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Abstract

Programming environments for smartphones expose a concur-
rency model that combines multi-threading and asynchronous event-
based dispatch. While this enables the development of efficient and
feature-rich applications, unforeseen thread interleavings coupled
with non-deterministic reorderings of asynchronous tasks can lead
to subtle concurrency errors in the applications.

In this paper, we formalize the concurrency semantics of the An-
droid programming model. We further define the happens-before
relation for Android applications, and develop a dynamic race de-
tection technique based on this relation. Our relation generalizes
the so far independently studied happens-before relations for multi-
threaded programs and single-threaded event-driven programs. Ad-
ditionally, our race detection technique uses a model of the Android
runtime environment to reduce false positives.

We have implemented a tool called DROIDRACER. It generates
execution traces by systematically testing Android applications and
detects data races by computing the happens-before relation on
the traces. We analyzed 15 Android applications including popular
applications such as Facebook, Twitter and K-9 Mail. Our results
indicate that data races are prevalent in Android applications, and
that DROIDRACER is an effective tool to identify data races.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; D.2.5 [Software Engineer-
ing]: Testing and Debugging; F.3.1 [Logics and Meanings of Pro-
grams]: Specifying and Verifying and Reasoning about Programs

General Terms Languages, Reliability, Verification

Keywords Data races, Android concurrency semantics, Happens-
before reasoning

1. INTRODUCTION

Touchscreen mobile devices such as smartphones and tablets
have become an integral part of our lives. These new devices have
caught the imagination of the developer community and the end-
users alike. We are witnessing a significant shift of computing from
desktops to mobile devices.

While their hardware is limited in many ways, smartphones have
succeeded in providing programming environments that enable de-
velopment of efficient and feature-rich applications. These environ-
ments expose an expressive concurrency model that combines multi-
threading and asynchronous event-based dispatch. In this model,
multiple threads execute concurrently and, in addition, may post
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asynchronous tasks to each other. Asynchronous tasks running on
the same thread may themselves be reordered non-deterministically
subject to certain rules. While the model can effectively hide laten-
cies, enabling innovative features, programming is complex and pro-
grams can have many subtle bugs due to non-determinism.

In this paper, we formalize the concurrency semantics of the An-
droid programming model. Coming up with this formalization re-
quired a thorough study of the Android framework and a careful
mapping of execution scenarios in Android to more formal execu-
tion traces. We view an Android application as comprising multi-
ple asynchronous tasks that are executed on one or more threads.
An asynchronous task, once started on a thread, runs to completion
and can make both synchronous and asynchronous procedure calls.
An asynchronous procedure call results in enqueuing of an asyn-
chronous task to the task queue associated with the thread to which it
is posted and control immediately returns to the caller. While the An-
droid runtime environment creates some threads for the application
initially, the application may also spawn threads. A newly spawned
thread behaves as a usual thread, but additionally, it can attach a task
queue to itself and receive asynchronous tasks for execution. Often,
an application works with some threads with task queues and others
without. In this work, we focus on the semantics of individual ap-
plications running within their own processes, and omit formalizing
inter-process communication (IPC) between different applications.

Based on the concurrency semantics, we define a happens-before
relation < over operations in execution traces [15]. A naive combi-
nation of rules for asynchronous procedure calls and lock-based syn-
chronization introduces spurious happens-before orderings. Specif-
ically, it induces an ordering between two asynchronous tasks run-
ning on the same thread if they use the same lock. This is a spu-
rious ordering since locks cannot enforce an ordering among tasks
running sequentially on the same thread. We overcome this diffi-
culty by decomposing the relation < into (1) a thread-local happens-
before relation <, which captures the ordering constraints between
asynchronous tasks posted to the same thread and (2) an inter-
thread happens-before relation <,,+ which captures the ordering
constraints among multiple threads. These relations are composed
in such a way that the resulting relation captures the happens-before
orderings in the Android concurrency model precisely.

We develop a data race detection algorithm based on the happens-
before relation. A data race occurs if there are two accesses to the
same memory location, with at least one being a write, such that
there is no happens-before ordering between them. Race detection
for multi-threaded programs is a well-researched topic (e.g., [18l
21112201250 128])). Recently, race detection for single-threaded event-
driven programs (also called asynchronous programs) is studied in
the context of client-side web applications (e.g., [201124,(30]). Unfor-
tunately, race detection for Android applications requires reasoning
about both thread interleavings and event dispatch; ignoring one or
the other leads to false positives. Our happens-before relation gener-
alizes these, so far independently studied, happens-before relations
for multi-threaded programs and single-threaded event-driven pro-
grams, enabling precise race detection for Android applications.



We have implemented our race detection algorithm in a tool
called DROIDRACER. DROIDRACER provides a framework that
generates Ul events to systematically test an Android application.
It runs unmodified binaries on an instrumented Dalvik VM and in-
strumented Android libraries. A run of the application produces an
execution trace, which is analyzed offline for data races by comput-
ing the happens-before relation. The control flow between different
procedures of an Android application is managed to a large extent
by the Android runtime through callbacks. DROIDRACER uses a
model of the Android runtime environment to reduce false positives
that would be reported otherwise. Further, DROIDRACER assists in
debugging the data races by classifying them based on criteria such
as whether one involves multiple threads posting to the same thread
or two co-enabled events executing in an interleaved manner.

We analyzed 10 open-source Android applications together com-
prising 200K lines of code, and used them to improve the accuracy
of DROIDRACER. We then applied DROIDRACER on 5 proprietary
applications including popular and mature applications like Face-
book and Twitter. Our results indicate that data races are prevalent
in Android applications and that DROIDRACER is an effective tool
to identify data races. Of the 215 races reported by DROIDRACER
on 10 open source Android applications, 80 were verified to be true
positives and 6 of these were found to exhibit bad behaviours.

In summary, this paper makes the following contributions:

e The first formulation of Android concurrency semantics.

e An encoding of the happens-before relation for Android which
generalizes happens-before relations for multi-threaded pro-
grams and single-threaded event-driven programs.

e A tool for dynamic race detection augmented with systematic
testing capabilities for Android applications, and the successful
identification of data races in popular applications.

While we focus on Android, our concurrency model and the happens-
before reasoning extends naturally to other environments that com-
bine multi-threading with event-based dispatch, such as other smart-
phone environments, high performance servers [19]], low-level ker-
nel code [3]], and embedded software [4}14].

2. MOTIVATING EXAMPLE

We now present an Android application and explain an execu-
tion scenario to illustrate Android semantics. We model this scenario
and a variant of it as execution traces and apply happens-before rea-
soning to them, highlighting the need for reasoning simultaneously
about the thread-local and inter-thread happens-before constraints.

2.1 Music Player

Figure[I]shows part of the source code of a sample Android appli-
cation. It downloads a music file from the network and then provides
a PLAY button to play it. A progress bar continuously displays the
progress in file download. The code defines two classes: DwFileAct
and FileDwTask. DwFileAct provides the user interface; it is a
subclass of Activity (a base class provided by Android to man-
age user interactions). FileDwTask is a subclass of AsyncTask (a
base class provided by Android to perform background operations
asynchronously) and performs file download in a background thread.
The method onPlayClick is a handler for the onClick event on the
PLAY button and is registered via an XML manifest file (not shown).
The other methods are the callbacks used by the Android runtime to
manage the application. We discuss their roles subsequently.

2.2 Execution Scenario

We start with some background on the Android runtime environ-
ment. Each application in Android runs in its own process. A sys-
tem process runs various services to manage the lifecycle of applica-
tions and to process system and sensor (e.g., GPS, battery) events. In
our present discussion, only the ActivityManagerService com-
ponent of the system process, which governs the lifecycle callbacks
of various components of application, is of relevance.

public class DwFileAct extends Activity {
boolean isActivityDestroyed = false;

protected void onResume( ) {
super.onResume( );
new FileDwTask(this).execute("http://abc/song.mp3");
}
public void onPlayClick(View v) {
Intent intent = new Intent(this, MusicPlayActivity.class);
10 intent.putExtra("file", "/sdcard/song.mp3");
11 startActivity(intent);
12 }
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13 protected void onDestroy( ) {
14 super.onDestroy( );

15 isActivityDestroyed = true;
16 }

17

18}

19

20  public class FileDwTask extends AsyncTask<String, Integer, Void> {
21 DweFileAct act;
22 ProgressDialog dialog;

23

24 public FileDwTask(DwFileAct act) {

25 this.act = act;

26 }

27 protected void onPreExecute( ) {

28 super.onPreExecute( );

29 dialog = new ProgressDialog(act);

30

31 dialog.show( );

32 }

33 protected Void doInBackground(String... params) {
34 InputStream input = ...

35

36 byte data[] = new byte[1024];

37 long progress = 0;

38 int count;

39 while ((count = input.read(data)) != —1) {
40 progress += count;

41 assertTrue(lact.isActivityDestroyed);

42 publishProgress(progress);

43 }

44

45 return null;

46 }

47 protected void onProgressUpdate(Integer... progress) {
48 super.onProgressUpdate(progress);

49 dialog.setProgress(progress[0]);

50 }

51 protected void onPostExecute(Void result) {
52 super.onPostExecute(result);

53 assertTrue(lact.isActivityDestroyed);

54 dialog.dismiss( );

55 Button btn = (Button) act.findViewBylId(R.id.playBtn);
56 btn.setEnabled(true);

57 }

58

59 1}

Figure 1. Code snippet of a music player application.

Let us consider the sequence of high-level actions that take place
when a user launches the application. Figure [2]shows 4 threads that
are involved: (1) a thread executing ActivityManagerService
in the system process, and the following 3 threads running in the
application’s process: (2) a binder thread from a thread pool that
handles communication with ActivityManagerService, (3) the
main thread which also handles the UI, and (4) a background thread
created dynamically by the runtime for executing FileDwTask.

After initialization, the main thread attaches a task queue to itself
(step 2), making it eligible to receive asynchronous call requests.
ActivityManagerService schedules the launch of the main ac-
tivity (DwFileAct in this case). This results in the binder thread
posting an asynchronous call denoted by LAUNCH_ACTIVITY to
the main thread on behalf of ActivityManagerService (steps 4
and 5). The handler for LAUNCH_ACTIVITY synchronously calls the
lifecycle callbacks required by the Android runtime: onCreate,
onStart, and onResume (steps 6.1-6.3). The procedure onResume
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Figure 2. An execution scenario for the music player application:
The solid edges indicate inter-thread communication.

starts the asynchronous task FileDwTask (line 6 in Figure[T). This
results in execution of procedure onPreExecute of FileDwTask
(step 6.4) followed by creation of a new thread on which the proce-
dure doInBackground is executed (step 7). This procedure down-
loads the file and indicates the progress in a progress bar on the Ul
through the call to publishProgress (line 42 in Figure [T). The
runtime in turn runs a procedure onProgressUpdate on the main
thread (step 8). Once doInBackground finishes, the runtime calls
onPostExecute (step 9). This procedure enables the PLAY button
(lines 55-56 in Figure T).

Now, suppose the user clicks on the PLAY button to play the
downloaded file. The task scheduler of the main thread (called the
“looper”) processes this event (step 10), and posts and later runs
the handler onPlayClick (step 11). The handler onPlayClick
starts another activity (line 11 in Figure [I). This results in the
component ActivityManagerService scheduling the callback
onPause of the currently visible activity (the activity DwFileAct
here). Similar to the posting of LAUNCH_ACTIVITY (step 5), the
binder thread posts onPause to the main thread on behalf of
ActivityManagerService (step 12).

Even this simple execution scenario for the music player applica-
tion involves four threads running in two different processes. More-
over, much of the complex control flow and inter-thread communi-
cation in this example is managed by the Android runtime itself and
is opaque to the developer. Nevertheless, the developer must under-
stand the semantics clearly to avoid concurrency bugs.

2.3 Execution Trace

For the purposes of analysis, we model the execution scenarios of
Android applications more transparently as sequences of low-level
concurrency-relevant operations, called execution traces.

Figure[3|shows a partial execution trace corresponding to the sce-
nario in Figure[2] The threads of control £0, t1, and t2 correspond
respectively to the binder, main, and background threads. The op-
codes always take the identifier of the executing thread as their first
parameter. The op-codes threadinit and threadexit mark the
start and finish of the thread. attachQ indicates that the thread has
attached a task queue to itself.

An asynchronous procedure call is indicated by post, whose
second argument is the procedure to be run asynchronously and its

Thread t0 Thread t1 Thread t2
(Binder) (Main) (Bkgnd Task)
threadinit (t1)
attachQ(t1)
loopOnQ(t1)

enable(t1,LAUNCH_ACTIVITY)
post (t0,LAUNCH_ACTIVITY,t1)
begin (t1,LAUNCH_ACTIVITY)
write(t1l,DwFileAct-obj)

fork(t1,t2) (a)
enable(t1,onDestroy)
10 end (t1,LAUNCH_ACTIVITY)
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11 K threadinit (t2)

12 | read(t2,DwFileAct-obj)
©1

13 | (b) - post(t2,onPostExecute,tl)

14 v / threadexit (t2)

15 begin(t1,onPostExecute)

16 read(t1,DwFileAct-obj)

17 .~ enable(tl,onPlayClick)

18 (d) ' end(t1,onPostExecute)

19 Ypost(tl,onPlayClick,t1)

20 begin(t1,onPlayClick)

21

(e) enable(t1,onPause)
92— end(t1,onPlayClick)
23 post(t0,onPause,tl)

Figure 3. Execution trace corresponding to Figure |2| and some
thread-local (dashed) and inter-thread (solid) happens-before edges.

third argument the target thread that will run it, that is, the task
is posted to the task queue of the target thread. For simplicity, we
omit the arguments to procedures, including the receiver object. The
processing of the task queue of a thread begins after the thread
executes 1loopOnQ. fork indicates spawning of a thread.

The trace in Figure 3] comprises three asynchronous tasks, each
enclosed in a pair of begin and end operations. The first asyn-
chronous task (operations 6-10) corresponds to step 6 of Figure [2]
We focus on data races and abstract some aspects of the computation
for readability. First, we abstract the actual computations and only
track accesses (reads and writes) to memory locations. In this exam-
ple, for brevity, only the accesses to the DwFileAct object, abbrevi-
ated as DwFileAct-obj in the trace, are presented. Second, we omit
the call stack of the thread and synchronously executed procedures
—such as the callback methods onCreate, onStart, onResume,
and onPreExecute (steps 6.1-6.4 in Figure 2)— that do not have
interesting concurrency behavior.

The initialization of the field isActivityDestroyed at line 2 in
Figure[I]results in the write operation 7 in the trace. The thread cre-
ated by the Android runtime for executing the asynchronous task (in-
dicated by the edge labeled fork in Figure[2) results in the fork oper-
ation (i.e., operation 8). Once the processing of LAUNCH_ACTIVITY
is complete, the Android runtime semantics mandates that the activ-
ity thus created may get destroyed at any time (based on user ac-
tions or runtime indicators such as the system running out of mem-
ory). This is made explicit in the trace through the enable opera-
tion (i.e., operation 9). The operation enable(t,c) indicates that
the callback c for some environment event is enabled, that is, the
application can now accept an event that causes c¢ to execute. For
instance, operation 4 enables the launch of the activity. The enable
operations do not change program state, but are used in our approach
to model the behavior of the Android runtime environment for more
accurate reasoning.

The read operation at position 12 in the trace results from the
assertion evaluation in the procedure doInBackground at line 41 in
Figure[T] As mentioned earlier, the procedure indicates the progress
in file download on a progress bar. Before updating the progress bar,
it ensures that the corresponding activity is alive (i.e., not destroyed)
by checking the boolean field isActivityDestroyed. Once the
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Figure 4. Partial execution trace for the scenario in which the user
clicks the BACK button instead of the PLAY button.

procedure doInBackground completes, the runtime posts a call to
onPostExecute on the main thread as indicated by operation 13.
The asynchronous task corresponding to onPostExecute at oper-
ations 15-18 contains a similar read operation and the enabling
of click event to be handled by onPlayClick. Step 10 in Fig-
ure 2] indicates that the PLAY button is clicked, causing the main
thread to post (operation 19) and then execute onPlayClick (opera-
tions 20-22). As a new activity is being started (line 11 in Figure[T)),
the callback event onPause of the currently visible activity object
DwFileAct-obj is enabled at operation 21 which is posted by the
runtime through binder thread subsequently (see operation 23).

2.4 Data Races and Happens-before Reasoning

We now analyze the execution trace in Figure [3 for data races.
Two operations conflict if they refer to the same memory location
and at least one of them is a write. In our trace, there are two
pairs of conflicting operations: (7,12) and (7, 16). Even though the
operations 7 and 16 execute on the same thread t1, on a thread
with a task queue such as t1, we cannot derive a happens-before
ordering between two operations unless they execute in the same
asynchronous task or the tasks themselves have a happens-before
ordering. In the absence of an ordering, the execution order of the
asynchronous tasks (and consequently, the conflicting operations) is
non-deterministic, and we would have a data race. Data races of this
form in single-threaded event-driven programs were identified for
client-side web applications in [9} 120124, 130].

Inter-dependent reasoning. In our setting, the rules for single-
threaded event-driven programs are insufficient, and we now show
that our analysis must account for the combination of events (asyn-
chronous calls) and multi-threading. The edge a in Figure [3] mod-
els the ordering between the fork operation and start of the forked
thread, and through transitivity ensures that there is no data race
between operations 7 and 12 (executing on different threads). The
asynchronous procedure call semantics guarantees the ordering be-
tween a post operation and the corresponding begin operation (see
edge b in Figure3). Transitivity through edges a and b ensures that
the fork operation happens-before begin (i.e., operation 15). In
Android, tasks run to completion and are not pre-empted. Thus, the
task containing the fork operation executes completely before the
task beginning at operation 15 starts. We can therefore construct the
thread-local edge c between the two asynchronous tasks and can in-
fer that there is no data race between operations 7 and 16.

We note that the thread-local edge c cannot be derived unless
we reason about the happens-before relations for both the multi-
threaded case and the asynchronous case (e.g., no pre-emption se-

Table 1: List of operations (Thread t is currently executing.)

threadinit(t) start executing current thread
threadexit(t) complete executing current thread
fork(t,t’) create thread t’

join(t,t’ consume the completed thread t’
attachQ(t) attach a task queue to thread t
loopOnQ(t) begin executing procedures in t’s queue
post(t,p,t’) post task p asynchronously to thread t’
begin(t,p) start executing the posted task p
end(t,p) end executing the posted task p

acquire(t,1)
release(t,1)

t acquires lock 1
t releases lock 1

read(t,m)
write(t,m)
enable(t,p)

read memory location m
write memory location m
enable posting of task p

mantics) simultaneously. Besides, as pointed above, some rules such
as program order for operations running on the same thread take a
different interpretation in our setting.

Modeling the runtime environment. While we do not explicitly
model ActivityManagerService (running in the system process)
in the execution trace, we capture its effects through the enable
operations on callback proceduresﬂ This helps us identify the order-
ing constraints for lifecycle callbacks made by the Android environ-
ment (e.g., see the edge e in Figure[3). Through enable operations,
we also capture the ordering between operations in the trace and Ul
callbacks (e.g., see the edge d in Figure [3). These edges are crucial
for avoiding false positives.

As an example, let us assume that the steps 1-8 take place similar
to Figure[2] but instead of clicking the PLAY button (step 9), suppose
the user presses the BACK button. Figure[d]shows the resulting trace
with the first 18 operations (some of them elided) same as Figure [3]
The user action results in the activity being removed from the screen
(but not garbage-collected), and ActivityManagerService posts
a call to the onDestroy callback (operation 19 in Figure [). This
callback executes next (operations 20-22), and as seen in line 15 of
Figure[I] writes into the field isActivityDestroyed.

Due to the happens-before ordering between enable and post
(operations 9 and 19), and post and begin (operations 19 and 20),
there is a happens-before edge between the write operations 7 and
21 and they do not constitute a data race. Without the enable op-
eration, which specifies the environment restriction that onDestroy
can only be called after LAUNCH_ACTIVITY finishes, we could not
have derived the required happens-before ordering between opera-
tions 7 and 21, resulting in a false positive.

Two races.  Again, we consider the trace in Figure[d] The callback
onDestroy is enabled while thread t2 is running and if fired, it
executes on thread t1. Thus, the read and write operations 12 and
21 may happen in parallel giving rise to a potential data race.

In Android, two asynchronous calls, posted on the same thread,
execute in the order in which they are posted. We refer to this as
the FIFO (first-in first-out) semantics]’| In our example, there is
no happens-before ordering between the two post operations 13
and 19. Therefore, the asynchronous tasks executing the read and
write operations 16 and 21 also are not ordered and give rise to
another potential data race but this time between two operations
on the same thread. As operation 21 (line 15 in Figure [T) sets
isActivityDestroyed to true, if the operations in any of the two
racey pairs (12, 21) and (16, 21) are reordered then the correspond-
ing assertions at lines 41 and 53 in Figure[T|would fail.

UIn practice, explicitly tracking the system process (which runs
ActivityManagerService among others) is both difficult and inefficient.

2 There are certain exceptions to the FIFO semantics which we discuss later

in Section @
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Figure 5. Semantic rules.

3. ANDROID CONCURRENCY SEMANTICS

In this section, we formalize the concurrency semantics of An-
droid applications. An Android application A can be seen as a triple
(Threads, Procs, Init) where Threads is a finite set of threads cre-
ated by the framework to run the application (e.g., the main thread
and the binder threads), Procs is a set of procedures, and Init is a
mapping from Threads to Procs indicating the procedure that is to
be scheduled on each thread initially. The application can create new
threads dynamically. A procedure p consists of its signature, variable
declarations, and an ordered list of statements.

We only present the essential low-level operations relating to
concurrency and event-handling, and omit the (standard) sequential
programming features of the Android programming model. The
sequential part of Android is an object-oriented language based on
Java, and its object-based semantics can be defined similar to that
of Java [} [10]. Since we are interested in identifying data races,
instead of modeling the effect of a computation on an object, we
merely note whether there is a read or write access to it. We refer to
heap-allocated objects as memory locations.

Our core language has dynamically allocated threads, task
queues associated with threads, asynchronous calls made by posting
a task to the task queue of a thread, synchronization via locks, and
reads from and writes to shared memory locations. Table [I]decribes
the operations in our language. The environment can trigger any of
the enabled events. The enable operation is used to indicate the
handlers of the events being enabled.

In order to formally specify the semantics of these operations,
we define the notion of the state of an application. The state 0 =
(C,R,F,B,E&, Q, L) of an application A = ( Threads, Procs, Init)
consists of (1) a set C (of thread-ids) of threads that are created but
not scheduled for execution so far, (2) a set R of threads that are
running, (3) a set F of threads that have completed execution, (4) a
set B of threads which have begun processing their task queues, (5) a
mapping £ : CUR — Procs U { L} indicating which procedure in
Procs is executing (or shall execute) on a thread where L indicates
that the thread is idle, (6) a mapping @ : C UR — Q U {¢} asso-
ciating a task queue with each thread where (@ is a set of task queue
objects which support enqueue and dequeue operations (denoted as
@ and © respectively) with FIFO semantics and € is a queue of ca-
pacity zero, and finally, (7) a mapping £ : C UR — 2% giving the
locks held by a thread with L being the set of locks. For brevity, we

do not explicitly model the program counter or the control stack (for
synchronous procedure calls) of a thread. These details can be added
in a straightforward manner.

Let S4 = (3, —, 00) be the transition system for an application
A where ¥ is the set of states, » C X x Ops(A) x X is the set of
transitions between states according to the operations in the appli-
cation A (denoted as Ops(.A)), and oy is the initial state. Figure
gives the semantic rules for different types of operations. A triple
(0, at, 0”) belongs to — (written ¢ —— o) iff the antecedent condi-
tions of a rule for o hold in o, and ¢ is obtained through updates to
o as described in the consequent of the rule. Any component not up-
dated explicitly in the consequent remains unchanged. In these rules,
we use t and t’ to indicate thread-ids, p to indicate a procedure, and
1 to denote a lock. The operations read, write, and enable do not
affect the state of the application (as defined above by us) and hence
we do not give specific semantic rules for them.

The rule START defines the initial state op of the transition
system S 4. It adds the threads in Threads to C. Recall that Init
gives the mapping from threads to procedures to be run initially. £ is
therefore initialized to In:t. In the beginning, no thread is associated
with a task queue or owns a lock. This is modeled by setting Q(t)
to € and L(t) to @ for each thread t € C. A fork operation creates
a new thread. The default procedure to execute on the thread is
denoted by main in the rule FORK. The join operation requires its
second argument to have finished execution (see the rule JOIN). The
operation threadinit starts executing a thread and threadexit
moves the thread to the set F. Note that the maps £, O, and L are
defined only for threads that are either created or running. A thread
t may acquire or release locks which we track in the lock set £(t)
(see the rules ACQUIRE and RELEASE).

A thread without a task queue can attach a task queue to it-
self through the attachQ operation (see the rule ATTACHQ). Even
though the task queue can start receiving the asynchronous call re-
quests immediately after attachQ (see the rule POST), the thread
begins processing them only after executing 1oopOnQ (see the rule
Lo0OPONQ). The operation LoopOnQ adds the thread to the set I3 and
sets £(t) to L. A thread t is idle if £(t) = L. When a thread with a
task queue becomes idle, it dequeues the task at the front of its queue
(denoted by the function Front in the rule BEGIN) and executes it.
If the task queue is empty, it waits. When a thread finishes execut-
ing an asynchronous task, it becomes idle (see the rule END) before
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Figure 6. Thread-local happens-before rules.

dequeuing the next available task. The rule SEQUENCING gives the
combined state change due to two consecutive operations.

A sequence p = (au, ..., an) of operations is an execution trace
. . aq a2
of A if there exist states o1,...,0, such that o9 — o1 —>

e On1 2 o, according to the rules in Figure

4. RACE DETECTION

In this section, we define the happens-before relation for con-
current Android applications. We also present a precise modeling of
the Android runtime environment to track happens-before relations
more accurately, and an algorithm which detects and classifies data
races by analyzing execution traces.

4.1 Happens-before Relation

Let p = {a,. .., an) be an execution trace of an application A.
Without loss of generality, we assume that a procedure is executed at
most once in an execution trace. This assumption is met by uniquely
renaming distinct occurrences of a procedure name in the trace.

For an execution trace p, we define a binary relation =, called
happens-before, over operations in {«1,...,an}. This relation
must capture effects of multi-threading as well as asynchronous pro-
cedure calls. As noted in the Introduction, a naive combination of
rules for asynchronous procedure calls and lock-based synchroniza-
tion introduces spurious happens-before orderings. We overcome
this difficulty by decomposing the relation < into two relations: (1) a
thread-local happens-before relation <, and (2) an inter-thread
happens-before relation <,,,:. Here, the subscripts st and mt respec-
tively abbreviate “single-threaded” and “multi-threaded”. These are
the smallest relations closed under the rules in Figure[6]and Figure[7]
respectively. These relations are mutually recursive but impose the
following restrictions: (1) for threads running asynchronous tasks,
program order is restricted to individual asynchronous tasks, (2) an
ordering between acquire and release operations on a lock is de-
rived only if they run on two different threads, and (3) transitivity is
defined in such a way that an ordering between asynchronous tasks
running on the same thread and utilizing the same lock cannot be de-
rived transitively through another thread utilizing that lock. Finally,
the happens-before relation < is equal to <s; U <.

Our rules use two helper functions thread and task to respec-
tively obtain the thread that executes an operation ¢; and, in the case
of a thread with a task queue, to obtain the pair comprising the thread
and the asynchronously called procedure to which «; belongs. From
now on, let o; and o; be operations in p such that 7 < j.

o; = attachQ(t)

i Smt O

a; = post(t’,_,t)

(ATTACH-Q-MT)

«; = enable(t,p) a; = post(t’,p,_)

(ENABLE-MT)

Qi 2mt O
o; = post(t’ t a; = begin(t
(POST-MT) T P ( s Py ) J g ( 7P)
i St O
a; = fork(t,t’) a; = threadinit(t’)
(FORK)
a; St O
a; = threadexit(t’ o; = join(t,t’
o (+) ;= join(t,t)
Qi Smt O
a; = release(t,1 a; = acquire(t’,1
(LOCK) T ( ’ ) J q ( ’ )
a; St Oy
o; X o ok X aj
(TRANS-MT)
i St O

Figure 7. Inter-thread happens-before rules.

Thread-local rules. Consider the thread-local happens-before
rules given in Figure [6] In these rules, the two operations c; and
«; are executed on the same thread, i.e., thread(o;) = thread(a;).
If no task queue is attached to the thread or the processing of the task
queue has not begun (by executing loopOnQ) until «; is executed
then the two operations have a happens-before relation a; <t o
due to the program order (see the rule NO-Q-PO). This rule how-
ever is not applicable for the operations executed on the thread after
the loopOnQ operation. In that case, they have a happens-before
ordering (see the rule ASYNC-PO) if they execute in the same asyn-
chronous task, i.e., if task(a;) = task(a; ). If the trace contains an
enable operation for a procedure then the subsequent post of the
procedure, if any, happens after the enable operation as stated by
ENABLE-ST. Further, the begin of an asynchronous task happens
after the corresponding post as per the rule POST-ST.

The next two rules determine the happens-before ordering be-
tween a pair of asynchronous tasks running on the same thread. More
specifically, the rules determine whether end of one task happens
before begin of the other or not. The ordering between these op-
erations, combined with program order (the rule ASYNC-PO) and
transitivity (discussed shortly), implies that all operations in the first
task happen before any operation in the second task.

The rule FIFO imposes a happens-before ordering between two
operations end(t, p1) and begin(t, p2) if the corresponding post
operations have a happens-before ordering irrespective of whether
the post operations belong to the same thread or not. Note that the
ordering between the post operations is in terms of the combined
happens-before relation <. This rule encodes the FIFO semantics of
Android for asynchronous calls executed on the same thread.

In Android, the asynchronously called procedures are run to
completion, i.e., there is no pre-emption. The rule NOPRE cap-
tures this constraint. The operation end(t,pl) happens before
begin(t, p2) if there is some operation « in the task (t, p1) which
happens-before the post operation of p2. Here again, the post op-
eration could take place from another thread and hence, the ordering
between oy, and the post operation is over <.

Finally, the rule TRANS-ST states that the thread-local relation
<t 18 transitive. It is also reflexive and anti-symmetric. These rules
are not typeset in Figure[6]due to limitations of space.

Inter-thread rules. Consider the happens-before rules shown in
Figure [7) that are applicable to operations c; and a; executed on
different threads, i.e., thread(c;) # thread(cy). In these rules,
we refer to two distinct threads by t and t’. A thread may post an
asynchronous procedure call to another thread. The rule ATTACH-
Q-MT states that any post to a thread happens only after the thread
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Figure 8. Partial lifecycle of an Activity component.

has been attached a task queue. The next two rules, ENABLE-MT
and POST-MT are analogues of the corresponding thread-local rules.
The rules for fork, join, and lock-based synchronization are as
usual. Even if there is a happens-before ordering between two post
operations but if they post the tasks to distinct threads, the executions
of the tasks may interleave arbitrarily. Hence, there is no analogue
of the rule FIFO for <,,,+. Similar is the case for the NOPRE rule.
The transitivity rule TRANS-MT permits transitive closure of the
happens-before rule < but only if the operations o; and «; execute
on distinct threads. Note that in the rule, the ordering between «;
and o, or oy, and a; may involve the thread-local ordering <.

)

Specializations. The rules for single-threaded event-driven pro-
grams (e.g., [24]) can be obtained by specializing the thread-local
rules. Dropping the FIFO rule gives the non-deterministic scheduling
semantics of asynchronous programs (e.g., [8]). The happens-before
rules for multi-threaded programs (where the threads do not have
task queues) can be obtained by discarding all rules (both thread-
local and inter-thread) for asynchronous procedure calls.

4.2 Precise Modeling of the Android Runtime Environment

The happens-before rules in Figures[gand[7]do not capture all the
constraints of the Android runtime environment. We now discuss
modeling of two key aspects of the runtime environment, namely,
(1) lifecycle callbacks and (2) management of asynchronous tasks. A
precise modeling of these aspects is crucial to infer ordering among
asynchronous tasks, thereby, avoiding false positives.

Lifecycle callbacks. As discussed in Section [2] the lifecycle of a
component of an application is managed by the runtime environment
by invoking callbacks in a specific order. Figure (8| shows a partial
lifecycle state machine for the Activity classﬂ The gray nodes in-
dicate the states of an activity and the other nodes are callback proce-
dures. The solid edges indicate must happen-after ordering whereas
the dashed edges indicate may happen-after ordering. If 8 may hap-
pen after o then in some (but not necessarily all) executions, we
should see f3 after «v, and there is no trace in which 3 happens before
a. For example, onStart has two may-successors onResume and
onStop. The former is called by the runtime environment if the ac-
tivity comes to the foreground immediately after onStart finishes.
The latter is called if the activity stays in the background. Similar
lifecycles exist for other types of components in the Android pro-
gramming model such as Services and Broadcast Receivers.
Our implementation handles them but we omit the discussion on
them due to space constraints. We refer the reader to the Android
documentation for more details.

The operation enable in our core language is exploited to model
the lifecycle constraints. Our implementation instruments the run-
time in such a way that if a callback C2 is expected to happen after a
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callback C1 according to their lifecycle then the trace of C1 contains
an operation enable(_,C2). The rules ENABLE-ST and ENABLE-
MT establish the connections between the enable operations and
subsequent post operations.

Task management. Apart from the post operation considered ear-
lier, the Android runtime supports operations (1) to perform delayed
posts in which a timeout is associated with an asynchronous task and
the task is executed when the timeout occurs, (2) to cancel posted
tasks, and (3) to post asynchronous tasks to the front of the queue
overriding the FIFO semantics. Handling the first case requires only
a slight modification to the FIFO rule. Let a; = end(t,p1) and
a; = begin(t,p2) where t is a thread and p1, p2 are two asyn-
chronously called procedures. Let 3; and 3; be the respective post
operations such that 8; < ;. We derive a; =5 «; if (a) §; is a
delayed post but /3; is not or (b) both are delayed posts and §; < J;
where §; and ¢; are respectively the timeouts used in /3; and /3;. The
cancellation of posted tasks (the second case) is handled by remov-
ing the corresponding post operations from the trace. We defer the
handling of posting-to-the-front (the third case) to future work.

4.3 Algorithm

Consider two operations «; and «; from an execution trace p
such that ¢ < j. We say that a data race exists between «; and o if
(1) they conflict and (2) a; A a; with respect to the trace p. Recall
that two operations conflict if they access the same memory location
and at least one of them is a write operation.

We implement a simple graph-based algorithm to detect data
races. Given a trace p = (@1, . . ., ), it constructs a directed graph
G = (V,E) where V. = {au,...,a,} is the set of nodes and
(a5, ) € E is an edge iff a; < «;. The edges are computed by
performing a transitive closure which runs in time cubic in the length
of the trace. Once all the edges are added to G, for each memory
location 1 in the trace, our algorithm checks whether there is an
edge between every pair of conflicting operations on 1. If there is
no edge then it reports a warning about a data race between the two
operations. Note that our algorithm performs an offline analysis, and
detects all races witnessed in the trace.

Classification of races. In order to assist the developer in under-
standing the root cause of a data race, our algorithm classifies the
races in several categories by analyzing the trace.

For a post operation a, callee(ay;) is the task that «; posts. Let
chain(a;) = (B, .., Bm) be the maximal sub-sequence of post
operations in the trace p such that callee(8;) = task(Bj+1) for
1 < j < mand callee(Bm) = task(c;). Between §8; and Bj with
j < k, B is called the most recent post operation.

Let a; and o; be two operations from the trace p involved in
a data race where ¢ < j. If thread(ay) # thread(a;) then it is
a multi-threaded data race. Otherwise, it is a single-threaded data
race. Single-threaded data races are further categorized as:

e Co-enabled: Let §; and (; be the most recent post operations
for environmental events, say e; and e;, from chain(o;) and
chain(a;) respectively. If 8; A B; then the race is called
co-enabled. Debugging it would involve checking whether the
events e; and e; are indeed co-enabled, that is, can they happen
in parallel. Two UI events on the same screen or lifecycle call-
backs of two distinct objects are examples of co-enabled events.
Delayed: Let ; and [3; be the most recent delayed posts in
chain(a;) and chain(a;) respectively. The data race is called
delayed if either (1) only f3; or (3; is defined (i.e., there is a de-
layed post in only one of chain(a;) or chain(a;)), or (2) B; #
B;. This race would require inspecting timing constraints used in
the delayed posts 3; and f3; for ruling it out.

Cross-posted: Let 3; and (; be the most recent post operations
in chain(a;) and chain(a; ) respectively such that 8; executes
on a thread other than thread(cy;) and similarly, for 3;. If only
one of them is defined or they are distinct then the race is called
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cross-posted. Resolving this race would require both thread-local
and inter-thread reasoning.

The classification is performed by checking the criteria for the cate-
gories in the order in which they are presented above. We note that
these criteria are not necessarily exhaustive but were found to de-
scribe root causes of most of the data races we observed. If none of
the criteria is met then the data race is classifed as unknown.

5. IMPLEMENTATION

We have implemented our race detection technique in a tool
called DROIDRACER that instruments and modifies Android 4.0.
DROIDRACER has three components: (1) UI Explorer, (2) Trace
Generator, and (3) Race Detector. DROIDRACER runs on an Android
emulator along with the unmodified binary of the test application.

UI Explorer. The Ul Explorer inspects Ul related classes like
WindowManagerImpl at runtime and obtains the events enabled on
a screen for all widgets. It can generate several types of events, such
as click, long-click, text input, screen rotation, and the BACK but-
ton press. For text fields, it can determine the required format of
the input (e.g., an email address) by inspecting flags associated with
text fields. It supplies text of appropriate format from a manually
constructed set of data inputs. DROIDRACER takes a bound k to
limit the length of UI event sequences. The UI Explorer systemati-
cally generates event sequences of length k in a depth-first manner.
The event sequences generated are stored in a database and used for
backtracking and replay. In order to trigger an event only after the
previous event is consumed and replay events consistently across
testing runs, we have implemented checks that involved instrument-
ing various classes (e.g., Activity, View, and MessageQueue).

Trace Generator. As the Ul Explorer drives the test application,
the Trace Generator logs the operations corresponding to our core
language. We instrument the Dalvik bytecode interpreter to log
read, write, acquire, release operations and track method in-
vocations leading to the execution of application code. We only log
object field accesses by application code. Whenever library methods
are invoked from application code the accesses to receiver object
of the method are also logged. While asynchrony related operations
like attachQ, loopOnQ, post, begin, and end are emitted by in-
strumenting MessageQueue and Looper classes, the rest of the core
operations except enable are tracked in Android’s native code.

In order to establish ordering between lifecycle callbacks of ap-
plication components such as Activity, one may need to track [PC
calls, code being executed in the system process, or any other ap-
plication process with which the application communicates. This
however makes trace generation difficult and less efficient. We in-
stead exploit enable operations to capture happens-before relation
between such callbacks. We have extensively studied Android de-
veloper documentation, Android library codebase, and various ex-
ecution scenarios to identify instrumentation sites to emit enable
operations. Thus, our Trace Generator executes entirely within the
test application’s process and is efficient. The enable operations
also help us establish logical ordering between Ul event callbacks,
capture relations between registering for a callback and execution of
a callback (as in case of BroadcastReceiver, IdleHandler), or
connect periodic execution of Java’s TimerTask objects.

Race Detector. The Race Detector takes a trace generated by Trace
Generator as input and constructs a happens-before graph. It detects
and classifies races as described in Section 4.3l

6. EVALUATION

We applied DROIDRACER on 10 open-source applications and
5 proprietary applications from different categories like entertain-
ment, communication, personalization, and social networking (see
Table[2). These include popular, feature-rich applications like Twit-
ter and Facebook with more than hundred million downloads each.

Table 2: Statistics about applications and traces.

Lo Trace , Threads | Threads | Async.
Application (LOC) length Fields (w/o Qs) | (w/Qs) tasks
Aard Dictionary (4044) 1355 189 2 1 58
Music Player (11012) 5532 521 3 2 62
My Tracks (26146) 7305 573 11 7 164
Messenger (27593) 10106 845 11 4 99
Tomdroid Notes (3215) || 10120 413 3 1 348
FBReader (50042) 10723 322 14 1 119
Browser (30874) 19062 963 13 4 103
OpenSudoku (6151) 24901 334 5 1 45
K-9 Mail (54119) 29662 | 1296 7 2 689
SGTPuzzles (2368) 38864 566 4 1 80
Remind Me 10348 348 3 1 176
Twitter 16975 | 1362 21 5 97

Adobe Reader 33866 | 1267 17 4 226
Facebook 52146 801 16 3 16
Flipkart 157539 | 2065 36 3 105

Together, the open source applications comprise 200K lines of code
(comments and blank lines omitted). The open-source applications
are separated from proprietary ones by a horizontal rule in Table[2}

In our experiments, these applications were systematically tested
with Ul event sequences between 1 and 7 events. Some of the appli-
cations exhibited complex concurrent behavior by spawning many
threads, starting Service components, and triggering Broadcast
Intents, even before DROIDRACER triggered the first UI event on
those applications. For such applications, we triggered sequences of
1-3 events only. For each application, DROIDRACER found tests
which manifested one or more races. This shows that data races are
prevalent in Android applications.

Table 2] gives statistics over one such representative test for each
of these applications. The rows of Table [2 have been arranged in
ascending order of trace length. The traces resulting from these
tests comprise 1K to 157K operations (in our core language). The
applications accessed thousands of memory locations in each run.
Even if a field of a particular class is accessed through multiple
objects in a trace, we report it only once under the column “Fields.”

Table |2 shows that these applications make heavy use of multi-
threading and asynchrony. The highest number of threads were cre-
ated by the Flipkart application (36 of them without task queues and
3 with queues). These numbers do not include the count of binder
threads and other system threads created by the Android runtime for
the applications (usually about 10-15). The applications also made
many asynchronous calls (see the column “Async. tasks”), further
adding to the non-determinism.

Performance. Trace generation causes a slowdown up to 5x due
to instrumentation overhead. Race Detector constructs a graph rep-
resentation of the trace with operations as nodes and edges added
due to happens-before rules. As an optimization, contiguous mem-
ory accesses without any intervening synchronization operation are
modeled by a single node in the graph. This reduced the number
of nodes to 1.4% to 24.8% of the original trace length (with avg.
11.1%) without sacrificing on the precision. For example, after the
optimization, the number of nodes in the graph representation of
Flipkart application’s trace was only 2.2K (compared to the trace
length of 157K). Race Detector took a few seconds to a few hours to
analyze traces and flag races while using up to 20 MB of memory.
The experiments were performed on an Intel Xeon E5-2450
2.10 GHz machine with 8 cores, 20 MB cache, and 250 GB SSD.
DROIDRACER runs in Android emulator on a single core.

Data races. Table [3| gives the number of data races reported by
DROIDRACER on the same traces as described in Table 2] It classi-
fies the races into different categories as discussed in Section[d.3] If
there are multiple races belonging to the same category on the same
memory location, DROIDRACER reports any one of them randomly.
Races for different objects of the same class are considered sepa-
rately. In addition to the races presented in Table 3] under different



Table 3: Data races reported by DROIDRACER: The entries of
the form “X(Y")” indicate the number of reports X generated by
DROIDRACER and the number of true positives Y among them.

Application Multi- Single-threaded

PP threaded | Cross-posted | Co-enabled | Delayed
Aard Dictionary 1(1) 0 0 0
Music Player 0 17 (4) 11 (10) 4 (0)
My Tracks 1(0) 2(1) 1(0) 0
Messenger 1) 15 (5) 4(3) 2(2)
Tomdroid Notes 0 5(2) 1(0) 0
FBReader 1(0) 22 (22) 14 (4) 0
Browser 2(1) 64 (2) 0 0
OpenSudoku 1(0) 1(0) 0 0
K-9 Mail 9(2) 0 1(0) 0
SGTPuzzles 11 (10) 21 (8) 0 0
Total 27 (15) 147 (44) 32 (17) 6 (2)
Remind Me 0 21 33 0
Twitter 0 20 7 4
Adobe Reader 34 73 0 9
Facebook 12 10 0 0
Flipkart 12 152 84 30
Total 58 276 124 43

categories, DROIDRACER reported 3 races for Music Player (with
2 being true positive), 9 races for Adobe Reader, and 36 races for
Flipkart in the unknown category (see Section [4.3).

We performed manual inspection to distinguish between true and
false positives. Apart from core operations, DROIDRACER logs pro-
cedure calls made on each thread to help identify source code lo-
cations and call stacks leading to racey accesses. We classify only
those reported races as true positives for which we could produce
alternate ordering of racey memory accesses than the reported or-
der in the trace. We used the DDMS debugge of Android for this
purpose as follows: (1) For multi-threaded and cross-posted races,
stall certain threads using breakpoints, giving others the opportunity
to progress or to enforce a different ordering of asynchronous pro-
cedure calls. (2) For co-enabled races, change the order of trigger-
ing events. (3) For delayed races, alter delay associated with asyn-
chronous posts. Table [3] gives the number of reports generated by
DROIDRACER and the number of true positives under each category
for the open-source applications.

Open-source applications. We used the open-source applications
to thoroughly evaluate DROIDRACER. Out of the total 215 reports
(including the 3 unknown category races of Music Player) generated
by DROIDRACER, 80 (37%) were confirmed to be true positives
(with 2 of these from Music Player’s unknown category). Thus,
even in the challenging setting of Android’s programming model,
DROIDRACER could effectively find real races. Since this is the first
work on race detection for Android, it is not possible to compare the
precision of DROIDRACER with another tool. Below we present the
6 cases for which we observed bad behavior by exercising the races.

A multi-threaded race. In Aard Dictionary, DROIDRACER reported a
race on an object of type Service which was responsible for loading
dictionaries. The race involved two threads with one writing to the
object (the main thread) and the other reading from it (a background
thread) without synchronization. We could produce another trace in
which the write causes a state change for the Service object. This
temporarily permitted the background thread to access the (empty)
dictionaries even before they were loaded. As a consequence, the
word the user wanted to lookup could not be retrieved.

A single-threaded race. In the Messenger application, DROIDRACER
reported a race on an object of type Cursor which holds a list ob-
tained from a database. The race involved two asynchronous tasks
running on the main thread with one of them being posted by another
thread. These tasks did not have a happens-before relation between
them. We could reorder the asynchronous tasks causing an “index
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of out of bounds” runtime exception on the Cursor object due to
access to a list element deleted by the other task. This race belongs
to the cross-posted category.

DROIDRACER also reported state altering races on mDataValid
and mRowIDColumn fields of CursorAdapter class accessed during
Activity launch and Activity exit in the Messenger application.
mDataValid and mRowIDColumn were expected to be false and —1
respectively after execution of Activity’s onStop lifecycle call-
back. Racey accessses (of the type cross-posted) set mDataValid to
true and mRowIDColumn to a row ID greater than —1.

In addition, when the asynchronous tasks containing racey ac-
cess were reordered for validating the reported data races, the appli-
cations FBReader and Tomdroid Notes crashed (respectively with
exceptions BadTokenException and NullPointerException) in
one execution each.

Proprietary applications. On the proprietary applications, we
found a total of 546 races (including 45 in the unknown category).
Since we depend on manual inspection and a debugger to validate
races, for the proprietary applications, in the absence of enough in-
formation (and the source code), we could not distinguish between
true/false positives. From our experience with the open-source ap-
plications, we believe that the developers of these applications could
utilize DROIDRACER’s output to identify problematic cases.

False positives and negatives. DROIDRACER only tracks opera-
tions due to Java code, whereas some applications perform oper-
artions using C/C++ code too. The high number of false positives
reported for Browser is due to asynchronous posts by untracked
natively-created (non-binder) threads. Applications like Messen-
ger and FBReader use custom task queues implemented as list of
Runnables. DROIDRACER would require a mapping of the high-
level constructs (e.g., adding and removing from the list) to the
operations in our core language to apply happens-before reasoning.
We did not modify Trace Generator to address these application-
specific issues. Custom task queues can also cause false negatives,
as DROIDRACER treats threads with custom queues as usual threads
and applies the NO-Q-PO rule deriving spurious happens-before re-
lations. The identification of instrumentation points to emit enable
operations for lifecycle callbacks is challenging due to the lack of
documentation. Missing enable operations might result in false
positives whereas adding spurious ones will cause false negatives.
Another cause of false positives is ad hoc synchronization, which
can potentially be addressed using the notion of race coverage [24].

7. RELATED WORK

To the best of our knowledge, no previous paper presents (1) a
formal concurrency semantics, (2) a happens-before relation, and
(3) a race detection tool for the multi-threaded event-driven pro-
gramming model of Android.

There are some tools that target specific types of concurrency
bugs in Android. Dimmunix [12] is a tool to detect and recover
from deadlocks. There are tools that check Android applications
against specific thread usage policies; e.g., Android’s StrictMode
tool dynamically checks that the UI thread does not perform I/O or
other time-consuming operations, Zhang et al. [29] statically check
that only the UI thread accesses Ul objects.

The concurrency model exposed by Android is different com-
pared to the models explored in the literature in the context of
race detection. There is of course a large body of work on static
and dynamic race detection techniques for multi-threaded programs,
e.g., based on locksets [} 16} [17, 123} 25]] or happens-before relations
[[7, [L1]], or their effective combinations [18} 22} [26128]]. However,
these algorithms do not consider asynchronous calls, and either do
not scale or produce many false positives, if asynchronous calls are
simulated through additional threads [24]. Further, analyses based
on locksets produce false positives because there may be no explicit
locks and instead, the synchronization could be through ordering


http://developer.android.com/tools/debugging/ddms.html

of events. For multi-threaded C programs, Kahlon et al. [[13] stati-
cally infer the targets of asynchronous calls and callbacks through a
pointer analysis. They however filter away races among procedures
running on the same thread, and thereby, miss single-threaded races.

Recent work on race detection for client-side web applica-
tions [20, 24} 130] considers the happens-before relation for single-
threaded event-driven programs and framework-specific rules to
capture the semantics of browsers and JavaScript. However, their
analysis is not immediately applicable to Android because there
is additional interference through multi-threading. As discussed in
Section .1} our definitions generalize the happens-before relations
for both multi-threaded programs and single-threaded event-driven
programs (modulo framework-specific rules).

Safety verification is undecidable for multi-threaded programs
communicating via FIFO queues, and there are no software model
checkers that understand this concurrency model. In general, static
analysis is also challenging for Android due to the heavy use of re-
flection, native code, asynchrony, databases, and inter-process com-
munication. Proprietary applications can be even more difficult to
analyze statically not only because the source code is unavailable
but also because the bytecode could be obfuscated. Most of these
issues however are handled well by our technique since it works di-
rectly on unmodified binaries.

Finally, we compare our Ul Explorer with related testing ap-
proaches. Our UI Explorer systematically explores and stores the
UI event sequences by performing depth-first exploration of the Ul
widgets (in the style of stateless model checking). Dynodroid [16]
is a testing tool for Android which randomly explores the Ul events
and unlike ours, does not provide easy replay. However, compared to
our current implementation, Dynodroid can simulate intents (build-
ing blocks of IPC). Android Monkeyﬂ is a random event generator
and lacks the ability to systematically explore the UI. AndroidRip-
per [2] performs a systematic Ul exploration but requires an external
framework to generate events. The Trace Generator and Race Detec-
tor components of DROIDRACER are independent of UI Explorer.
We can potentially combine them with any available testing tools.

8. CONCLUSIONS

We presented a formal tool for concurrency analysis of An-
droid applications, focusing on data race detection. The concurrency
model of Android is more general than most models considered in
the literature, and poses unique challenges for analysis. Our tool ef-
fectively found many races even in popular and mature applications.

Android is an expressive programming environment, and our for-
malization does not capture all its features. For example, we have
not formalized its handling of inter-process communication (except
IPCs relating to lifecycle events). DROIDRACER only generates UI
events but not intents in the testing phase. Modeling and implement-
ing these additional features are left for future work. We also wish
to investigate how to provide better debugging support, e.g., by ana-
lyzing the races that fall in the unknown category.
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