependence-covering
sets with (2) DPOR which computes persistent sets. Both the algorithms are imple-
mented in the EM-Explorer framework described in Section 3 and use vector clocks.
The implementation of DPOR uses the dependence relation in which posts to the same
thread are considered dependent.

We evaluated these POR techniques on execution traces generated by DroidRacer
on 5 Android applications obtained from the Google Play Store [1]. Table 1 presents
statistics like trace length (the number of visible operations), and the number of threads,
events and (shared) memory locations in an execution trace for each of these applica-
tions. We only report the threads created by the application, and the number of events
excluding events with no visible operations in their handlers.



We analyzed each of the traces described in Table 1 using both the POR techniques.
Table 1 gives the number of interleavings (listed as Traces) and distinct transitions ex-
plored by DPOR and EM-DPOR. It also gives the time taken for exploring the reduced
state space for each execution trace. If a model checking run did not terminate within 4
hours, we force-kill it and report the statistics for 4 hours. The statistics for force-killed
runs are marked with ∗ in Table 1. Since EM-Explorer does not track variable values,
it cannot prune executions that are infeasible due to conditional sequential execution.
However, both DPOR and EM-DPOR are implemented on top of EM-Explorer and
therefore operate on the same set of interleavings. The difference in their performance
thus arises from the different POR strategies.

In our experiments, DPOR’s model checking run terminated only on two execution
traces among the five, whereas, EM-DPOR terminated on all of them. Except for one
case, EM-DPOR finished state space exploration within a few seconds. As can be seen
from Table 1, DPOR explores a much larger number of interleavings and transitions,
often orders of magnitude larger compared to EM-DPOR. While this is a small evalua-
tion, it does show that significant reduction can be achieved for real-world event-driven
multi-threaded programs by avoiding unnecessary reordering of events.

Performance. Both the techniques used about the same memory and the maximum peak
memory consumed by EM-DPOR across all traces, as reported by Valgrind, was less
than 50MB. The experiments were performed on a machine with Intel Core i5 3.2GHz
CPU with 4GB RAM, and running Ubuntu 12.04 OS.

5 Conclusions and Future Work

The event-driven multi-threaded style of programming concurrent applications is be-
coming increasingly popular. We considered the problem of POR-based efficient state-
less model checking for this concurrency model. The key insight of our work is that
more reduction is achievable by treating operations that post events to the same thread
as independent and only reordering them if necessary.

We presented POR based on dependence-covering sequences and sets. Exploring
only dependence-covering sets suffices to provide certain formal guarantees. Our exper-
iments provide empirical evidence that our dynamic algorithm for computing dependence-
covering sets explores orders of magnitude fewer transitions compared to DPOR for
event-driven multi-threaded programs. While we evaluate our algorithm on Android
applications, the general idea of dependence-covering sets is more widely applicable.
As future work, we aim to achieve better reductions by defining a notion of sleep sets
suitable for this concurrency model and combining it with dependence-covering sets as
well as explore optimality of POR in this context.
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