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Abstract

In recent decades, scientific data has become available in increasing sizes and

precision. Therefore techniques to analyze and summarize the ever increasing

datasets are of vital importance. A common form of scientific data, resulting from

simulations as well as observational sciences, is in the form of scalar-valued function

on domains of interest. The Morse-Smale complex is a topological data-structure

used to analyze and summarize the gradient behavior of such scalar functions.

This thesis deals with efficient parallel algorithms to compute the Morse-Smale

complex as well as its application to datasets arising from cosmological sciences as

well as structural biology.

The first part of the thesis discusses the contributions towards efficient com-

putation of the Morse-Smale complex of scalar functions defined on two and three

dimensional datasets. In two dimensions, parallel computation is made possible

via a paralleizable discrete gradient computation algorithm. This algorithm is

extended to work efficiently in three dimensions also. We also describe efficient

algorithms that synergistically leverage modern GPUs and multi-core CPUs to

traverse the gradient field needed for determining the structure and geometry of

the Morse-Smale complex. We conclude this part with theoretical contributions

pertaining to Morse-Smale complex simplification.

The second part of the thesis explores two applications of the Morse-Smale

iv



v

complex. The first is an application of the 3-dimensional hierarchical Morse-

Smale complex to interactively explore the filamentary structure of the cosmic web.

The second is an application of the Morse-Smale complex for analysis of shapes

of molecular surfaces. Here, we employ the Morse-Smale complex to determine

alignments between the surfaces of molecules having similar surface architecture.
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Chapter 1

Introduction

A common form of scientific data is the scalar field: a numerical measure of an

interesting quantity over a domain of study. Figure 1.1 shows two examples of

scalar fields. Figure 1.1(a) shows the wind speed computed from a simulation [1]

of the hurricane Isabel that struck the coast of Florida, USA, in September of 2003.

Figure 1.1(b) shows the electrostatic potential over the surface of the dihydrofolate

reductase enzyme obtained from the Protein Data Bank [2] (Protein Data Bank

ID=1AOE) computed and visualized using PyMol [3]. Often, these scalar fields

contain features of interest that need to be identified and extracted, such as the re-

gion corresponding to the eye of the hurricane shown in Figure 1.1(a). A common

approach for direct comprehension of such features is by visualization: the process

of transforming data into an image, so as to convey the key features present in

the data graphically. In Figures 1.1(a) and 1.1(b), smaller values of respective

scalar fields are mapped to blue shades, intermediate values are mapped to white

shades, and higher values are mapped to red shades. As is seen in both figures,

the key features of the data set are easily visually communicated by the color

mapping. With easy access to modern computing resources, datasets of increas-

ing size and complexity are becoming commonplace. Such developments allow for

1
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analysis of datasets that are rich in topological features. An example of this is

the study of mixing of fluids by Laney et al. [4], where the rich set of topological

features are correlated to the formation of bubbles during mixing. In such feature

rich datasets, direct visualizations become insufficient for conveying and studying

features. Thus, tools and techniques for analysis and summarization become cru-

cial for comprehending features being studied in the data. This thesis explores

the computation and applications of the Morse-Smale complex: a topological data

structure for the analysis of features in scalar fields.

(a) Wind speed during hurricane Isabel (b) Electrostatic potential on the surface of
the dihydrofolate reductase enzyme

Figure 1.1

1.1 The Morse-Smale Complex

The Morse-Smale complex is a topological data structure that is constructed based

on the gradient of a given scalar field. Informally, the gradient at any point

of the domain captures the direction along which the change of the scalar field

is maximized. Figure 1.2(a) shows an example of gradients for the scalar field
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computed by the analytic function sin(x)+sin(y). Integral lines passing through a

given point are constructed by integrating along and against the gradient. Integral

lines originate and terminate at critical points where the gradients vanish. The

Morse-Smale complex is defined as the partition of the domain into cells whose

integral lines share a common origin and terminal. Figure 1.2(b) shows an example

of a Morse-Smale cell of the function shown in Figure 1.2(a) formed by a set of

integral lines that share a common origin and terminal.

(a) (b)

Figure 1.2: (a) An analytic scalar function given by sin(x)+sin(y) and its gradient
at a few randomly selected points (black arrows). (b) A Morse-Smale cell whose
integral lines (yellow lines) share a common source (blue sphere) and destination
(red sphere).

In recent years, the Morse-Smale complex has been used in a variety of sci-

entific domains and applications, such as material sciences [5], fluid dynamics [4],

shape analysis [6, 7], terrain modeling [8], cosmology [9, 10], and molecular bond-

ing analysis [11]. In Section 3.2, we briefly discuss some exemplary applications to

illustrate how the Morse-Smale complex was used. In particular, Laney et al. [4]
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described an application of the Morse-Smale complex to analyze mixing of fluids

using hydrodynamic simulations. They analyzed statistics of topological features,

which are manifestations of bubbles formed during the mixing process. Due to the

richness of topological features in this dataset, and the unavailability of efficient

methods for 3D Morse-Smale complexes at that time, they were forced to restrict

their analysis using 2D Morse-Smale complexes. Subsequent developments focused

on efficient techniques [12, 13, 14] for computing Morse-Smale complexes. These

developments have enabled several applications, some of which are cited above.

Also, the topological features derived from the Morse-Smale complex are often not

directly useful. They need to be filtered and/or simplified, which often results

in analysis procedures that are refined over several iterations. Thus, efficiency in

technology for 3D Morse-Smale complexes is vital for fueling such analysis. In

recent years, with the advent of GPU systems and Multi-Core CPU architectures,

algorithms that accommodate parallelization and out-of-core processing become

increasingly important when scaling up analysis to large datasets. In the follow-

ing section, we outline our contribution for efficient contribution of Morse-Smale

complexes. We also briefly outline our contributions towards their simplification.

Finally, we discuss our contributions towards application of Morse-Smale com-

plexes for analysis of features in two applications.

1.2 Contributions

This thesis focuses on the following aspects of the Morse-Smale complex.

1. Efficient computation of the Morse-Smale complex.

(a) Algorithm for 2D in-memory and out-of-memory computation [15].

(b) Algorithm for 3D domains [16].
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(c) Open-Source software implementations of the above algorithms [17]

(d) Theoretical contributions for simplification.

2. Applications of the Morse-Smale complex.

(a) Topology based visual exploration Framework for cosmic filaments [18].

(b) Aligning molecular surfaces using Morse-Smale complexes [19].

1.2.1 Efficient Computation

We design efficient algorithms for computing the Morse-Smale complex in two and

three dimensions. Following the approach of earlier algorithms [7, 12, 20] for di-

rect parallelization poses significant problems in terms of the consistency of the

computed complex (see Section 3.1). In our approach, we develop an alternate

characterization of the Morse-Smale complex, which is amenable for parallel com-

putation. We also develop upon existing theory on simplification of Morse-Smale

complexes.

2D algorithm

We develop a parallel algorithm for computing the Morse-Smale complex for two-

dimensional domains. We prove two key lemmas that allow us to process data

using desktop parallel processors (GPUs and multi-core CPUs) and develop a

divide and conquer framework for data that does not fit in memory. The first

lemma allows the computation of the discrete gradient in parallel. The second

lemma allows us to split datasets into sub-domains, compute the Morse-Smale

complex of individual sub-domains independently, and subsequently merge them

to accurately form the Morse-Smale complex of the entire domain. We evaluate

the algorithm’s performance using simulated and real world datasets. We observe
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a near linear scaling of running times with respect to data size and number of

processor cores.

3D algorithm

We extend the algorithm for two-dimensional domains to work with scalar func-

tions defined on three-dimensional domains. The extension is non trivial because

of the additional structure present due to the two type of saddle critical points in

three dimensions. The key problem that arises in 3D and not 2D is that the gradi-

ent structure, defined by the discrete Morse-theoretic approach [21], possesses the

structure of a directed acyclic graph, as compared to a simpler tree structure in 2D.

Efficiently traversing this graph to reveal the structure of the Morse-Smale complex

is addressed by a priority queue based algorithm that allows for a hybrid compu-

tation of the Morse-Smale complex using both the CPU and the GPU. Again, we

evaluate the performance of both using simulated and real world datasets. We

observe a near linear scaling in running time with respect to data size. We also

observe that the algorithm outperforms the existing methods of Gyulassy et al. [12]

and Günther et al. [14].

Open Source Implementation

The above algorithms are implemented in C++ using the OpenCL framework for

deployment on massively parallel systems. Furthermore, the software is written

with a Python [22] interface to allow for interactive data analysis and visualization.

The source code is released under the GNU Lesser General Public License [23] and

is available at http://vgl.serc.iisc.ernet.in/mscomplex/. The website also

contains a video that demonstrates the usage of the software, along with some

simple code samples to illustrate its usage.

http://vgl.serc.iisc.ernet.in/mscomplex/
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Simplification guarantees

We present theoretical results relating to the simplification of the Morse-Smale

complex. Simplification is the process of systematically eliminating pairs of critical

points from the Morse-Smale complex, so that it contains fewer critical points. The

theory of persistence [24] provides a topological foundation for this process for 2D

Morse-Smale complexes. We show that it is possible to eliminate extremum critical

points in the 3D Morse-Smale complex consistent with persistence.

1.2.2 Applications of the Morse-Smale complex

We employ the Morse-Smale complex to develop two novel applications. The

first application is an exploration tool for cosmic filaments in cosmological density

distributions. In the second application, the Morse-Smale complex is used to

develop an efficient molecular surface alignment tool, ms3align.

Topology based Visual Exploration Framework for cosmic filaments

The universe has a web-like appearance, commonly known as the cosmic web [25],

at very large scales spanning distance from a few megaparsecs to a few hundred

megaparsecs1. The cosmic web is composed of huge blobs called clusters, which

contain thousands of galaxies. From these clusters, gigantic tentacles containing

thousands of galaxies spread out. These tentacles, known as cosmic filaments,

serve as transport channels for mass flow in the universe. The cosmic web also

consists of huge sheet-like collections of galaxies commonly known as walls. The

clusters, filaments, and walls of the web are intertwined around vast near-empty

cosmic voids. Cosmic filaments form unique structural elements, in that they may

1A parsec is the standard unit of measurement of distances in the cosmos. A parsec is 3.26
times the light-year, the distance light covers in a year. A megaparsec is a million parsecs.
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be found in a wide range of density and spatial scales. Indeed, it is this aspect

that makes their study both interesting and challenging.

We develop Felix: a topology based framework for visual exploration of cosmic

filaments . Here, the filaments are modeled as geometric elements associated with

the Morse-Smale complex. In particular, the framework is designed to accommo-

date a visual inquiry into the Cosmic filaments in multiple density ranges and

spatial scales. The query framework allows for user-specified density range param-

eters to be adjusted to visually correlate the extracted set of filaments. Specifically,

this framework uses a hierarchy of Morse-Smale complexes that is generated by

incrementally simplifying the Morse-Smale complex of the density field. The ex-

tracted set of filaments may be obtained simultaneously from any Morse-Smale

complex within this hierarchy. A key challenge that is overcome in this applica-

tion is in terms of providing for an efficient query framework to support such a

query.

We demonstrate the usefulness and the applicability of Felix via two primary

case studies. First, we develop a rudimentary structure classifier that identifies

galaxies as belonging to cosmic filaments and clusters or not. This is validated

against the heuristic Voronoi-Kinematic simulation datasets (see Section 5.5), for

which such a-priori classifications are already available. We show that we can

visually isolate and extract a qualitatively relevant set of filaments. These classifi-

cations are quantitatively shown to be similar and in many cases better than those

extracted using other structure classifiers. A video demonstrating the visual explo-

ration process in this experiment is available at https://youtu.be/8TRtX937Xjk.

In the second case study, we demonstrate the visual extraction of different

classes of cosmic filaments within the Cosmogrid simulation dataset (see Sec-

tion 5.5). Using a structured grid realization of the simulation, we investigate

two classes of filaments within this dataset. First, we extract those within the

https://youtu.be/8TRtX937Xjk
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high density regions, which form the “spine” of the cosmic web. Next, we iden-

tify significant cosmic filaments within the low density regions, which formed the

spine in earlier cosmic epochs. This highlights a key advantage of Felix, which

helps to extract and isolate such filaments that is not easily possible using earlier

methods. Using another realization of this simulation with tetrahedral meshes, we

demonstrate its usefulness to zoom into a specific region of the simulation.

The Multi-Scale Morse-Smale Molecular Surface Aligner

In structural biology, aligning and registering similar structures is often a first step

to analyze structurally similar molecules. With the wealth of 3D scanning tech-

niques such as X-Ray crystallography and cryo Electron-Microscopy, it has been

possible to create vast freely available repositories of molecular structures such

as the Protein Database [2] and the Electron-Microscopy Database [26]. Often,

such datasets, geometric entities such as the molecular surfaces are readily avail-

able representations of the underlying molecular surface. Thus, direct alignment of

such geometric representations provides for a data-minimal approach, which allows

for two advantages. First, the required representation is easily computable from

the underlying scanned data. Second, it is possible to align across representations

from different scanning methodologies, where the underlying geometric structures

are preserved.

In this application, we develop ms3align, a method (and the implementation of

it) to align molecular surfaces using the Morse-Smale complex. The tool leverages

the fact that, molecular surfaces often contain several significant protrusions that

are manifestations of groups of atoms, such as aromatic rings and amino groups,

close to the exterior surface. Given the input of two molecular surfaces, the mean

surface curvature of the surfaces are computed, and the Morse-Smale complex is

employed to identify and segment significant protrusions. Correspondences across
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a pair of surfaces are established based on the similarity of mean curvature values

averaged over a range of spatial scales. A product graph is constructed based on

the pairwise geometric consistency of correspondences. Cliques within this graph

are used to compute an alignments. The alignments are evaluated an RMSD based

measure, and the best few are reported.

We evaluate ms3align in three settings. First, we establish performance using

known alignments with varying overlap and noise values. Second, we compare the

method with SurfComp [27], an existing surface alignment method. Third, we

validate the ability of ms3align to determine alignments in the case of structurally

dissimilar binding sites. Fourth, we demonstrate the ability of ms3align to align

iso-surfaces derived from cryo-electron microscopy scans.

An open source implementation of the ms3align tool and a webserver that uses

this implementation is available at http://vgl.serc.iisc.ernet.in/ms3align/.

The source code is released under the GNU Lesser General Public License [23].

http://vgl.serc.iisc.ernet.in/ms3align/


Chapter 2

Background

This chapter reviews the necessary background on Morse theory and discrete

Morse theory required for the remainder of the thesis. For a more detailed ex-

position on the concepts of Morse theory, the reader is redirected to the book by

Matsumoto [28]. For the concepts on discrete Morse theory, more details may

be obtained from the publication by Forman [21]. On the definition of simpli-

cial complexes and their Betti numbers, the reader is redirected to the book by

Munkres [29] for more details.

2.1 Morse Theory and the Morse-Smale complex

Consider a smooth scalar function f : Rn → R. The gradient of f at a point x is

defined as the vector of first order partial derivatives,

∇f(x) =

(
∂f

∂x1
(x),

∂f

∂x2
(x), . . . ,

∂f

∂xn
(x)

)

A point p ∈ Rn is called a critical point with respect to f if the gradient of f , is

identically zero at p. The Hessian of f at a point x is defined as the matrix of

11
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(a) Morse-Smale function and its critical
points.

(b) Reversed integral lines.

(c) Descending manifold of a maximum. (d) Combinatorial structure of the Morse-
Smale complex.

Figure 2.1: (a) A Morse function shown as a height field over a two dimensional do-
main. Critical points are shown in red, green, and blue corresponding to maxima,
saddle, and minima, respectively. (b) The reversed integral lines of the function
over the surface. (c) The descending manifold of a maximum shown as the closure
of the set of reversed integral lines that originate from the critical point. (d) Com-
binatorial structure of the Morse Smale complex where nodes are critical points
and connecting integral lines are arcs.
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second order partial derivatives and is given by

Hf (x) =



∂2f
∂x21

(x) ∂2f
∂x2∂x1

(x) . . . ∂2f
∂xn∂x1

(x)

∂2f
∂x1∂x2

(x) ∂2f
∂x22

(x) . . . ∂2f
∂xn∂x2

(x)
...

...
. . .

...

∂2f
∂x1∂xn

(x) ∂2f
∂x2∂xn

(x) . . . ∂2f
∂x2n

(x)


A critical point is non-degenerate if the Hessian of f is non-singular. The function f

is a Morse function if all of its critical points are non-degenerate (see Figure 2.1(a)).

The index of a critical point is the number of negative eigenvalues of the Hessian

matrix. An integral line passing through a point p is a one-dimensional curve

l : R → Rn, where ∂
∂t
l(t) = ∇f(l(t)), ∀t ∈ R and l(0) = p. In other words, it is

a maximal curve in Rn whose tangent at every point equals the gradient of f at

that point (see Figure 2.1(b)). The function f increases along the integral line.

The limit points of integral lines, t→ ±∞, are the critical points of f .

The set of all integral lines that share a common source p = lim
t→−∞

l(t), together

with the point p, is called the ascending manifold of p and the set of all integral

lines that share a common destination p = lim
t→∞

l(t), together with the point p, is

called the descending manifold of p (see Figure 2.1(c)). The ascending manifolds

of all critical points partition the domain. Similarly the descending manifolds of

all critical points also partition Rn. The Morse-Smale complex is a partition of

Rn into cells formed by the collection of integral lines that share a common source

and a common destination.

The ascending manifold of a critical point of index d is a (n − d)-dimensional

manifold, where as its descending manifold is an n-dimensional manifold. A Morse

function f is called a Morse-Smale function if all ascending and descending mani-

folds of two critical points intersect transversally. For example, if the index of two

critical points differ by one, then their ascending / descending manifolds either do
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not intersect or intersect along a 1-dimensional manifold connecting the critical

points. In this case, the 1-manifold that connects the two critical points is referred

to as an arc. The combinatorial structure or 1-skeleton of the Morse-Smale complex

is a graph whose nodes are the critical points and edges exist between the nodes

if the corresponding critical points are connected by an arc (see Figure 2.1(d)).

2.2 Simplification

A Morse-Smale function f can be simplified to a smoother function by repeated

application of a cancellation operation that removes a pair of critical points con-

nected by an arc in the Morse-Smale complex. This cancellation corresponds to the

removal of the feature represented by the critical point pair. Features are ordered

based on the notion of persistence, equal to the absolute difference in function

value between the two critical points. Persistence measures the importance of a

critical point pair [24]. Edelsbrunner et al. [30] show that the least persistent

critical point pair is always connected by an arc in the 2D Morse-Smale complex.

Simplification of a pair of critical points can be achieved by a local smoothing

of the function in the neighborhood of the two critical points, more precisely

within the ascending / descending manifolds containing the critical points. The

cancellation is realized by updating the 1-skeleton of the Morse-Smale complex.

For example, consider the case of a two-dimensional Morse-Smale function after

a maximum-saddle cancellation. The 1-skeleton is updated by deleting the two

nodes, deleting the arcs incident on the saddle, and re-routing the arcs incident on

the maximum to the surviving maximum adjacent to the saddle (see Figure 2.2).

The embedding of a new arc is obtained by extending the old arc along the arc

between the maximum and saddle. We allow only those cancellations that can be

realized by a local smoothing of the function. This is feasible if the pair of critical
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(a) Morse-Smale complex and reversed inte-
gral lines

(b) Canceling a pair of critical points

(c) Combinatorial realization (d) Geometric realization

Figure 2.2: (a) Morse-Smale complex for a simple height function. (b) Canceling
a pair of critical points, qi, pi+1, of index i, i+ 1 that are connected by a single 1-
manifold. (c) Combinatorial realization: connect all index i critical points (N i

pi+1
)

that are connected to pi+1 except qi, to index i+ 1 critical points (N i+1
qi

) that are
connected to qi except pi+1. (d) Geometric realization: compute the union of the
descending manifold of pi+1 with the descending manifolds of all index i+1 critical
points connected to qi. Compute the union the ascending manifold of qi with the
ascending manifolds of all index i critical points connected to pi+1.
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Figure 2.3: An example of a strangula-
tion. The function is shown as a color
mapped height field. Here, the saddle
(green sphere) is connected to the min-
imum (blue sphere) via two arcs.

points is connected by a single arc. A pair of critical points that are connected

by two distinct arcs in the Morse-Smale complex results in a strangulation. Such

a pair cannot be canceled as the resulting function cannot be realized by a local

smoothing. Figure 2.3 shows an example of a strangulation.

2.3 The hierarchical Morse-Smale complex

A sequence of cancellations results in a hierarchical sequence of Morse-Smale com-

plexes MSC0,MSC1, ...,MSCn, where each Morse-Smale complex is a simpler

version of the preceding Morse-Smale complex containing fewer critical points.

Morse-Smale complex MSCi is said to be coarser than MSCj if i > j and finer if

i < j. The version index i enumerates the Morse-Smale complexes in the hierar-

chy. Each non-zero version of the Morse-Smale complex, MSCi, is associated with

the absolute difference in function value, ti, of the pair of critical points canceled

in the preceding version, MSCi−1. As each iteration selects the pair of critical

points with the least absolute difference in function value, the sequence of ti’s is

monotonically increasing i.e. (t0 = 0) ≤ t1 ≤ t2 . . . ≤ tn. For completeness of

the sequence, t0 is set to zero. Figure 2.4 illustrates a hierarchy of Morse-Smale

complexes.
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Figure 2.4: A hierarchical Morse-Smale complex. (left) The combinatorial struc-
ture of the Morse-Smale complex, MSC0, of a function with three maxima. The
critical points are shown as spheres, blue for minima, yellow for saddle, and red
for maxima. The arcs are shown as purple tubes. (right) Two cancellation oper-
ations applied to the Morse-Smale complex eliminates two maximum saddle pairs
connected to the central maximum. Each cancellation operations re-routs arcs
from the maxima connected to the canceled saddle to the saddles connected to the
canceled maximum. The two cancellations result in two successive versions of the
Morse-Smale, MSC1 and MSC2 respectively. This sequence of versions referred
to as the hierarchical Morse-Smale complex.

It is not necessary to explicitly store all versions of the hierarchy of Morse-Smale

complexes. Instead, the combinatorial representation of only MSC0 is computed

initially. Subsequently, MSCi can be obtained from a finer MSCi−1 by performing

topological cancellation (see Section 2.2). Analogously, MSCi is obtained from a

coarser MSCi+1 by applying the inverse operation of a topological cancellation.

2.4 Discrete Morse theory

Discrete Morse theory was developed by Forman [21] to study the topology of cell

complexes. A d-cell αd is a topological space homeomorphic to a d-ball Bd = {x ∈

Ed : |x| ≤ 1}. For example, a vertex is a 0-cell, an edge between two vertices is

a 1-cell, a polygon is a 2-cell, and in general a d-dimensional polytope is a d-cell.

We will restrict our attention to cells of the above kind, which can be represented

by a set of vertices. A cell α is a face of β, denoted α < β, if α is represented by a
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Figure 2.5: Examples of 2D cell complexes. (left) Icosahedron formed from 12
vertices (red spheres), 30 edges (green), and 20 triangles (blue). The edge marked
α has two cofaces, β1, β2, and two faces, γ1, γ2. For a d cell, its cofaces with
dimension d + 1 are called cofacets, and faces having dimension d − 1 are called
facets. Here, α has two cofacets, β1, β2, and two facets, γ1, γ2. Also, β1 and β2 are
cofaces of γ1, but not cofacets of γ1. (right) a torus formed by a set of vertices,
edges, and quad 2D elements.

subset of vertices of β. The cell β is called a coface of α. A face α is called a facet

of β if α < β and dim(α) + 1 = dim(β). In this case β is a cofacet of α denoted

by α l β. The set of zero-dimensional faces of a cell α is called the vertex set of

α denoted by Vα.

A cell complex K is a collection of cells that satisfies two properties: (a) If α

belongs to K then so do all faces of α, and (b) If α1 and α2 are two cells in K

then either they are disjoint or they intersect along a common face. A regular cell

complex is a cell complex in which, given two incident cells, βd+1 and γd−1, there

are exactly two cells αd1, α
d
2 such that γd−1 < αd1, α

d
2 < β. We consider only finite

regular cell complexes. Figure 2.5 shows two examples of 2D cell complexes, with

examples of an edge cell and its faces and cofaces marked. A filtration of a cell

complex K is a sequence of nested cell complexes K0, K1, . . . , Kn, such that K0 is

the empty cell complex, Kn is the cell complex K, and Ki is obtained by attaching
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Figure 2.6: A discrete Morse function
defined over a 2D cell complex. The
gradient pairs are shown as arrows ori-
ented towards the higher dimensional
cell. Dashed red arrows denote edge-quad
pairs and solid blue arrows denote vertex-
edge pairs. Critical cells are shown in red
(maxima), green (saddle), and blue (min-
ima).

one or more cells to Ki−1 for i = 1..n.

Note that a simplex is a d-cell which has exactly d+1 vertices in its vertex set.

A simplicial cell complex is a cell complex whose cells are d-dimensional simplices

such as vertices, edges, triangles, tetrahedra and so on. A simplicial complex is

also a regular cell complex.

Given a regular cell complex K representing the domain, a function f : K → R

is said to be a discrete Morse function if for all d−cells αd ∈ K,

|{βd+1 | αd < βd+1 and f(β) ≤ f(α)}| ≤ 1 and

|{γd−1 | γd−1 < α and f(γ) ≥ f(α)}| ≤ 1.

A cell αd is critical if

|{βd+1 | αd < βd+1 and f(β) ≤ f(α)}| = 0 and

|{γd−1 | γd−1 < α and f(γ) ≥ f(α)}| = 0

A discrete vector is a pairing between two incident cells that differ in dimension

by one. A discrete vector field on K is a set of discrete vectors such that every

cell in K is represented in at most one pair of the field. A V -path is a sequence of

cells

αd0, β
d+1
0 , αd1, β

d+1
1 , . . . , αdr , β

d+1
r , αdr+1

such that αdi and αdi+1 are facets of βd+1
i and (αdi , β

d+1
i ) is a vector, i = 1..r. A

V -path is called a gradient path if it contains no cycles (see Figure 2.6). A discrete
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gradient field is a discrete vector field that contains no non-trivial closed V -paths.

We refer to discrete vectors in a discrete gradient path as gradient pairs.

Maximal gradient paths of the discrete Morse function correspond to the notion

of integral lines of Morse functions. Ascending / descending manifolds are similarly

defined for discrete Morse functions.

2.5 Piecewise Linear(PL) Functions

Earlier approaches to compute Morse-Smale complexes were based on PL exten-

sions of functions sampled at vertices of simplicial complexes [31, 30]. Though we

adopt the discrete formulation of Morse-Smale complexes for our computations, we

introduce here some notions of PL function so that we may establish the closeness

of our approach to the PL approach. For further reading on the basic notions of

algebraic topology, we refer the reader to the classic text books by Munkres [29]

and Hatcher [32].

A function f sampled at vertices of a simplicial complex may be extended to

form a continuous function that is linear on every cell. The star of a vertex v is

the set of simplices incident on v. The link of a vertex v is the set of faces of cells

in the star of v, that are not incident on v. The lower star of vertex v is the set

of cells in the star where the PL extension assumes values lower than f(v). The

lower link of a vertex v is the set of faces of cells in the lower star of v, that are

not incident on v.

The Betti numbers of a cell complex, K, are a useful characterization of the

underlying space of a cell complex. They are defined for each k = 0, 1.., dim(K).

Intuitively, the 0th Betti number counts the number of components of K, the 1st

Betti number counts the number of tunnels in K, and the 2nd Betti number counts

the number of voids of K. Figure 2.7 shows an example of the Betti numbers of a
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Figure 2.7: The Betti numbers of
a torus. The torus has a sin-
gle component. There are two
tunnels that depicted by the red
circles. The surface encloses a
single void. Thus, the 0th Betti
number is 1, the 1st Betti number
is 2, and the 2nd Betti number is
1.

simple torus. The reduced Betti number is defined for k = −1, 0, 1.., dim(K). The

kth reduced Betti number is equal to the kth Betti number, for all k = 1, ..., dim(K).

The 0th reduced Betti number is equal to 0th Betti number reduced by one. The

−1th reduced Betti number is equal to 1 if the 0th Betti number is equal to 0, and

0 otherwise.

Reduced Betti numbers of the lower link can be used to classify a vertex of a

simplicial complex as non-critical (regular) or critical and to further classify critical

vertices. A vertex in a 2D simplicial complex is said to be regular if all the reduced

Betti numbers of the lower link are 0, minimum if the −1th reduced Betti number

is 1 and the others are 0, simple saddle if the 0th reduced Betti number is 1 and

the others are 0, and maximum if the 1st reduced Betti number is 1 and the others

are 0. It is possible for saddles to have the 0th Betti number greater than 1, and

such saddles are called multi-saddles.

The weak Morse inequality is a classic result of Morse theory which states

that, given a Morse function f defined on a manifold, the number of index k

critical points of f is greater than or equal to the kth Betti number [29]. Forman

established the analogous result for discrete Morse functions [21].
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2.6 Simulation of simplicity

Simulation of simplicity (SoS) is a programming technique that allows us to cope

with degenerate data for many geometric algorithms [33]. In the context of

Morse-Smale complexes we require that the function be nowhere flat to ensure

non-degeneracy. Implementing SoS is simple in this case. We simulate a non-

degenerate function using the available order of vertices in the storage device and

hence consistently resolve comparisons when function values at two vertices are

equal. Hence, we assume that f(x) 6= f(y) for all vertices x 6= y.



Chapter 3

Related Work

This chapter discusses related work with respect to computation and selected ap-

plications of the Morse-Smale complex. Section 3.1 discusses prior work related

to the computation of Morse-Smale complexes and contrasts the works with the

contribution of this thesis. Section 3.2 discusses selected applications that apply

Morse-Smale complexes for various tasks. In particular, the discussed applications

are contrasted against the applications discussed in this thesis to provide a per-

spective on the novel usage of Morse-Smale complex introduced in this thesis. The

arguments for the usage of Morse-Smale complex for each application are discussed

in the respective chapters.

3.1 Computation

Morse-Smale complexes were initially introduced in the context of dynamical sys-

tems [34, 35]. Several algorithms have been proposed to compute the Morse-Smale

complex of scalar functions defined on cell complexes. Broadly, they fall into two

classes. The first is based on the notion of quasi Morse-Smale complexes, intro-

duced by Edelsbrunner et al. [30]. The second is based on a discrete formulation

23
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of Morse theory introduced by Forman [21]. Table 3.1 provides a brief compari-

son of the prior algorithms for the computation of the Morse-Smale complex. In

particular, we remark on the salient shortcomings of these approaches.

Edelsbrunner et al. [30] introduced the notion of quasi Morse-Smale complex for

two-dimensional piecewise linear functions. They computed the cells of the Morse-

Smale complex while restricting the bounding arcs of the complex to edges of the

input mesh. This approach was extended to construct Morse-Smale complexes of

three-dimensional functions [31]. These early approaches traced the gradient paths

from saddle critical points and produced a boundary representation of cells in the

Morse-Smale complex. Bremer et al. [36] also followed this approach and developed

a multi-resolution representation of 2D scalar functions via controlled topological

simplification, and demonstrated the application of the Morse-Smale complex to

feature identification, noise removal, and view-dependent simplification.

Gyulassy et al. [5, 37] focused on three-dimensional functions and employed

an approach based on repeated cancellations of critical point pairs applied on an

artificial complex created from the input mesh by including dummy critical points.

The cancellations were appropriately scheduled in order to remove the dummy

critical points leaving behind the true critical points and cells of the Morse-Smale

complex. The order of cancellation determines the quality of the resulting Morse-

Smale complex and the algorithm efficiency.

Another approach to compute the Morse-Smale complex is based on a discrete

analog of Morse theory [38] introduced by Forman [21] to study discrete functions

defined on cells of a cell complex. Reininghaus et al. [39, 40] discussed an applica-

tion of discrete Morse theory to analyze vector fields. Bauer et al. [41] computed

simplified two-dimensional scalar functions while ensuring that the input function

is modified by no more than a threshold δ and all surviving critical point pairs

have persistence greater than 2δ.
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Method Input Approach Remarks

Edelsbrunner 2D Triangle Quasi a) Mesh specific
et al.,2003, [30] complexes MS Complex interpretation of

Separatrix lines.
b) Sequential execution.

Edelsbrunner 3D Triangle Quasi a) Mesh specific
et al. 2003, [31] complexes MS Complex interpretation of

Separatrix lines/sheets.
b) Sequential execution.

Gyulassy et al. 3D Cell Repeated a) Cancellation order
2006, [37] complexes application of dependent.

topological b) Sequential execution.
cancellations.

Cazals et al. 2D Triangle Discrete Morse a) Sequential discrete
2003, [7] complexes Theory gradient algorithm.

b) Ambiguous definition of
discrete Morse function.

Gyulassy et al. 3D Cell Discrete Morse a) Sequential discrete
2008, [12] complexes Theory. gradient algorithm.

Split & merge b) Ambiguous definition of
strategy for discrete Morse Function.
large data. c) Expensive gradient

field traversal step.
Robins et al. 3D Cell Discrete Morse a) CPU Parallel Discrete

2011,[13] complexes Theory. Gradient Algorithm.
b) Ambiguous definition of
discrete Morse Function.
c) Expensive gradient
field traversal step.

Günther et al. 3D Cell Discrete Morse a) CPU Parallel Discrete
2011,[14] complexes Theory. Gradient Algorithm.

b) Ambiguous definition of
Builds on approach discrete Morse Function.

of Robins et al. c) Requires data sized flag
to improve gradient buffers for each traversal

field traversal.

Table 3.1: A comparison of prior algorithms to compute the Morse-Smale complex.
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Cazals et al. [7] and Lewiner et al. [42] successfully employed Forman’s discrete

Morse theory to compute Morse-Smale complexes of piecewise-linear functions and

demonstrated applications to segmentation, visualization, and mesh compression.

Gyulassy et al. [12] also used a discrete Morse theory based formulation to develop

an efficient algorithm for computing Morse-Smale complexes of large 3D data that

do not fit in main memory. They partition the data into blocks called “parcels”

that fit in memory, compute gradient flows on the boundary of the parcels, prop-

agate the flows to the interior and compute the Morse-Smale complex restricted

to a parcel. Critical cells that are created on the boundary are canceled during

a subsequent merge step resulting in the Morse-Smale complex of the union of

the parcels. This serial method scales well for large data but the geometry of

the Morse-Smale complex is sensitive to the order of cancellations chosen during

the merge step. Furthermore, both methods do not use a robust definition of the

discrete Morse function. Thus, the gradient pairs are also potentially ambiguous

and therefore inconsistent.

Robins et al. [13] proposed an algorithm to compute the Morse complex of 2D

and 3D gray-scale digital images modeled as discrete functions on cubical com-

plexes. The algorithm computes the Morse complex with provable guarantees on

its correctness with respect to the critical cells. The algorithm focuses on deter-

mining discrete gradient pairs so that the set of critical cells that remain unpaired

correspond to the set of piecewise linear critical vertices. However, this leads

to pairs that do not necessarily determine the direction of steepest descent and

hence may result in gradient pair directions that are inconsistent with the numer-

ical notion of gradients. Also, the pairing algorithm is not easily implementable

on current generation GPUs because of the usage of dynamically allocated data

structures such as priority queues. Furthermore, the algorithm does not guarantee

polynomial time execution since they use a modified breadth first search algorithm
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Method Input Approach Remarks

Shivashankar et al. 2D Cell Discrete Morse a) GPU parallel discrete
2012,[15] complexes Theory. gradient algorithm.

b) Defines a totally ordering
discrete Morse function based
on the steepest descent notion.

Shivashankar et al. 3D Cell Discrete Morse a) Extended GPU parallel discrete
2012,[16] complexes Theory. gradient algorithm.

b) Memory efficient traversal
procedure that only requires the
frontier in memory

Table 3.2: The contributions of this thesis towards efficient Morse-Smale complex
computation.

that traverses all possible paths between two nodes, which can be exponential in

the number of nodes.

Günther et al. [14] described a memory efficient algorithm using the gradient

algorithm of Robins et al. [13]. In their improvement, they ensure that the compu-

tational complexity of the traversal is quadratic instead of exponential. They do

this by maintaining the set of visited nodes and ensure that each node is processed

only after all possible paths have arrived to it. This necessitates the maintenance

of a container that potentially grows the size of the entire descending / ascending

manifold of a critical point. Hence, it becomes memory inefficient when deployed

in parallel.

More recently, Peterka et al. and Gyulassy et al. [43, 44] introduced a set of

building blocks for implementing parallel algorithms, which leverage high perfor-

mance computing clusters. In particular, they discuss a parallel implementation of

the discrete Morse theory based algorithm proposed by Gyulassy et al. [12] using

their framework. They deploy the method on large supercomputing clusters and

observe the near linear scaling behavior with data-size (discounting IO).
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Table 3.2 provides a brief summary of the contributions of this thesis in com-

parison to the discrete Morse-Smale complex algorithms discussed in Table 3.1. A

more detailed discussion of the differences with respect to the approach of earlier

algorithms is discussed in Section 4.3.

3.2 Applications

This section briefly discusses a few selected applications of Morse-Smale complexes

in various domain sciences. In particular, the specific usage of the Morse-Smale

complex is highlighted. This serves to highlight some of the key ways in which

Morse-Smale complexes are useful for scientific data analysis. Also, some of the

novel usages of the Morse-Smale complex in the applications discussed in this

thesis are highlighted here. Table 3.3 presents a brief comparison of the essential

structures used from the Morse-Smale complex for each application, as well as a

comparison of the simplification methodology adopted.

Laney et al. [4] discuss an application of 2D Morse-Smale complexes for the

analysis of hydrodynamic simulations. In particular, they analyze the turbulent

mixing layer between two liquids with different densities upon the application

of pressure. The mixing layer is extracted as a 2D slice from the density field

and the Morse-Smale complex of the resulting field is computed. The statistics

of minima and maxima are correlated with known phases in the mixing of such

fluids. Furthermore, the segmentation of the mixing layer is used for a qualitative

analysis of the creation and destruction of bubbles across the simulation time span.

Gyulassy et al. [5] discuss an application of the 3D Morse-Smale complex to

compute the core structure inside a porous medium. Here, the core structure is

represented as ascending arcs of 2-saddles in the Morse-Smale complex of a signed

distance field that captures the structure of the porous medium. The Morse-Smale
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complex is simplified so that 2-saddle maximum pairs that do not entirely cross

a range of function values are simplified away. The resulting sub-complex formed

by the 2-saddle-maxima connections in the Morse-Smale complex, along with the

their geometric embedding form the “core” of the porous media. In a simulation

of the impact of a foreign body on the porous medium, they present statistics

pertaining to the number of loops that survive the impact.

Sousbie et al. [9, 10] describe an application of the Morse-Smale complex to

analyze the large scale structure of the Universe. The large scale Universe consists

of collections of billions of galaxies that organize themselves into cosmic clusters,

gigantic tentacle like structures known as cosmic filaments, and flattened wall like

structures, referred to as cosmic walls. They surround vast regions of relatively

empty regions of space known as cosmic voids. Sousbie et al. compute the Morse-

Smale complex of the logarithm of the density field computed from the galaxy

distribution. In it, the clusters are represented by maxima. The filaments and

walls are modeled by the ascending geometry of 2-saddles and 1-saddles respec-

tively. Voids are modeled by the ascending geometry of minima. In cosmic density

distributions, one expects such features to be found in multiple density and spatial

scales. Therefore, they employ a variation on the persistence simplification mecha-

nism, where they use separate thresholds for minimum-1-saddle, 1-saddle-2-saddle,

and 2-saddle-maximum pairs. The method is shown to be effective in isolating such

large scale structures in several cosmological simulations and cosmological survey

datasets.

Günther et al. [11] present an application of the Morse-Smale complex to an-

alyze molecular bonding in chemical systems using the electron density field. In

particular, they use topological analysis to classify interactions as covalent and

non-covalent. Their method computes the Morse-Smale complex of a weighted

version of the electron density field and analyzes the 1-saddle minimum arcs in the
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complex. They simplify the Morse-Smale complex to eliminate 1-saddle-minimum

pairs in three steps. First, they eliminate low persistence pairs. Next, they remove

minimum-1-saddle pairs so that only minima within a prescribed density range are

retained. Finally, they eliminate 1-saddles that are not within “interaction” re-

gions, which are obtained using a pre-processing step. Using the retained 1-saddles

and the embedding of their ascending geometry, they study the interactions of var-

ious chemically relevant quantities along this bonding path.

Gerber et al. [45] describe the application of Morse-Smale complexes for esti-

mating regression models. In particular, given points in high dimensional space,

they compute a neighborhood representation using a k-nearest neighborhood graph.

They partition the data based on the source and sink of steepest monotonic paths

in this graph, where steepness is measured as the absolute difference of values of

the response variable at the end points of the edges. For each Morse-Smale cell,

they compute a linear regression surface. Next, they design a classifier to estimate

the probabilities of a given input point belonging to the Morse-Smale cells. Then,

the response value of each Morse-Smale regression surface is weighted by these

probabilities, to produce the final response value for the given input.

In this this thesis, we explore two applications of the Morse-Smale complex. In

the first application (See Chapter 5), we develop upon the methodology of Sous-

bie et al. [9], to create a Topology based Visual Exploration Framework [18], to

explore cosmic filaments. A particular highlight of this approach is that we do

not directly simplify any features. Instead, features are extracted from across a

hierarchy of Morse-Smale complexes based on a density scale of interest, which is

different from the approach taken by the above applications for feature extraction

from the Morse-Smale complex. This is in analogy with the muli-scale nature

of cosmological data, where one wishes to explore features with particular den-

sity characteristics. In the second application (See Chapter 6), the Morse-Smale
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Application Features Domain Dim Remarks

Laney et al., a) Extrema Statistics Fluid 2D Persistence
[4],2006 b) Extrema Morse cells Dynamics based simplification

for feature tracking
Gyulassy et al. 2-saddle ascending Material 3D Persistence and
[5] ,2007 geometry Sciences function range

based simplification
Sousbie et al. Maxima positions, Cosmology 3D Persistence based
[9, 10],2011 ascending geometry of simplification

2-saddles, 1-saddles,
and minima

Günther et al. Descending geometry Physical 3D Persistence +
[11],2014 of 1-saddles Chemistry function range based +

region classification
based simplification

Gerber et al. Extrema Statistical nD Persistence based
[45],2012 Morse-Smale Data simplification

cells Analysis
Shivashankar 2-saddle ascending Cosmology 3D Features are extracted
et al.,[18],2015 geometry from a persistence
[This Thesis] hierarchy of Morse-Smale

complexes
Shivashankar Maxima descending Structural 2D Persistence based
et al.,[19],2015 geometry biology Simplification.
[This Thesis]

Table 3.3: A comparison of the features extracted from the Morse-Smale complex
in different applications
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complex is employed to compute the segmentation of molecular surfaces to iden-

tify significant protrusions [19]. Here, the Morse-Smale complex of mean surface

curvature is simplified using topological persistence.



Chapter 4

MS Complex Algorithm

In this chapter, we discuss our algorithm to efficiently compute the Morse-Smale

complex, abbreviated as MS complex henceforth. Section 4.1 discusses our efficient

Morse-Smale complex computation algorithm applicable to 2D and 3D domains

with the assumption that datasets fit in memory. In Section 4.2, we discuss the

extension of our algorithm to datasets that do not fit entirely in memory. Sec-

tion 4.3 compares and highlights differences and advantages of our algorithm over

other Morse-Smale complex algorithms. Sections 4.4 and 4.5 discuss the imple-

mentation and evaluation of our algorithm for 2D and 3D structured grids. In Sec-

tion 4.6, we discuss our contributions towards simplification of the Morse-Smale

complex. We conclude this chapter with Section 4.7.

4.1 In-core Algorithm

We now describe our algorithm to compute the MS complex. In this section

we assume that the dataset fits entirely in memory. Section 4.2 discusses the

extension of the method to datasets that do not fit in memory. We first describe

a canonical extension of scalar functions sampled at vertices to discrete Morse

33
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functions and demonstrate why it is not a suitable extension for computing the

MS complex. Next, we introduce a weighted discrete Morse function which satisfies

a key property leading to an algorithm that computes gradient pairs in parallel.

The algorithms to compute the gradient field applicable for general n-Dimensional

regular cell complexes. Thus the arguments and proofs are constructed to ensure

that they work for those cases. Next, we discuss efficient algorithms to traverse

the gradient field to extract the MS complex. Since the structure of the gradient

field in 2D is simpler than 3D gradient fields, their traversal may be performed

on the GPU. Efficient algorithms to traverse the 2D gradient field in CPUs and

GPUs are discussed in Section 4.1.4. These algorithms may by directly adapted for

traversing the gradient paths originating/terminating at the extrema 3D gradient

fields. However this is not true for the additional 1-saddle-2-saddle sub-structure

present in 3D gradient fields. In Section 4.1.4, we discuss efficient algorithms to

traverse this additional sub-structure. Finally, we analyze the computed gradient

field and argue for its correctness.

4.1.1 Discrete function

Given a regular cell complex K with vertex set V and a scalar function f : V → R,

a canonical extension of f to a discrete Morse function, Fd : K → R, is defined

recursively on a cell α as Fd(α) = maxσ<α Fd(σ)+ε, where ε > 0 is an infinitesimally

small real value [12]. Extending the function f in this manner results in all cells

becoming critical with respect to the discrete Morse function Fd. This implies

that each cell in the input is essentially a cell of the MS complex. Further, newly

introduced critical cells that are incident on each other can be canceled using an

infinitesimally small persistence threshold ε to create an ε-persistent MS complex.

The motivation for extending the function f to Fd is that the MS complex can

be computed via repeated cancellations of ε-persistent pairs. The collection of
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ε-persistent critical point pairs are viewed as a pairing of incident cells or discrete

gradient pairs. The pairs are represented by arrows from the lower dimensional

cell to the higher dimensional cell indicating descent. These pairings constitute

a discrete gradient field. Gyulassy et al. [12, 37] compute the MS complex via

a sequence of cancellations of the ε-persistent critical point pairs. However, this

approach does not necessarily compute paths of steepest descent. Consider the

case when two cells, β1 and β2, share a common facet α such that Fd(β1) and

Fd(β2) are written as

Fd(β1) = Fd(α) + ε

Fd(β2) = Fd(α) + ε.

Either one of β1 or β2 can be paired with α. For both pairs, the difference in value

of Fd is equal to ε. The tie is broken arbitrarily in this case.

4.1.2 Weighted discrete function

We now describe a method to extend a given real valued function (f) on the vertex

set (V ) of a given mesh (K) to a function (Fw) that is defined on all cells of the

mesh. We show that this function is a discrete Morse function and that it imposes

a total order on the cells. Since the algorithm for computing the MS complex

requires only the order between cells, we describe a symbolic comparator that

does not explicitly compute the function value. We assume that the input vertices

are totally ordered based on the input function specified at the vertices.

We define a weighted discrete function Fw on a d-dimensional cell αd recursively

as

Fw(αd) = Fw(G0(α
d)) + εd × Fw(G1(α

d)),
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Figure 4.1: The weighted dis-
crete function is defined recur-
sively as a weighted sum of the
function value at faces G0 and
G1. Faces G0 (in red) and G1

(in blue) for an edge, triangle and
quad cells are shown. The func-
tion value at vertices increases
along the vertical axis.

where ε is an infinitesimally small positive real number,

G0(α
d) = arg max

γ<αd
Fw(γ), and

G1(α
d) = arg max

γ<αd,Vγ∩VG0(α
d)
=φ

Fw(γ).

VG0(α) is the vertex set of G0(α
d), and arg max denotes the value of the argument

γ that maximizes the function. Similar to Fd, Fw is also equal to f at the vertices.

The weighted version of the discrete function ensures that when two cells share a

common face whose function value is the maximum among both face sets, then the

tie is broken using the second maximum face whose vertex sets are disjoint from

the above common face. See Figure 4.1 for the definition of the weighted discrete

function for some common cell types. Figure 4.3(a) shows the expansion of Fw for

a function sampled on a 2D grid.

G0(α
d) is necessarily a d− 1 cell. This is because Fw of any d− 1 face of αd is

greater than all faces incident on the d−1 cell. Thus, the d−1 cell that maximizes

Fw will have higher function value than all faces of αd. Also G1(α
d) must exist for

all cells with d > 0. Theoretically, we require Fw(G1(α
d)) to be strictly positive to

ensure that its value at cofacets is greater than at the facet. This assumption is

valid if we rescale the range of f to [0 + δ, 1], δ ∈ (0, 1). In practice we obtain the

order on the cells via a symbolic comparison and do not need to explicitly compute
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Fw.

Fw is well defined and totally ordering

For Fw to be well defined we require G0, G1 to be unique. The cells G0(α
d) and

G1(α
d) for a given αd are unique if Fw induces a total order on all cells of dimension

less than d. This suggests an inductive proof, which we outline below.

Since f(x) 6= f(y) for all x 6= y, Fw is well defined and induces a total order

on all zero-dimensional cells. Now, assume that Fw induces a total order on all

cells of dimension less than d. We will show that we can order two cells αd1, α
d
2 or

αd1, α
d′
2 where d′ < d and α1 6= α2.

Let G0(α
d
1) = γ1 and G1(α

d
2) = γ2. We have Fw(αd1) = Fw(γ1)+εd×Fw(G1(α

d
1))

and Fw(αd2) = Fw(γ2) + εd × Fw(G1(α
d
2)). Assume that γ1 6= γ2. Cells γ1 and γ2

have dimension less than d and can therefore be ordered. We may choose ε to be

arbitrarily small, so that the comparison of Fw(αd1) and F (αd2) is dominated by

the comparison of F (γ1) and F (γ2).i.e. Fw(γ1) < Fw(γ2)⇒ Fw(α1) < Fw(α2) and

Fw(γ1) > Fw(γ2)⇒ Fw(α1) > Fw(α2).

If γ1 = γ2 then the second term induces an order on α1 and α2. Note that

if αd1 6= αd2 then G1(α
d
1) 6= G1(α

d
2) because K is a cell complex. This is because

if two d-dimensional cells intersect they do so along a single common cell whose

dimension is less than d. The cells αd1 and αd
′

2 can be ordered using a similar

argument. Thus, the weighted discrete function Fw is well defined and induces a

total order.

Implementing Fw’s total order

Subsequent algorithms require only an ordering of cells in K and not the explicit

values of Fw. We describe Algorithm compareCells which establishes this order

on all cells using only comparisons of the function f on the vertices of K. We
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begin with Algorithm compareDCells that orders two d-cells. Both algorithms

describe a comparator that accepts two cells as input and returns true if the first

cell is lesser than the other and false otherwise.

Algorithm 4.1 compareDCells

1: procedure compareDCells(d, α, α′)
2: if d = 0 then
3: return f(α) < f(α′)

4: γ ← G0(α), γ′ ← G0(α
′) . Both γ and γ′ are (d− 1)-cells.

5:

6: if γ 6= γ′ then
7: return compareDCells(d− 1,γ, γ′)
8: else
9: ψ ← G1(α), ψ′ ← G1(α

′) . Both ψ and ψ′ are dψ-cells1,
10: dψ ←Dim(ψ) . where 0 ≤ dψ < d.
11: return compareDCells(dψ,ψ, ψ′)

Algorithm compareDCells is a recursive procedure based on the recursive

definition of Fw. The base case of the recursion is handled by comparison of the

scalar function value of f at the vertices of K (Line 3), where it is assumed that it

is always possible to consistently order the given input scalar function [33]. Line

number 11 of Algorithm compareDCells assumes that ψ and ψ′ have the same

dimension 1.

Algorithm compareCells extends Algorithm compareDCells so that cells

of any dimension may be compared. Algorithm compareCells begins by first en-

suring that the two cells are distinct. If not, as a cell cannot be less than itself, false

is returned. In case α is the higher dimensional cell, then Algorithm compare-

Cells is invoked again with the arguments reversed and the result is then negated.

Algorithm compareCells invokes Algorithm compareDCells to compare the

1This is only true for cell complexes which contain maximal cells of one type such as trian-
gle/tetrahedral meshes and structured grids. For more general cell complexes, this need not be
true. For such cases, line number 11 of Algorithm compareDCells needs to be replaced with
compareCells(ψ,ψ′).
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d-cell α with the highest d-face of β α′. However, if α and α′ are the same cell,

because α 6= β, it must be that α′ is a proper face of β. In that case, since a cell

is higher than all its face by the ordering of Fw, the procedure returns true.

Algorithm 4.2 compareCells

1: procedure compareCells(α, β)
2: if α = β then . If both cells are the same,
3: return False . a cell is not less than itself.
4:

5: d←Dim(α)
6: if d > Dim(β) then . If α has higher Dim, re-invoke with
7: return ∼compareCells(β, α) . args reversed and negate.
8:

9: α′ ← β . Get β’s highest d-face α′.
10: while d < Dim(α′) do
11: α′ ← G0(α

′)

12:

13: if α = α′ then
14: return True . α is a proper face of β

15:

16: return compareDCells(d, α, α′)

Additional terminology : Gi
0, εLST , and εLLK

Here, we introduce the terms Gi
0, ε-lower star (εLST ), and ε-lower link(εLLK) to

ease correctness and analysis arguments in ensuing sections.

We introduce the notation Gi
0 to help unravel the recursive definition of Fw(αd).

Let Gi
0(α

d) denote the G0 function applied i (≥ 0) times on a cell αd. For example,

G2
0(α

d) = G0(G0(α
d)), G0

0(α
d) = αd.

We define ε-lower star of the vertex v as the set of cells σd such that v = Gd
0(σ):

εLST (v) = {σd ∈ K | v = Gd
0(σ

d)}

We note that if K is a simplicial complex, v is a vertex and the function is a PL

extension of samples at the vertices, then the ε-lower star of v is exactly the lower
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(a) (b)

Figure 4.2: (a) εLST (cells in purple) and εLLK (cells in dark gray) of a ver-
tex, for a function sampled at the vertices. Other cells are shown in light gray.
(b) Gradient pairs and critical cells determined by algorithms AssignGradient
and AssignGradient2.

star of v (See Figure 4.2(a)). Similarly, we define ε-lower link (εLLK) of a vertex

v to be the set of faces of cells in εLST (v) that are not incident on v.

We claim that the cells in εLST (v) are ordered contiguously by Fw. Consider

any γd /∈ εLST (v). We can express Fw(γd) as

Fw(γd) = Fw(Gd
0(γ

d)) +
d∑
i=1

εi × Fw(G1(G
d
0(γ

d)))

by successively rewriting the leading term. Since γd /∈ εLST (v) we have that

Gd
0(γ

d) 6= v. By writing the expression for Fw for all cells σd
′ ∈ εLST (v) in the

above form, the comparison of γd and σd
′

will be dominated by the comparison of

cells Gd
0(γ

d) and Gd′
0 (σd

′
). Hence γd would precede or succeed all cells of εLST (v).

4.1.3 Computing gradient pairs

We now outline algorithm AssignGradient and its extension AssignGradi-

ent2 to compute discrete gradient pairs using the Comparator compareCells.

We prove that the pairs found are unique and independent of the order in which
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(a) (b)

Figure 4.3: (a) A scalar function, f , defined on the vertices is recursively ex-
tended to a discrete Morse function Fw. The value of Fw is shown for each cell.
(b) Gradient pairs determined by AssignGradient.

the cells are considered, thus providing scope for parallelizing the algorithms. We

then prove the validity of the gradient field. In doing so, we develop the com-

pareCellsPostPair comparator that generates a total order which respects the

partial order induced by the gradient field.

Gradient Algorithm

Algorithm 4.3 AssignGradient

1: procedure AssignGradient()
2: for all α ∈ K do
3: Pα = {β|α = G0(β)}
4: if Pα 6= φ then
5: β = Min(Pα) . Lowest in Pα ordered by compareCells.
6: pair cells (α,β)

Algorithm AssignGradient list the gradient pairing method, where α de-

notes a cell in the complex K. The set Pα is the set of α’s cofacets whose maximal

facet is α itself. Figure 4.3(b) shows the gradient field determined by the algorithm

AssignGradient for the function in Figure 4.3(a). We now prove the uniqueness

of pairs found by Algorithm AssignGradient.
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Lemma 4.1: Order Independent Pairing Lemma. The pairing determined

by the algorithm AssignGradient is independent of the order in which cells are

processed. In particular, if a cell α pairs with its cofacet β then β will not pair

with any of its cofacets.

Proof. Inconsistencies occur if the algorithm determines two or more pairs for the

same cell. A cell present in two pairings can be of the nature (α, β),(α, β′) or

(α′, β), (α, β) or (γ, α), (α, β) where γ l αl β.

This first conflict is trivially not possible because for a cell α we determine a

unique pair from a set of candidate facets. In the second case, if β were to be paired

with two different facets, α and α′, then β ∈ Pα, Pα′ . But, from the definition of

Pα we know that G0(β) is unique and equal to either α or α′. Therefore, β must

either belong to Pα or to Pα′ but not both. So, β is paired either with α or with

α′.

To prove that the third conflict does not arise, we show that if α pairs with

one of its cofacets β, then α is not the lowest pairable cofacet of any of its facets

i.e. β = MinF (Pα) implies α 6= MinF (Pγ) for all γ l α. This will imply that if

α paired with β, then it is not paired with any other cell γ. Consider a facet γ of

α, γ l α. If α /∈ Pγ then there is nothing to prove because the algorithm will not

pair γ with α. Now assume α ∈ Pγ. For a regular cell complex, if γ is a face of

a cell β such that dim(γ) = dim(β)− 2, then there exists exactly two cells σ1, σ2

such that γ l σ1 l β and γ l σ2 l β. Without loss of generality, we relabel σ1, σ2

as α, α′. Since (α, β) form a pair and not (α′, β), we have Fw(α′) < Fw(α). Hence,

it is sufficient to show that α′ ∈ Pγ.

Assume that α′ /∈ Pγ. There exists γ′ 6= γ ∈ K such that γ′ l α′ and α′ ∈ Pγ′ .

This implies Fw(γ′) > Fw(γ). Since Fw(α) = Fw(γ) + ε and Fw(α′) = Fw(γ′) + ε

we have Fw(α) < Fw(α′). This is a contradiction. Hence, we have α′ ∈ Pγ and

Fw(α′) < Fw(α). So, if (α, β) is a pair then α 6= MinF (Pγ) for any γ < α, which
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Figure 4.4: (left) The ε-lower-star and the lower link of a vertex with the height
function defined. (center) Algorithm AssignGradient declares the green edge
and the red triangle as critical because the edge is not the highest facet of any of
its cofacets. (right) Algorithm AssignGradient2 pairs these cells because the
edge is the second highest facet of the unpaired triangle.

implies that there is no such pair (γ, α).

Extended Gradient Algorithm

Algorithm AssignGradient is conservative and may leave multiple cells unpaired

thereby declaring them critical (See Figure 4.4). We introduce an additional pair-

ing procedure that avoids the creation of such ε-persistent pairs within the ε-lower

star. This procedure executes during a second pass over the cells and essentially

seeks to pair cells with their second highest facet consistently when their highest

facet is paired with another cell.

Algorithm 4.4 AssignGradient2

1: procedure AssignGradient2()
2: for all α ∈ K \K(0) do
3: if α not paired then
4: Pα = {β|α is second highest facet of β}
5: if Pα 6= φ then
6: β = Min(Pα) . Lowest in Pα ordered by compareCells.
7: if β not paired then
8: pair cells (α,β)
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We now state and prove a lemma to show that the pairs determined by Algo-

rithm AssignGradient2 are unique and hence the algorithm can be parallelized.

The following Lemma states that if a cell is paired by Algorithm AssignGradi-

ent2, then the pairing is unique. In other words, the cell is either paired with one

of its cofacets or with its second highest facet, independent of the order in which

cells are paired.

Lemma 4.2: Extended Order Independent Pairing Lemma. If Algo-

rithm AssignGradient2 pairs a cell β with its second-highest facet α then it

will not pair α with its second-highest facet γ.

Proof. Consider the incidence relationships shown in Figure 4.5(a) between a d-

cell β, its highest facet α′, second highest facet α, highest (d− 2) face γ′, highest

(d− 3) face ψ′, and α’s second highest facet γ. Since the input cell complex K is

regular, there exists exactly two facets of β, say α1 and α2, incident on γ′. Further

γ′ is the highest facet of α1 and α2, which in turn implies that any third facet of

β does not contain γ′ and is hence lower than both α1 and α2. So, α1 and α2 are

the highest and second highest facets of β, namely α′ and α. A similar argument

on α and its highest (d− 3) face ψ′ shows that γ and γ′ are incident on ψ′ and ψ′

is their highest facet.

We will prove the existence of a facet, α′′, of β that contains γ as its highest or

second highest facet. In either case, γ will be paired with a cell different from α. If

γ is the highest facet of α′′ then Algorithm AssignGradient would have paired

it with a cell different from α because α remains unpaired until it is processed

by Algorithm AssignGradient2. If γ is the second highest facet of α′′, then

Algorithm AssignGradient2 will seek to pair it with the lowest cofacet in Pγ.

The cell α′′ is lower than α and belongs to Pγ. So α will not be paired with γ.

We now show the existence of the cell α′′. Consider the (d − 2) cell γ as a
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(a) (b)

Figure 4.5: (a) α is the second highest facet of β and γ is the second highest facet
of α. Respective maximal facets are shown (α′, γ′). Solid lines represent maximal
facet relation. Dotted lines represent incidence relation. (b) The regularity of K
implies the existence of faces α′′ and γ′′.

face of β. Since the input is a regular cell complex, there exists exactly two facets

of β incident on γ. The cell α is one such facet of β. Let α′′ be the other. The

regularity of the input cell complex also implies the existence of exactly two facets,

γ and γ′′, that are incident on ψ′. Further, ψ′ is the highest (d− 3) face of α′′. It

follows that γ is either the highest facet or second highest of α′′ using the same

argument as above to show that α and α′ are incident on γ′.

Validity of the gradient field

We now prove that Algorithms AssignGradient and AssignGradient2 pro-

duce a valid discrete gradient field. To do this, we first construct a second total

order, induced by the gradient pairs, by modifying the order of Algorithm com-

pareCells. Then, we prove a lemma to establish the validity of the gradient

field.

The order induced by Algorithm compareCells is modified for each gradient

pair (α,β), where α is a facet of β. In particular, α is promoted to be infinitesimally

higher than its cofacet and pair β. Thus, α immediately succeeds β in the new total

order. Since gradient pairs are unique, the resulting total order is well defined.

Algorithm compareCellsPostPair lists the comparator procedure that induces
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Algorithm 4.5 compareCellsPostPair

1: procedure compareCellsPostPair(α, β)
2: if α = β then
3: return False
4:

5: if Dim(α) > Dim(β) then
6: return ∼compareCellsPostPair(β, α)

7:

8: if isPair(α, β) then
9: return False . Consider lower dim cell of a pair as Higher

10:

11: if isPaired(α) and Dim(α) < Dim(getPair(α)) then
12: α← getPair(α) . If α is a facet of its pair, replace with its pair.

13:

14: if isPaired(β) and Dim(β) < Dim(getPair(β)) then
15: β ← getPair(β) . If β is a facet of its pair, replace with its pair.

16:

17: return compareCells(α, β)

this total order. Lines 2 to 7 of Algorithm compareCellsPostPair ensure that

the input cells α and β are distinct and α has dimension lesser than or equal to

β (similar to analogous lines of Algorithm compareCells). If α is the lower

dimensional cell of a pair, it is considered to be infinitesimally higher than its pair.

Therefore, in this case, lines 11 to 13 of Algorithm compareCellsPostPair

reorders α to be immediately higher than its pair by replacing α with its pair

for comparison. A similar reordering of β is performed if necessary. Finally, the

possibly reordered/replaced cells are compared using Algorithm compareCells.

A corner case arises if both α and β themselves form a gradient pair which is dealt

with in line 9.

Next, we prove the following lemma concerning the order of compareCells

and compareCellsPostPair.
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Lemma 4.3: Pairing Validity Lemma. Given a gradient pair (α,β) deter-

mined by Algorithms AssignGradient or AssignGradient2, where α is a facet

of β, every other cofacet β̃ of α is higher than β in the total order of Algorithms

compareCells and compareCellsPostPair.

Proof. We begin by showing that the proposition is true for Algorithm compare-

Cells. If (α, β) is a pair found by Algorithm AssignGradient, then β is the

lowest cofacet of α. Therefore, β̃ is higher than β. If (α, β) is a pair found by

Algorithm AssignGradient2, then α is not the highest facet of β̃ since it re-

mained unpaired after being processed by Algorithm AssignGradient. If α is

the second highest facet of β̃, then β̃ is higher than β because it was not selected by

Algorithm AssignGradient2. If α is neither the highest nor the second highest

facet of β̃, then the highest facet of α, say γ′, is not the highest (d− 2) face of β̃.

This follows from the converse of the argument used in the proof of Lemma 4.1.3

to show that α′ and α, the highest and second highest facets of β, are incident

on γ′. Cells in the ε-lower-star of γ′ appear contiguously in the ordering induced

by Algorithm compareCells (see Section 4.1.2). Since β̃ does not lie in the

ε-lower-star of γ′ and β does, it follows that β̃ is not lower than β.

We now show that the proposition is true for Algorithm compareCellsPost-

Pair. We observe that Algorithm compareCellsPostPair only reorders α and

not β. Furthermore, α is reordered to be immediately above β. Since every other

cofacet β̃ of α is already higher than β in the order of Algorithm compareCells,

α is not reordered to be higher than β̃. On the other hand, if β̃ is reordered, then

it may only move higher and thus α still remains lower than it.

We now prove the validity of the gradient field determined by the order of Al-

gorithm compareCellsPostPair. A direct consequence of the above lemma is

that the number of cofacets that are lower than any cell is at most one. Conversely,

we claim that the number of facets higher than a cell is also at most one. If this
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Figure 4.6: The
combinatorial MS
complex computed
using a BFS traver-
sal on the gradient
field shown in
Figure 4.3(b).

were not true, then there exists a cell β whose two facets α and α′ are higher than

it in the order of compareCellsPostPair. This would be only possible when

α and α′ were higher than their respective paired cofacets, say β̃ and β̃′. By the

uniqueness of the pairing algorithms, we must have that β̃ and β̃′ are distinct cells,

one of which is distinct from β. Without loss of generality, assume this cell to be β̃

that is paired with α. However, this implies that two of α’s cofacets, β̃ and β are

higher than it. This violates the above lemma, and thus establishes the validity of

the gradient field.

4.1.4 Computing the MS complex

Once the discrete gradient field is computed, the descending / ascending mani-

folds and the combinatorial MS complex are extracted as a collection of gradient

paths. From the definition, the critical points are cells in K that remain unpaired

after all gradient pairs have been computed. The descending manifold of a critical

point is equal to the closure of all gradient paths that originate from that critical

point. This is computed using a breadth first traversal of gradient pairs begin-

ning from the critical point. The ascending manifold is the closure of the set of

gradient paths that terminate at a given critical point. This is computed using a

breadth first traversal of reversed gradient pairs beginning from the critical point.

A combinatorial connection between any two critical cells is established if there

is a gradient path that connects them. Figure 4.6 shows the combinatorial MS
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complex extracted from the gradient field shown in Figure 4.3(b). In the follow-

ing sections, we discuss the challenges and algorithms to efficiently perform BFS

traversals for computing the Morse-Smale complex using multicore and massively

parallel environments. Due to differences in the structure of gradient paths origi-

nating/terminating at extrema and saddles, we discuss their traversal separately.

Gradient Paths from/to Extrema

In this section, we discuss the BFS traversal of gradient paths that originate/terminate

at extrema. These algorithms are directly applicable to both, 2D and 3D, gradient

fields. A key aspect of of gradient paths that originate at maxima is that they split

but do not merge [7]. Analogously, discrete gradient paths that terminate at min-

ima merge but do not split. Thus, the structure of the gradient field originating

(terminating) at a maxima (minima) is a (reversed) tree.

For multicore environments, BFS traversals from each critical point may be

computed independently. The number of parallel BFS traversals launched in par-

allel usually depends on the number of cores. We adopt a different strategy in the

case of massively parallel environments. Due to the tree structure of the gradient

paths from/to extrema, every gradient pair on a path from a maximum (mini-

mum) is immediately preceded by a unique source (destination) which is either

another gradient pair or the maximum (minimum). The traversal is now posed

as an iterative search for the source/destination extremum of every gradient pair.

For completeness, maxima are their own source and minima are their own desti-

nation. Each work item (thread) is mapped to iteratively determine the eventual

source/destination of a gradient pair. At every iteration the source of gradient

pairs that are on gradient paths originating from a unique maximum is updated

to the source of its source. Similarly, the destination of gradient pairs that are on

gradient paths terminating at a unique minimum is updated to the destination of
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its destination. The iterations stop when all pairs find their unique source or des-

tination. For a path of length n, the first iteration updates each node’s source to

the gradient pair at a distance two. The next iteration updates it to the gradient

pair at a distance four. Thus, the process terminates in log2(n) steps. Though

the worst case asymptotic complexity of this traversal is n log2(n), in practice

we observe that traversal requires log2(n) time due to the parallelization. The

combinatorial MS complex is computed by querying the source/destination of gra-

dient paths that originate/terminate at facets/cofacets of saddles. The geometry

of extrema is available as a disjoint set of trees rooted at them.

Gradient Paths from/to Saddles

In this section, we discuss the BFS traversal of gradient paths that originate/terminate

at saddles. In particular, we discuss the traversal of paths that originate at 1-

saddles and terminate at 2-saddles in the case of 3D domains. The same methods

are applicable in the traversal of paths that originate at saddles and terminate at

minima (or reversed paths that terminate at maxima).

The sub-structure of the gradient field consisting of 1-saddles, 2-saddles and the

(1,2) gradient pairs between them can be very intricate, where (1,2) denotes the

dimension of the cells of gradient pairs. This is because 1-saddle-2-saddle gradient

paths in a three-dimensional domain may both split and merge. Figure 4.7 depicts

the sub-structure of a gradient field that originates from a 2-saddle, splits and

merges twice, before reaching a 1-saddle.

We trace the (1,2) gradient paths by interpreting the sub-structure as a directed

acyclic graph (DAG) induced by them. The number of paths between a 2-saddle

and 1-saddle may be counted as the number of paths between 2-saddles and 1-

saddles nodes in this DAG. We do not employ the standard breadth first search

algorithm to traverse the graph because this would necessitate the use of an array
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Figure 4.7: (left) The sub-structure of a possible gradient field between the red 2-
saddle and the green 1-saddle. (right) The gradient field interpreted as a directed
acyclic graph. The nodes are 2-saddles, the gradient pairs, and 1-saddles. Dashed
curves show directed edges from 2-saddles or from the 2-cells of (1,2) gradient
pairs to incident 1-cells of distinct (1,2) pairs or to 1-saddles. The gradient paths
from the 2-saddle split and merge twice before they reach the 1-saddle resulting
in four possible paths between them. Repetition of this configuration causes an
exponential growth in the number of paths connecting the 2-saddle to the 1-saddle.

of flags to maintain if every cell is visited or not. Parallelizing the traversal will

require a buffer, whose size equals that of the input, for each thread. This approach

is clearly not scalable. We note that the number of critical cells reachable from a

given cell tends to be small. Algorithm ConnectSaddles describes a priority-

queue based traversal method to determine the paths between 2-saddles and 1-

saddles. The algorithm computes the number of gradient paths from a given

2-saddle to all (1,2) gradient pairs and 1-saddles that are reachable from it.

The algorithm begins by first initializing a priority queue Q that can contain

2-cells and 1-cells of K. The priority queue is ordered using the comparator com-

pareCellsPostPair. The number of paths that arrive from the starting cell

σ to each element α in Q is associated with α. Q is initialized with (σ, 1). The

algorithm pops the first cell α from Q. It is possible for copies of the same cell

to be entered into Q. Since all these cells have the same priority, Q is repeatedly

popped until all copies of α are removed and the number of paths n that reach α

are summed over all copies. If α is a critical 1-cell, then an arc with n multiplicity
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is inserted between σ and α. If α is a 2-cell, then all the 1-saddles and 2-cells

of (1,2) pairs incident on the boundary of α (other than itself) are inserted into

Q. The newly inserted pairs/saddles lie on n number of paths from σ through α.

Newly inserted cells are lower than α. So, α never re-enters Q. A cell is inserted

into Q when processing one of its neighboring cells. So, the number of copies of

the cell in Q is upper bounded by the number of its neighbors.

Each cell enters Q only a constant number of times. So, the complexity of the

algorithm is nlog(n), where n is the number of 2-cell-1-cell pairs and 1-saddles.

The entries in Q represent the frontier of the traversal. This set, in practice, is

much smaller than the size of the input n. Descending manifolds of saddles are

computed by modifying Algorithm ConnectSaddles to save the cells popped

out of the priority queue at each iteration of the main loop. Ascending manifolds

of 1-saddles are computed by employing the same procedure after reversing the

priority, and reversing the role of 1-cells and 2-cells.

4.1.5 Analysis

In this section, we argue for the correctness of the MS complex computed by our

algorithm. Specifically we show that the computed critical points and gradient

pairs are close to those of the PL function.

Closeness of critical cells to PL critical points

We now show that every index-i PL critical vertex has a critical cell of dimension i

incident upon it. Furthermore, we also show multi-saddles are also approximated

with the appropriate number of critical cells. This is done by showing that the

number of index k critical cells retained by any discrete gradient pairing algorithm

that pairs cells within εLST (v) must be greater than or equal to the kth reduced

Betti number of εLLK(v).
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Algorithm 4.6 ConnectSaddles

1: procedure ConnectSaddles(σ)
2: Q← CreatePriorityQueue()
3: Q.Push(σ, 1)
4:

5: while Q 6= φ do
6: α, n← Q.Pop()
7: while Q 6= φ do
8: α′, n′ ← Q.Pop()
9: if α′ = α then

10: n← n+ n′

11: else
12: Q.Push(α′, n′)
13: break
14:

15: if Dim(α) = 1 then
16: Connect(σ, α, n)

17:

18: if Dim(α) = 2 then
19: for all γ l α do
20: if isCritical(γ) then
21: Q.Push(γ, n)
22: else
23: if dim(Pair(γ)) = 2 and Pair(γ) 6= α then
24: Q.Push(Pair(γ), n)
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We note that the family of cell complexes formed by attaching cells in increas-

ing order of Fw is a valid filtration. This is because the faces of a cell always

have function value lower than that of the cell (by definition of Fw) and therefore

appear before the cell in the ordering. Next, we observe that algorithms Assign-

Gradient and AssignGradient2 pair cells within the εLST of a vertex v. In

other words, if (αd, σd+1) is a pair, then both αd and σd+1 belong to the ε-lower

star of some vertex v. Thus the same pairs are determined for a given ε-lower star

attached to a given ε-lower link regardless of other cells in the cell complex.

Consider the hypothetical situation where a vertex v′ precedes v in the filtration

such that εLST (v′) is a duplicate of the εLST (v) attached to εLLK(v). We will

relate the reduced Betti numbers of εLLK(v) to the increase in the Betti numbers

of the complex after attaching v and its ε-lower star (See Figure 4.8). Let Kv′

denote the cell complex obtained after attaching v′ and its ε-lower star. Since the

gradient pairs are determined within the εLST (v), they are not affected by gradient

pairing in the rest of the complex. Assume that the gradient field is optimal in

the sense that the number of critical points of index k (nk) is exactly the same

as the kth Betti number. Here, attaching εLST (v) causes the kth Betti number

of K increases by the value of the k − 1th reduced Betti number of εLLK(v),

for k = 0,1,and 2. For example, if the −1th reduced Betti number of εLLK(v)

is 1, then attaching εLST (v) would create a new component. In other words, it

increases the 0th Betti number of Kv′ by one. Similarly, if the 0th reduced Betti

number of εLLK(v) is c, then attaching εLST (v) would increase the 1st Betti

number of Kv′ by c. Again, if the 1st reduced Betti number of εLLK(v) is 1, then

attaching εLST (v) would increase the 2nd Betti number of Kv′ by 1. Thus, by

attaching εLST (v) to Kv′ , the kth Betti number increases by the k − 1th reduced

Betti number of εLLK(v). Since the gradient field was optimal before εLST (v)

was attached, the number of index k critical cells should correspondingly increase
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Figure 4.8: A cell complex where
a duplicate of εLST (v) precedes v
in the filtration and is attached to
εLLK(v).

by at least the k−1th reduced Betti number of εLLK(v) to satisfy the weak Morse

inequality. Since the only new cells were that of εLST (v), the new critical points

must be present within the εLST (v).

This result shows that PL critical points are approximated by a critical cell in-

cident on the PL critical vertex. Furthermore multi-saddles are also approximated

with the appropriate number of critical cells.

Steepest descent

Consider a PL function defined on a simplicial complex whose function value at

vertices is known. The gradient pairing algorithm will attempt to pair a cell αd

with a cell σd+1, where σd+1 is a simplex formed by adding a vertex to Vα and the

new vertex has function value lesser than all vertices in Vα. For every point on

αd, the gradient of the PL interpolant is oriented towards the new vertex. Hence

the gradient lines originating from the interior of αd, are oriented towards the

interior of σd+1. Because of the discontinuity of gradients of PL interpolants on

cells that are shared, the gradient algorithm will pair the d + 1-cell attached to

αd with minimum function value. This will be the d + 1-cell attached to αd with

minimum function value on the vertex not present in Vα, therefore maximizing

the magnitude of the gradient. Hence the gradient vector pairing agrees with the

maximal PL gradient on a simplicial complex.

In the case of two dimensional rectilinear grids using a bilinear interpolant it is

seen that the same argument applies except for the case when the quad contains
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(a)

(b) (c)

Figure 4.9: (a) Gradient field of the function sin(x) + sin(y) evaluated at mesh
vertices. (b) Close up view of the gradient field. (c) Discrete gradient vectors for
function sampled at vertices.
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a face saddle. In this case we see that gradient at the mid point of the maximal

edge has steepest descent gradient towards the quad element.

Figure 4.9 shows the comparison of the continuous gradient of the analytic

function sin(x)+sin(y) evaluated at the vertices of the two dimensional rectilinear

grid, with the discrete gradient computed on the grid using the gradient algorithm.

The discrete gradient pair arrow are aligned along edges for vertex-edge pairs

and orthogonal to edges for edge-quad pairs. In both cases, they agree with the

gradients computed for the analytic function at mesh vertices.

4.2 Out-of-core Algorithm

We now discuss the computation of the MS complex with a focus on large datasets

that do not fit entirely in memory. The computation is done in five stages (see

Figure 4.10). The data is first hierarchically partitioned into sub-domains blocks.

The partitioning stops when the sub-domains are small enough to fit in memory.

4.2.1 Gradient and MS Complex on sub-domains

The computation of the gradient proceeds as outlined in the previous section. To

obtain a equivalent gradient field on a sub-domain, the gradient algorithm needs

only a cell’s cofacets and their facets in the domain. The cell complex of the

sub-domain is extended to include the set of cells that are incident on the shared

boundary of sub-domains and gradient is computed only on the initial sub-domain

cell complex (see Figure 4.10(a)). Thus, we obtain identical pairings for cells along

the shared boundary when we process all sub-domains that share the boundary

cell.

To facilitate merging we mark all gradient pairs that cross a shared boundary as

critical (see Figure 4.10(a)). We establish the validity of this step in the following
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(a) Compute sub-domains’ MS complex (b) Merge

(c) Traverse merge history (d) Extract geometry

Figure 4.10: MS complex for large domains is computed in five stages. Data is first
split into sub-domains. (a) Gradient is computed on sub-domains. Unpaired cells
and gradient pairs incident on shared boundary are marked critical. Combinatorial
MS complex on each sub-domain is computed. (b) The combinatorial MS complex
of the domain is computed by identifying and canceling gradient pairs incident on
the shared boundary. (c) The history of merge cancellations is traversed to reveal
the incidence of critical cells across sub-domains. This information is used to
trace the geometry of the cells of the MS complex. (d) For each sub-domain,
the geometry of the descending and ascending manifold of an incident critical cell
restricted to the sub-domain is extracted.
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section.

4.2.2 Merging sub-domain MS complexes

Next, we merge the sub-domains in a bottom up fashion by identifying boundary

critical point pairs and canceling them when they enter the interior of the union.

The cancellation repeatedly merges the MS complex across the sub-domains till

we obtain the MS complex of the input function.

We first establish the equivalence of gradient paths and the paths computed

by a sequence of cancellations. A consequence of this result is that we can process

the sub-domains in parallel and later merge them to obtain the MS complex while

ensuring combinatorial and geometric equivalence.

Lemma 4.4: Order Independent Cancellation Lemma. Let p, α0, σ0,

. . ., αi, σi, . . ., αk, σk, q denote a gradient path between two critical points p and

q. This gradient path is faithfully traced independent of the scheduled order of

boundary critical point pair cancellations.

Proof. In the above gradient path, canceling pair αi, σi results in establishing the

connectivity between σi−1, αi+1. Iterating forward, we see that cancellation of any

pair along the gradient path successively establishes connectivity between the pre-

ceding and succeeding surviving critical point. Eventually the critical points p, q

are connected by an arc. Thus combinatorially, this is equivalent to the MS com-

plex obtained without by tracing a path directly from p or q without any inter-

mediate step of creating boundary critical points. The same argument extends to

prove the resulting geometric equivalence.

As a consequence of the above lemma, we can schedule cancellations of bound-

ary critical point pairs in any order. Gyulassy et al. [12] also employ a divide

and conquer approach to compute the MS complex. However, they partition the
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domain into “parcels” that do not share common boundary. The merge step,

therefore, has to process new cells and may introduce new critical points. Hence,

they are not able to ensure the geometric equivalence of the MS complex. Our

partitioning scheme is the central reason for the Order Independent Cancellation

Lemma to be true.

4.2.3 History Tree

One of the implications of declaring all boundary cells and their outgoing / in-

coming pairs as critical is the creation of a large number of critical cells. Since

the merge operation involves cancellation of critical points, the ascending and de-

scending manifolds need to be computed and merged. However the number of cells

that are present in the ascending / descending manifold of a critical point is O(n),

where n is the number of cells in the cell complex. This leads to a large memory

foot print of intermediate complexes.

The artificial critical points represent regions through which flow enters / leaves

a sub-domain. Therefore, recording the combinatorial connectivity to a surviving

critical point at the boundary is sufficient to compute the ascending/descending

manifold restricted to the sub-domain. We record this information during the

merge step and are therefore able to compute the 1-skeleton of the MS complex

with a small memory footprint. The recorded combinatorial connectivity between

boundary critical points is used later to extract the geometry of the gradient

paths. We now describe how we traverse the history of cancellations to compute

the geometry of the arcs.

Consider a series of k cancellations to determine the combinatorial connection

between two critical points pi and qi−1. The series of canceled critical point pairs
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is equal to the gradient path connecting the two critical points:

p, . . . , αi−1k−1, σ
i
k−1, . . . , α

i−1
k , σik, . . . , α

i−1
k−2, σ

i
k−2, . . . , q

Consider the final cancellation that determines the connection between p and q.

Before cancellation, p is contained in ascending connections of αk and q is contained

in the descending connections of σk. Before the cancellation of the (k − 1)th pair,

αi−1k is connected to σik−1. By retaining this information, after the kth cancellation

we can infer that σk−1 is connected to all surviving critical points in the descending

connections of αk’s pair. Extending this further to previous cancellations, we see

that if we traverse the critical point pairs in reverse order of their cancellations,

we can infer the entire geometry of the gradient path. This is accomplished by

traversing the history tree, which records all merges, in a top-down manner. At

the leaf of the history tree, we obtain the combinatorial connections from the BFS

traversal within the sub-domain.

4.2.4 Geometry extraction

The history tree traversal returns the points of entry and exit of all critical cells

that have gradient entering or leaving the sub-domain. Thus the geometry of the

descending/ascending manifold of a critical cell restricted to the sub-domain can

be computed by tracking the gradient from the cells of entry/exit that are on

shared boundaries. If the critical cell is contained in the sub-domain then the

geometry is computed as indicated in the first stage.
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4.3 Discussion

In this section, we highlight key differences and advantages of our algorithm with

other discrete Morse theory based algorithms to compute the Morse-Smale com-

plex.

In comparison with the algorithms of Cazals et al. [7], Lewiner et al. [42], and

Gyulassy et al. [12], our formulation using the weighted discrete function provides

for a consistent total order that leads to a robust and unambiguous gradient field.

Also, the gradient pairing algorithms AssignGradient and AssignGradient2

allow for a simple massively parallel implementation on GPUs. Furthermore, our

traversal methods allow for parallel deployment on GPUs for extrema and simul-

taneously on multi-core CPUs. In comparison with the method by Peterka et al.

and Gyulassy et al. [43, 44], being a supercomputer/compute-cluster deployment

of the algorithm of Gyulassy et al. [12], our algorithm is targeted towards commod-

ity desktop hardware. A key similarity of our algorithm with the aforementioned

methods is the adherence to the notion of steepest descent.

With respect to the algorithm by Robins et al. [13], a key difference is in the

gradient pairing algorithm. Robins et al. focus on the topological analogy with

piecewise linear critical points to track level set topology changes. Our algorithms

focus on the notion of steepest descent, choosing to over-approximate with addi-

tional, possibly spurious critical points, in cases when the steepest gradient is not

apparent. Furthermore, the exponential traversal step of their algorithm results in

a significant loss in performance. Günther et al. [14] amend this aspect of Robins’

algorithm by describing a memory efficient traversal algorithm having an overall

quadratic complexity. However, their algorithm needs to maintain the set of vis-

ited nodes and ensure that nodes are processed in the correct order. This set can

potentially grow the entire ascending / descending manifold of the critical point.

Also, a second set representing the frontier of the traversal needs to be maintained.
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These sets may be either maintained as data-sized flag arrays or hash-table based

containers. Hash tables typically incur an asymptotic complexity of O(log n) for

each access. As the algorithm is claimed to be linear for each traversal, i.e., con-

stant for each access to the container, we presume that these sets are maintained

as data sized flag arrays. Even if the algorithm were amended to use hash tables, a

hash table representing the descending manifold of each critical point needs to be

maintained for each traversal. Thus, memory becomes potentially limiting when

many traversals are deployed in parallel. In contrast, we leverage the fact that

discrete gradient field itself imposes a partial order on the cells. We extend this

to a total order that allows us to implicitly process nodes in the correct order (see

Algorithm compareCellsPostPair). We only need to maintain the frontier

during the traversal, which allows us to run many traversals in parallel with lesser

memory. Furthermore, when determining the 2-saddle-1-saddle combinatorial con-

nectivity, we need to only trace descending paths from 2-saddles that intersect with

ascending paths from 1-saddles. The frontier set for such paths often tends to be

close to constant, resulting in further memory optimization.

We now discuss a few limitations of the algorithms. The above discussed algo-

rithms have been designed and implemented to use GPU systems. In particular,

the 3D implementations can leverage the efficient hardware capabilities of cur-

rent generation GPU hardware, which provide efficient caching mechanisms for

3D structured grid data. Such mechanisms are currently unavailable for higher di-

mensional structured grid and unstructured grid data. Another limitation is that

the algorithms have been designed to respect the notion of steepest descent. In

some applications, it is desirable to design other kind of gradient fields, for exam-

ple, one that exactly respects the level set topology changes as is done by Robins

et al. [13].
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4.4 2D Implementation and Evaluation

In this section, we discuss the implementation aspects of the efficient Morse-Smale

complex algorithm for two dimensional structured grids. Then, we discuss exper-

iments to study the performance of our algorithm using simulated datasets and

a real world application to track the eye of a hurricane in a weather simulation

dataset.

4.4.1 Implementation

We implement the Morse-Smale complex computation algorithm to leverage both,

multi-core architectures (multi-core CPUs) and massively parallel architectures

(GPUs). We use the OpenCL framework for programming the GPU.

Data representation

The cells of the domain, being a structured grid, are implicitly represented using

the Cartesian coordinates of their centroids as identifiers. In general, integral val-

ues of coordinates are used to represent successive vertices along each axis. We

scale the coordinates by two so that the interleaving cells, namely edges and faces,

also obtain integral coordinate values at their centroids. Queries for facets / co-

facets are therefore implicitly computed taking into consideration the boundary

conditions imposed by the grid size. The scalar function values is maintained

in a two-dimensional buffer whose size corresponds to the domain size. A two-

dimensional single byte buffer that is twice as large as the domain on each axis is

used to maintain the discrete gradient information. The first two bits of each byte

represent the direction of each cell’s maximal facet. The next two bits represent

the direction of the cell’s pair. A single bit is used to indicate if the cell is critical

or not.
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Gradient Pairs and MS complex on sub-domains

The algorithm begins by computing the discrete gradient using either the GPU, if

available, or the CPU. While working with the GPU for the gradient assignment,

we need to mirror the two data buffers in both the CPU and GPU.

For computing the set of critical points in the CPU, a simple linear counting

and collection step is used. The counting and collection of critical points from the

data buffers in the GPU is posed as the parallel prefix sum problem [46, 47]. The

prefix scan implementations have asymptotic complexity of O(nlog2(n)) but in

practice we observe that traversal requires log2(n) time due to the parallelization.

The BFS traversals required for the MS complex algorithm is implemented

in the CPU using the standard BFS algorithm. The analogous implementation

for the GPU is done using the iterative source/destination algorithm detailed in

Section 4.1.4. Here, two data sized buffers are used to represent each 2D cell’s

source maximum. Each iteration reads the source information from one buffer and

updates it to the second buffer. In the next iteration the roles of the buffers are

swapped. A global boolean is initialized to false and set to true if a cell updates

its buffer. An analogous pair of buffers is used for each 0D cell’s destination

minimum.

Merging

To enable stream processing of sub-domains we recursively divide the domain

along a single axis. The desired level of subdivision is adjusted to accommodate

the largest possible sub-domain within memory (GPU memory in the case of the

GPU implementation). The recursive subdivision leads to a hierarchical structure

with 2d sub-domains, where d is the depth of the recursion, and 2d−1 intermediate

nodes that represent the hierarchy. Merging of intermediate nodes in each level

can be done in parallel.
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Simplification

We perform a persistence based simplification of the final MS complex. The simpli-

fication affects the MS complex computed for each sub-domain. The MS complex

of a sub-domain is updated by identifying surviving critical points, deactivating

them, and introducing new critical points that may have become incident on the

sub-domain. Since simplification by persistence does not require any geometry

computation, we simplify before we traverse the history tree and push the results

down the tree.

History tree

The history tree that records the merges is traversed to compute the incidence

of surviving critical points on sub-domain boundary. Because of the hierarchical

decomposition, the traversal can be done in parallel for all nodes within a level.

Fast Geometry Queries

Once we know the combinatorial structure of the MS complex at the boundary

of a sub-domain, the computation of descending and ascending manifolds is es-

sentially a traversal of gradient paths from these entry and exit points along with

the paths that originate from or terminate at the critical point. In our imple-

mentation, we track only the surviving saddle points, because maxima partition

the diverging gradient flows and minima partition the converging gradient flows.

In our experiments we recompute the gradients because we found that the disk

latency involved in storing the gradient and retrieving them later is costlier. This

is because, recomputing the gradient requires only a single read of the function

values at the vertices.
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(a) CPU out-of-core (b) GPU in-core (c) GPU out-of-core

Figure 4.11: Time required to compute the MS complex for the wgauss dataset
cumulated over the five stages of the algorithm. (a) The 8192 × 8192 data does
not fit in CPU memory. (b) Data fits in CPU but not GPU memory. (c) Data fits
neither in CPU nor GPU memory.

4.4.2 Experimental Results

We now present results of our experiments on both synthetic and the hurricane

Isabel dataset [1]. All experiments were performed on a workstation with two Intel

Xeon quad core processors, 8GB RAM, and nVidia GeForce 260 GTX graphics

card which has 196 cores and 896MB RAM. The first synthetic data set sine is

a sinusoidal function sampled over a rectilinear grid. The second synthetic data

set wgauss is a 2D Gaussian distribution centered at the origin and weighted by a

radially decreasing sinusoidal curve. The wgauss dataset contains large number of

critical points and degenerate regions which help to stress test our algorithm. We

study the performance and scalability of our algorithm using these two synthetic

data sets.

Figure 4.11(a) shows the speed up obtained for wgauss sampled on an 8192×

8192 grid for varying number of processors using the CPU implementation. Time

is cumulated over the five stages of the algorithm. The data is processed out-

of-CPU-core (not all data is present in CPU memory) to conserve memory. The

graphs indicate near linear scaling with the number of cores. We observed a similar

execution profile for the sinusoidal dataset with 16384 × 16384 data points. The
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(a) (b) (c) (d)

Figure 4.12: (a), (c) The full resolution descending and ascending Morse complex
for the wgauss dataset for a grid size of 1024 × 1024. (b), (d) The simplified
descending and ascending Morse complex simplified upto 10%. As expected the
descending manifolds partition the domain into regions that correspond to peaks
and the ascending manifold partition the domain to regions that correspond to
valleys.

MS complex was was computed in 3 minutes and 6 seconds.

To study the scalability of the algorithm with input sizes we conducted exper-

iments with the wgauss dataset computed on various grid sizes. Figure 4.11(b)

shows results from the GPU execution for the wgauss for varying grid sizes and

the corresponding speed up. Here the data is resident in the CPU memory.

Figure 4.11(c) shows results from an out-of-CPU-core execution on wgauss

using the GPU for varying domain sizes. The size of the sub-domains is restricted

to contain 1 million points. Figure 4.12 shows the full resolution and simplified

descending and ascending Morse complex of the wgauss dataset with a grid size

of 1024× 1024.

We consider a simulation of the hurricane Isabel [1] that struck the west At-

lantic region in September 2003. The domain is a 3D rectilinear grid of size

500 × 500 × 100 available over 48 time steps. We extract a 500 × 500 grid repre-

senting the land/sea surface to study the pressure (Pf), temperature (TCf) and

magnitude of wind velocity fields over time. We compute the MS complex for all

three scalar fields in each time step using our parallel algorithm and track signifi-

cant features in the data. Figure 4.13 shows the execution profile, along with the

stage wise breakup of time, for the pressure and magnitude of wind velocity fields,
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(a) Pressure (b) Wind speed

Figure 4.13: Time taken for computing the MS complex for all time-steps of the
Isabel dataset for (a) Pressure and (b) Magnitude of wind velocity fields using
simplification thresholds of 0.1%, 1%, 5% and 10%. Time taken for stages one,
three and five are shown in the breakup along y-axis. Stages two and four are not
present since the data for each field of each time-step fits in GPU memory. Time
taken for geometry extraction in stage five reduces drastically if the MS complex
is simplified.

(a) (b) (c)

Figure 4.14: (a) The wind speed field of the 1st time step over the surface (function
normalized to [0, 1]). (b) The full resolution ascending Morse complex. (c) The
simplified MS complex retains significant critical points. The most persistent min-
imum corresponds to the eye of the hurricane.
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for various simplification thresholds. Since the data in each field of each time-step

fits in GPU memory, the merge and history tree traversal stages are not present.

We observed that the time required for computation of the MS complex for most

time steps was below 0.5 seconds. Without simplification, the time required to

compute the MS complex increased up to 6 seconds. However, it dropped below

0.5 seconds for several time steps once we simplified critical pairs below a 0.1%

persistence threshold.

Figure 4.14 shows the decomposition of the domain into ascending manifolds

of the critical points of wind speed. Our implementation supports the interactive

extraction of these manifolds using a parallel algorithm. We simplify the wind

speed field within each time step to identify significant features after removing

all the small features. Figure 4.13(a) shows the result of this experiment using

the wind speed, where we track the ascending manifold of the most persistent

minimum corresponding to the eye of the hurricane. Currently, we are able to

process each time-step of the speed within 0.5 seconds for simplification threshold

of above 5%, thereby supporting interactive analysis of the data. With additional

optimizations we hope to be able to further reduce the processing time and hence

enable real-time analysis and feature tracking on larger time-varying data.

4.5 3D Implementation and Evaluation

In this section, we discuss the implementation aspects of the efficient Morse-Smale

complex algorithm for three dimensional structured grids. Then, we discuss ex-

periments to study the performance of our algorithm using simulated datasets and

real world datasets to compare with existing algorithms.
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4.5.1 Implementation

We implemented the Morse-Smale complex algorithm to leverage both GPU com-

puting, and multi-core CPU architectures. We used the OpenCL framework to

implement Algorithms AssignGradient and AssignGradient2 on the GPU.

We implemented the Algorithm ConnectSaddles to process individual 2-saddles

in parallel on the CPU. We use the Boost threading [48] library to manage multi-

ple threads. We now discuss various implementation and optimization issues with

respect to the individual stages.

Data Representation

The data structures used for representing the domain and the gradient are anal-

ogous to the data structures described in Section 4.4.1. The cells of the domain

are represented using the three-dimensional analogue of the implicit representa-

tion used for the two-dimensional domain. A float sized three-dimensional data

sized buffer is used to store the function value at the vertices. A byte sized three-

dimensional buffer that is double the size of the domain on each axis is used to

represent the gradient field information of each cell. Here, the first three bits are

used to represent the direction of the maximal facet and the next three are used

to represent the direction of the pair. A single bit is used to indicate if a cell is

critical.

Gradient pairing and MS complex

The gradient pairs and MS-complex are computed within each sub-domain. The

gradient pairs are computed in two passes using Algorithm AssignGradient and

Algorithm AssignGradient2. Next, the decomposition of the domain into de-

scending/ascending manifolds of extrema are computed on the GPU. This is done
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using the GPU extrema traversal method described in Section 4.1.4. Simultane-

ously, the CPU executes Algorithm ConnectSaddles to determine connections

between 2-saddles and 1-saddles. This step is optimized to traverse only those

paths that reach 1-saddles by executing a single breadth first search traversal

that begins from all 1-saddles and marking all (1,2) pairs that are reached when

traversing the gradient field upwards. While processing paths that descend from

the 2-saddles, only pairs that are marked reachable from a 1-saddle are inserted

into the priority queue Q. One bit of the 3D array, which records per cell infor-

mation, is used to represent visited or not visited state of a cell.

The Morse-Smale complex is represented as a graph with nodes as critical

cells. Adjacencies are represented as list of associative arrays, one for each critical

point and the multiplicity of paths associated with each adjacency. Hence the

complexity to access a particular adjacency of critical cell is log(n), n being the

maximum number of adjacent critical cells.

Merging proceeds by cancellation of gradient pairs that cross a shared bound-

ary. So, the descending connections of lower index critical cell of the pair and the

ascending connections of the higher index critical cell are discarded by the cancel-

lation. We further optimize by not recording such connections in the MS complex

and not launching Algorithm ConnectSaddles from 2-saddles that are paired

with maxima.

Merging sub-domains

The merging procedure proceeds in the reverse order of subdivision of the domain.

Two sub-domains are merged into a single MS complex while ensuring that gra-

dient pairs that cross the shared boundary are identified. Then these pairs are

canceled out. This procedure ensures that there is no duplication of critical cells

(and their combinatorial connections) that lie on the shared boundary. Similar to
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the previous step, a persistence based simplification is performed on the combined

MS complex after each merge.

Traversing merge history and extracting geometry

The traversal of merge histories computes paths from critical cells that enter a

sub-domain through a shared boundary. Since we simultaneously perform simpli-

fication during merging, we consider critical cells within a sub-domain that are

paired with other critical cells, possibly outside the sub domain, as entry points

of gradient flow from surviving critical cells.

For extracting geometry, we require the original gradient field information.

To obtain this, we reload the original function and recompute the gradient field,

since the time taken to store and load this information is significantly higher than

recomputing it. The partition of the domain based on gradient paths from extrema

is computed on the GPU and the ascending/descending manifolds of saddles are

computed using the modified version of Algorithm ConnectSaddles.

4.5.2 Experiments

We performed experiments on two different classes of datasets. First, we evaluated

our algorithm with synthetic datasets to analyze its efficiency and scaling behavior

with varying parameters such as regions of near flat-gradient and large numbers

or gradients crossing shared boundaries. Second, we evaluated our algorithm’s

performance on various volume datasets available from http://www.volvis.org

and a dataset obtained from the simulation of a 3D Taylor-Green vortex flow on

a Cartesian grid. All experiments were performed on an Intel-Xeon 2 GHz CPU

with 4 cores and 16 GB of RAM and an NVidia GeForce GTX 460 GPU with 336

cores and 1GB of memory. Data was split into 256× 256× 256 sized sub-domains

that fit in memory.

http://www.volvis.org
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Synthetic data

We use a synthetic dataset wgauss to stress test the algorithm. The function is

defined as the product of a cosine wave with the 3D Gaussian i.e. f(x, y, z) =

cos(2πνdc) × Gc,σ(x, y, z), where ν is the frequency of the cosine wave, dc is the

distance of the point from the center, Gc,σ is the 3D Gaussian centered at c with

variance σ, and the domain is the unit cube. The function is sampled at various

grid resolutions to study scalability. This dataset is challenging since it contains

multiple flat-regions at concentric spheres, where the cosine wave achieves its max-

imum or minimum.

We use two variants of this function to study our algorithm. First, we place

the Gaussian at the center of the domain with variance 0.5 in all directions and

set ν = 5. The function contains concentric flat regions distributed across sub-

domains resulting in several insignificant critical points. Experiments with this

dataset helps study the scalability of the algorithm in the presence of noise and

flat regions. Second, we distribute eight Gaussians, such that each one is centered

in each octant of the domain. This variant does not possess as many flat regions

because the multiple cosine waves superpose and break up the flat regions. This

causes several gradients to cross common boundaries thus stressing the scalability

of the merge and merge history traversal.

Figure 4.15 shows the computation time for large data sizes. As can be seen

from the figures, our algorithm performs better on the wgauss multi dataset

which contains fewer flat regions. The time to cancel the gradient pairs that cross

shared boundaries is lesser than the time taken to perform a persistence based

simplification of the MS complex. This is reflected in the time taken to merge

the sub-domains of the wgauss dataset. Figure 4.15 also plots running time for

increasing data sizes of the wgauss dataset. The scaling results are similar for

various values of persistence threshold. We note that the curves deviate away
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Figure 4.15: (left) Scaling behavior with varying sizes of the wgauss dataset
simplified using a threshold of 1%. (right) Computation times for stages 2-5 for
the 10243 datasets. The persistence threshold for each run is shown above the bar-
plots. Time taken to split the data into sub-domains is approximately 3 minutes.

Dataset size #crits. time (a) (b)
Silicium 98× 342 1375 0.1s 3s -
Fuel 643 773 0.2s 5s -
Neghip 643 5663 0.3s 16s 7s
Hydrogen 1283 26725 1.5s 69s 47s
Anuerism 2563 95865 15s 118m 5m
wg 10243 13531699 42m - -
wg m 10243 4599 20m - -
vortex µ 10243 1266976 32m - -
wg 20483 54141119 464m - -
wg m 20483 4575 370m - -

Table 4.1: Timings for datasets available from http://volvis.org/ compared
with timings to compute the MS complex as reported in (a) [14] and (b) [12].

http://volvis.org/
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from linear scaling with increasing data sizes. On detailed analysis, we observed

that stages two and five scale linearly whereas stages three and four did not.

This is because of the representation of the combinatorial MS complex as a list of

associative arrays.

Performance

To verify the benefits of parallelization, we compare our algorithm against existing

methods [12, 14] on datasets available from http://volvis.org/, and a vortex

flow data set, see Table 4.1. The experimental results indicate orders of magnitude

improvement in the running time. Further, the memory required by our algorithm

is less than 2GB even for the larger wgauss dataset. Gyulassy et al. and Günther

et al. [12, 14] report 23h and 5h, respectively, to process data sizes close to 10243.

Figure 4.16 shows the critical 2- and 3-cells along with the ascending manifolds of

2-saddles for various datasets as well as slice visualizations of the wgauss dataset

along with the decomposition of one sub-domain into descending / ascending man-

ifolds of maxima / minima.

4.6 Persistence and Simplification in 3D

Simplification of the Morse-Smale complex refers to the systematic cancellation

of pairs of critical points to obtain a simpler Morse-Smale complex with fewer

critical points (see Section 2.2). Topological persistence [24] lays a theoretical

framework that may be adapted for simplification of the Morse-Smale complex.

As one sweeps across the range of the function, topological persistence tracks the

evolution of the topology of sub-level sets of the input scalar function. During

the sweep, it records pairs of critical points that correspond to the creation and

http://volvis.org/
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(a) (b) (c)

(d) (e) (f)

Figure 4.16: Ascending arcs between 2-saddles and maxima shown with the volume
rendered image for (a) Hydrogen, (b) Silicium, (c) Fuel and (d) Neghip Datasets.
Segmentation of the wgauss dataset into (e) descending manifolds (f) ascending
manifolds.
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destruction of topological features in the sub-level set. In 3D, the topological fea-

tures are connected components, loops, and voids, whose creation and destruction

is tracked by minimum-1-saddle, 1-saddle-2-saddle, and 2-saddle-maximum critical

point pairs respectively. Such pairs of critical points are referred to as persistent

pairs. The relative importance of a feature is measured by its life-time while sweep-

ing across the function range, i.e., the absolute difference in the function values

of the creator and destroyer critical points. This life-time is said to be the persis-

tence of the topological feature that is represented by the pair of critical points.

Thus, features whose life time is smaller are deemed to be less relevant to those

that “persist” for a larger life time. Edelsbrunner et al. [30] show that the least

persistent critical point pair is always connected by an arc in the 2D Morse-Smale

complex. Thus, one may simplify arcs of a 2D Morse-Smale complex so that the

critical points at the end of the arcs correspond exactly to the persistent critical

points. The simplification is iteratively carried out by canceling the arc with least

absolute difference in function value of its two critical points. This method, be-

ing equivalent to persistence in 2D, is referred to henceforth as the least absolute

difference in function value measure, abbreviated as the LADF measure.

For the 3D Morse-Smale complex, it is not theoretically known if the LADF

measure is equivalent to persistence. In this section, we prove two lemmas to show

that simplification of extremum-saddle pairs (maximum-2-saddle and minimum-

1-saddle pairs) using the LADF measure leads to pairs that are consistent with

topological persistence. The first lemma, the strong adjacency lemma, is an exten-

sion of the adjacency lemma proved by Edelsbrunner et al. [30]. The underlined

terms indicate the difference between the adjacency lemma and the strong adja-

cency lemma.

Lemma 4.5: Strong Adjacency Lemma. For every positive i, the i-th pair

of minimum-1-saddle critical points ordered by persistence forms a unique arc in
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the complex obtained by canceling the first i− 1 minimum-1-saddle pairs.

Proof. The existence of an arc between the i-th minimum-1-saddle pair after can-

celing the preceding i−1 minimum-1-saddle pairs follows from the same argument

in the proof of the Adjacency Lemma. This is because the path that connects the

i-th minimum-1-saddle may form after canceling other minimum-1-saddle pairs,

not after canceling 1-saddle-2-saddle pairs or 2-saddle-maximum pairs.

Thus it remains only to prove the uniqueness. Let the i-th minimum-1-saddle

pair ordered by persistence be m, s. Let j+ 1 be the time at which s appears, and

let Kj
1 and Kj

2 be the non intersecting connected components joined by s, where

m ∈ Kj
1 . Thus, the other descending arc from the saddle s connects to a minimum

m′ 6= m contained in Kj
2 .

If m′ is not paired, there is nothing to prove. Assuming otherwise, let s′ be

the saddle paired with m′. If (m′, s′) are sequenced after (m, s), there is nothing

to prove. Let us assume (m′, s′) is sequenced before (m, s). Let j′ + 1 be the

time at which s′ appears and let Kj′

1 and Kj′

2 be the non intersecting connected

components joined by s′, where m′ ∈ Kj′

1 .

It is sufficient to show that Kj′

2 and Kj
1 do not intersect, so that the other arc

from s extends to another minimum m′′ ∈ Kj′

2 that is not m. If we show this,

then we may reiterate the above argument with m′′ 6= m replacing m′. If j′ < j,

then Kj′

1 , K
j′

2 ⊂ Kj
2 , and because Kj

1 , K
j
2 do not intersect, we have that Kj

1 , K
j′

2

do not intersect. If j′ > j, then Kj
1 , K

j
2 ⊂ Kj′

1 , therefore we have that Kj
1 , K

j′

2

do not intersect. As the number of minima is finite, the above argument may be

reiterated to show that one arc from s terminates at some minimum that is not

m. This establishes the uniqueness of the arc from s to m.

The above lemma ensures that a persistent minimum-1-saddle pair is con-

nected by a unique arc in the Morse-Smale complex if the the preceding persistent
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minimum-1-saddle pairs have been canceled. We now show that iteratively cancel-

ing minimum-1-saddle arcs in the Morse-Smale complex using the LADF measure

results in persistent minimum-1-saddle pairs.

Lemma 4.6: Persistence-LADF equivalence Lemma. Minimum-1-saddle

pairs that result from iteratively canceling the singular minimum-1-saddle arcs with

LADF measure are persistent minimum-1-saddle pairs.

Proof. Assume that (m, s′) is the first non persistent minimum-1-saddle arc we

cancel as the Morse-Smale complex is iteratively simplified by canceling singularly

connected minimum-1-saddle arcs using the LADF measure. Let δ = f(s′)−f(m).

First, we claim that all persistent minimum-1-saddle pairs having persistence

less than δ have been canceled. Since, this is the first non persistent minimum-

saddle arc to be canceled, all preceding arcs were persistent minimum-1-saddle

pairs. By the strong adjacency lemma we know that the least persistent minimum-

1-saddle pair that is not yet canceled is connected by a unique arc in the Morse-

Smale complex. If this arc had persistence less than δ it would have been canceled.

Iterating this argument over the sequence of persistent minimum-1-saddle pairs,

all persistent minimum-1-saddle pairs having persistence less than δ have been

canceled.

The pair (m, s′) may not be a persistent pair because, either m is the global

minimum and therefore does not form a persistent pair at all or it does form a

persistent pair with a saddle s. In the first case, consider the saddle s′. It has

one descending arc that terminates at the global minimum m. Since this arc is

singular, the other descending arc from s′ terminates at another minimum m′.

Since m is the global minimum, f(m) < f(m′) . But that would make the arc

(m′, s′) the singular arc with least absolute difference in function value. Thus,

(m, s′) could not have been the singular arc with the least absolute difference in

function value, and hence we have a contradiction.
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Now assume that (m, s) form a persistent pair. Since we already have canceled

all persistent minimum-1-saddle pairs having persistence less than δ, we have f(s)−

f(m) > δ = f(s′) − f(m), i.e., f(s) > f(s′). The other descending arc from s′

terminates at some minimum m′ contained in the connected component Kj, where

j+ 1 is the time at which s arrives. Since s destroys the component created by m,

m is the lowest minimum in the component in Kj. If m′ = m, then (m, s′) is a non-

singular arc and thus cannot be canceled. If not, then m′ is paired by persistence

with a saddle s′′ that enabled it to union into the component Kj. Also, we have

that f(m′) > f(m) and f(s′′) < f(s). Since we have canceled all persistent pairs

with persistence less than δ, the arc s′m′ should now extend to lower minimum

m′′ in Kj. Reiterating the argument, the other arc must be connected to m. Thus

(s′,m) has to be multiply connected making the cancellation impossible.

By duality, the above two lemmas may be applied to maximum-2-saddle pairs.

This is because, the cancellation of maximum-2-saddle never affects the combina-

torial of connectivity minimum-1-saddles and vice-versa. Thus, we may simulta-

neously and iteratively cancel extremum-saddle arcs in the Morse-Smale complex

using the LADF measure so that the resulting sequence of pairs are indeed persis-

tent pairs.

We also infer from the above lemmas that the remaining 1-saddles and 2-

saddles neither destroy 0-cycles nor create 2-cycles. Otherwise, they would have

formed persistent extremum-saddle pairs. In the case when the domain is R3 or

S3, we know that these 1-saddles and 2-saddles necessarily pair with each other

so that none remain unpaired. From a topological standpoint, each such 2-saddle

necessarily destroys a 1-cycle created by some 1-saddle. However, possibly due to

discretization of gradients, we find in many situations that these critical points are

non-singularly connected. Another possibility is that the least persistent 2-saddle-

1-saddle arc may not be connected by an arc in the Morse-Smale complex. Here,
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it is seen that if the discrete Morse-Smale complex is constructed by gradient pairs

such that they are persistent pairs for some filtration of the domain, then the least

persistent 2-saddle-1-saddle pair is connected by an arc. This is because the process

of gradient traversal via boundary expansion is analogous to the cycle search step

of the persistence computation algorithm of Edelsbrunner et al. [30]. Thus, by the

correctness arguments, we may infer that there exists at least one gradient path

between the least persistent 2-saddle-1-saddle pair. However, the difficulty arises

when we attempt to iterate the argument when persistent 2-saddle-1-saddle pairs

are not eliminated due to non-singular connectivity. For the above reasons, in

applications that prioritize topological considerations, we believe it is justified to

eliminate these 1-saddle-2-saddle pairs despite the non-singular connectivity. Here,

we conjecture that iteratively eliminating singular extremum-saddle arcs and then

2-saddle-1-saddle arcs with odd multiplicity, ordered using the LADF measure

yields persistent 2-saddle-1-saddle pairs also.

The above simplification scheme requires simplification of extremum-saddles to

be completely determined and then proceeds to eliminate 2-saddle-1-saddle pairs.

In some applications, it is desirable for the sequence to be conjoined and not

separate. In such cases, we may first determine the sequences of pairs and then

merge the two sequences which are then ordered using the LADF measure. This

is still a valid sequence of cancellation pairs. This is because the arcs of one type

do not form parts of arcs of another type. For example, a 2-saddle-maximum arc

will never be part of any 2-saddle-1-saddle arc, i.e., the formation of a 2-saddle-1-

saddle arc is only influenced by other 2-saddle-1-saddle arcs. Thus, even though

the sequences are merged, the relevant arcs will form at the appropriate time

because the relative order of each type of arc is unchanged.
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4.7 Conclusions

In this chapter, we have discussed an efficient parallel algorithm to compute the

Morse-Smale complex of scalar functions defined on large two-dimensional and

three-dimensional domains. This is done by laying robust theoretical founda-

tions for consistent and independent computation of the discrete gradient field.

The validity and the quality of the gradient field is also proved using theoreti-

cal arguments. Efficient algorithms for traversal of the gradient fields in GPUs

and multicore-CPUs are discussed. These algorithms were implemented evalu-

ated for 2D and 3D structured grids. The evaluations show near linear scaling of

the algorithms with data size and computing cores. We compare our synergistic

CPU-GPU 3D implementation with other algorithms to demonstrate an order of

magnitude improvement in run-times over earlier algorithms for common visual-

ization datasets. In the last part of the chapter, we discussed our contributions

towards the analysis of simplification of the Morse-Smale complex. In particular,

we showed that it is possible to simplify extrema-saddle pairs the 3D Morse-Smale

complex in a manner that is consistent with topological persistence.



Chapter 5

Exploring Cosmic Filaments

In this chapter, we discuss the application of the Morse-Smale complex to visually

explore the filamentary structure of the cosmic web1. The Morse-Smale complex

plays key roles in both identifying filamentary structures and filtering relevant fila-

ments based on user parameters. In Section 5.1, we begin with a brief introduction

to the cosmic-web and the challenges present in its study. Next, we highlight sig-

nificant related work (Section 5.2) and then discuss the key contributions of our

Morse-Smale complex based approach (Section 5.3). In Section 5.4, we discuss

Felix’s methodology. Section 5.5 discusses the cosmological datasets that we use

in our experiments in detail. In Section 5.6, we discuss experiments to validate our

approach as well as showcase the advantages of Felix. We conclude this chapter

with the possible future directions of our work in Section 5.7.

1This work was carried out in collaboration with Pratyush Pranav, Rien van de Weygaert,
E G Patrick Bos, and Steven Rieder who are with the Kapteyn Astronomical Institute.
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5.1 Introduction

At scales from a megaparsec to a few hundred megaparsecs2, the universe has a

web-like appearance. In the cosmic web [25, 49], galaxies, intergalactic gas, and

dark matter have aggregated in an intricate wispy spatial pattern marked by dense

compact clusters, elongated filaments and sheetlike walls, and large near-empty

void regions. The filaments, stretching out as giant tentacles from the dense cluster

nodes, serve as transport channels along which mass flows towards the clusters.

They surround the flattened walls, which are tenuous, membrane-like features in

the cosmic mass distribution.

All structure and objects in the universe emerged out of primordial fluctuations

that were generated during the inflationary era, moments after its birth, as the

universe underwent a rapid phase of expansion [50, 51, 52]. The quantum fluc-

tuations generated during this phase manifest themselves as fluctuations in the

temperature of the cosmic microwave background [53, 54, 55]. The gravitational

growth of these density and velocity perturbations has resulted in the wealth of

structure that we see in the Universe. The web-like patterns mark the transition

phase from the primordial Gaussian random field to highly nonlinear structures

that have fully collapsed into halos and galaxies. As our insight into the complex

structural pattern of the cosmic web has increased rapidly over the past years, it

has become clear that the cosmic-web contains a wealth of information on a range

of cosmological and astronomical aspects and processes.

An important illustration of the cosmological significance of the cosmic web

concerns its dependence on the nature of dark energy and matter, the dominant

but as yet unidentified forms of energy and matter in the Universe. One telling

2A parsec is the standard unit of measurement of distances in the cosmos. A parsec is 3.26
times the light-year, the distance light covers in a year. A megaparsec is a million parsecs, the
typical scale of measurement of size of the large scale structures in the universe.
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example of this is the recent realization that cosmic voids are sensitive and useful

probes of the nature of dark energy and dark matter and testing grounds for

modified gravity theories [56, 57, 58, 59, 60, 61, 62, 63]. As the cosmic web is first

and foremost defined and shaped by the gravitationally dominant dark matter, it

would be of considerable importance to be able to obtain detailed maps of dark

matter distribution. In recent years, great strides have been made towards this

goal as gravitational lensing of distant galaxies and objects by the dark matter have

enabled an increasingly accurate view of its spatial distribution [64, 65]. Initial

efforts concentrated on the detection and mapping of the deep potential wells of

the nodes in the cosmic web, i.e., of galaxy clusters. Recent results have opened

the path towards the mapping of filaments via their lensing effect on background

sources [66]. The identification of the structural components of the cosmic web

is also important for our understanding of the relation between the formation,

evolution, and properties of galaxies and the structural environment of the cosmic

web. A direct manifestation of this is the generation of the angular momentum of

galaxies. This is a product of the torqueing by the large-scale tidal force field [67,

68, 69]. While these are also the agent for the formation and shaping of filaments,

we would expect that this results in the alignment of the spin axis of galaxies with

respect to cosmic filaments [70, 71, 72].

The identification, description, and characterization of the elements of the cos-

mic web is a non-trivial problem. Several characteristics of the mass distribution

in the cosmic web have made it an extremely challenging task to devise an appro-

priate recipe for identifying them:

a) The cosmic web is a complex spatial pattern of connected structures dis-

playing a rich geometry with multiple morphologies and shapes.

b) There are no well-defined structural objects at a single spatial scale or within

a specific density range. Instead, elements of cosmic web are found at a wide range
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of densities and spatial scales. This is a consequence of the hierarchical evolution

of structure formation in the universe, such that smaller high-density structures

merge to form larger objects.

c) There is a clear anisotropy in the structures of the cosmic web, a consequence

of gravitational instability. The structures in the cosmic web exhibit elongated and

flattened characteristics.

The attempts to analyze the structure of the cosmic web has a long history. The

absence of an objective and quantitatively accurate procedure for identifying and

isolating the components of the cosmic web has been a major obstacle in describing

it. In recent years, more elaborate and advanced techniques have been developed

to analyze and describe the structural patterns in the cosmic web. Nonetheless, a

consensus on the proper definition of filaments is yet to be achieved. In Section 5.2,

we present a short account of the available techniques and the definitions on which

they are based.

5.2 Related Work

Statistical measures such as the auto-correlation function [73] of the matter dis-

tribution in the web have been the mainstay of cosmological studies over many

decades. However, while this second-order measure of clustering does not contain

any phase information (one may e.g. always reproduce a distribution with the same

2nd order moments and random Fourier phases), the auto-correlation function is

not sensitive to the existence of complex spatial patterns. Higher order correla-

tion functions only contain a very limited amount of such structural information,

while in practical observational circumstances it quickly becomes cumbersome to

measure them. The magnitude of the error increases drastically with increasing

order.
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The first attempts towards characterizing complex geometric patterns in the

galaxy distribution mainly involved heuristic measures. Early examples of tech-

niques addressing the global connectivity of structure in the Universe are percola-

tion analysis [74] and the minimum spanning tree of the spatial galaxy distribu-

tion [75, 76]. While these are useful global descriptions, they do not capture and

describe local characteristics of the mass distribution.

More elaborate and advanced techniques have been developed in recent years.

Several of these methods apply sophisticated mathematical and visualization tech-

niques, involving geometric and topological properties of the cosmic mass distribu-

tion. There are a multitude of different methods for detecting filaments, based on

a range of different techniques. We may recognize several categories of techniques.

One class of methods seeks to describe the local geometry on the basis of the

Hessian of the density field [77, 78, 79, 80] or closely related quantities such as the

tidal force field [81, 82] or the velocity shear field [83, 80]. The Hessian provides

direct information on the local shape and dynamical impact of the corresponding

field. The morphological elements of the cosmic web are identified by connecting

the areas within which a specific range of anisotropies is registered.

These studies concentrate on a single scale by appropriately smoothing the

field, and do not consider the multi-scale nature of the cosmic mass distribution.

The Hessian based Nexus/MMF technique, introduced by Aragon-Calvo et al. [78]

and perfected into a versatile and parameter-free method by Cautun et al. [80],

implicitly takes into account the multi-scale nature of the web-related fields. It

accomplishes this by a scale-space analysis of the fields. At each location the

optimal morphological signal is extracted via the application of a sophisticated

filter bank applied to the Hessian of the corresponding fields in scale space. The

application of this machinery has enabled thorough studies of the hierarchical

evolution and buildup of the cosmic web [84].
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A promising and highly interesting recent development has opened up the path

towards dynamical analysis of the evolving mass distribution in full six-dimensional

phase-space (in which the position of each mass element is specified by its space

coordinates and velocity/momentum). In the 6D phase space, the cosmic mass

distributions defines a 3D sheet. Independently, three groups arrived at tessella-

tion based formalisms that exploit the evolving structure and folding of the phase

space sheet in phase space [85, 86, 87] (also see e.g. [88]). The number of folds

of the phase space sheet at a given location indicates the number of local veloc-

ity streams, and forms a direct indication of the morphology of the local struc-

ture. Interestingly, the resulting characterization of the web-like distribution, the

Origami formalism of Neyrinck [87] for example, appears to resemble that of the

Nexus/MMF formalism [84].

An entirely different class of techniques is based on a thorough Bayesian statis-

tical analysis of the Bisous model. Stoica et al. [89] model the filamentary galaxy

distribution within the context of a stochastic geometric model involving a ran-

dom configuration of interacting cylindrical segments. It has been developed into a

versatile, statistically solid yet computationally challenging formalism for the iden-

tification of filaments in a spatial point distribution, such as N-body simulations

and galaxy redshift surveys [90]. An additional example of a method involving

statistical analysis of a geometric model is that of Genovese et al. [91], which seeks

to describe the filamentary patterns of the cosmic web in a non-parametric way

by recovering the medial axis [92] of the point-set of galaxies.

The fourth major class of methods, the one which we will also pursue, exploits

the topological structure of the cosmic mass distribution. The fundamental basis

of these methods is Morse theory [38]. The geometric structure of the Morse-

Smale complex [30] naturally delineates the various morphological components on

the basis of the connections between the critical points of the density fields and
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the higher dimensional cells that are incident on the critical points. Various Morse

theory based formalisms have been applied to the identification of components of

the cosmic web. One of the first applications concerned the detection of voids

in the cosmic density field. The Watershed Void Finder [93] identifies these with

the watershed basins around the density minima. The SpineWeb procedure [94]

extended the watershed transform towards the detection of the full array of struc-

tural components, filaments, walls and voids. These techniques use a user-defined

filter to incorporate the multi-scale structure of the cosmic density field.

A natural topological means to address the multi-scale topological structure

emanates from the concept of persistence [24]. It provides a natural recipe for

detecting and quantifying the components of the cosmic web in a truly hierar-

chical fashion. Sousbie [9, 10] has exploited and framed this in an elegant and

impressive framework, the DisPerSE formalism. Following the construction of the

Morse-Smale complex, they proceed to simplify it. The simplification proceeds by

canceling pairs of critical points iteratively, where each pair represents a structure

in the cosmic web. Topological persistence is invoked to order the critical point

pairs. However, this measure of importance is not unique, and one may consider

alternatives, dependent on the specific interest and purpose.

In effect, to tackle similar issues in other visualization areas, a range of varia-

tions have been proposed in other studies [20, 95, 96]. Weinkauf et al. [96] describe

the concept of separatrix persistence, where they compute the strength of sepa-

ration of points on a separatrix curve (in 2D) connected to a saddle as the sum

of the absolute differences of function values of the saddle and the extrema con-

nected to it. This concept is extended to 3D separating sheets by Gunther et

al. [20] in a slightly modified form. Reininghaus et al. [95] develop the concept of

scale-space persistence where they accumulate the absolute difference in function

value measure of critical points across a hierarchy of derived functions. The set
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of derived functions are generated by smoothing the function using a Gaussian

kernels of increasing variances. This is similar to the Multi-scale Morphology Fil-

ter Nexus/MMF [78, 80] described above. Both methods adopt the scale space

formalism as the first step to detect features at multiple scales. However, scale

space persistence and separatrix persistence, disregard specific density regimes of

interest and are potentially inappropriate when small scale features with specific

density characteristics are of interest.

5.3 Contributions

In the present study, we describe and introduce a technique for the identification

of filaments based on the topological characteristics of the density field. A key

aspect of the proposed technique is its interactive nature, involving a tunable

density parameter. Specifically, we describe the following contributions:

a) We describe Felix3: a topology based framework for visual exploration of

filaments in the cosmic web. In particular, we develop a query framework to

extract filamentary structures from a hierarchy of Morse-Smale complexes of the

density field. The filaments in Felix are parameterized by the density values of the

maxima and the 2-saddle that define them.

b) Using Felix, we develop a semi automatic structure finder that classifies

galaxies as cluster/filamentary or not. We demonstrate its efficiency through two

tests. First, using the Voronoi Kinematic model as a benchmark, we demonstrate

that we are able to recover the classification with high efficiency. Second, we show

that the classifications are quantitatively comparable to, and in several cases better

than, existing classifiers.

c) We investigate the nature of filaments in two realizations of the ΛCDM

3The name Felix is formed from an abbreviation of Filament explorer.
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simulations. In the first dataset, we investigate filaments concerning two den-

sity regimes. The first concerns filaments in the high density regions around

compact dense clusters, which are known to function as the transport channels

along which matter moves into the clusters. A second regime concerns the ten-

uous low-density filaments found in low-density void regions. A video demon-

strating the visual exploration process in this experiment is available a https:

//youtu.be/8TRtX937Xjk. In the second dataset, we investigate the nature of

three classes of filaments in a relatively cleaner region of a ΛCDM dataset. The

first class consists of filaments within clusters, the second consists of filaments

within void-like regions, and the third consists of those that extend across cluster

like regions, which forms the spine of the cosmic web.

d) We describe an efficient structure based volume rendering enhancement

routine that allows us to highlight the density distribution in regions that are

close to the selected features.

The distinction between noise and significant structures is often ill-defined, and

at occasions noise may be confused with genuine structures in the hierarchically

evolved mass distribution (see Figure 5.2 and the caption thereof for an illustra-

tion). This problem is more pronounced when one studies the properties of tenuous

filaments and walls in low density void-like regions. For the understanding of the

formation and evolution of galaxies in such regions, we need to assess the possible

dependence of galaxy and halo properties on the morphology and density of the

local environment. This must be based on the successful extraction of filaments in

low density regions and the correct identification of galaxies associated with them.

In view of this, we include an interactive handle on the density regimes so that

one can concentrate on and probe structures in specific density regimes.

https://youtu.be/8TRtX937Xjk
https://youtu.be/8TRtX937Xjk


CHAPTER 5. EXPLORING COSMIC FILAMENTS 93

5.4 Methodology

Exploring the filamentary patterns of the cosmic web is challenging because of the

large range of the spatial scales and density range it exhibits. A proper character-

ization should also account for the hierarchical nature of structures, which adds

considerable challenge to the task. Though there exist different notions of fila-

ments, the primary evidence relied upon for extraction and analysis is most often

visual. It is therefore not surprising that structure finding methods often visually

verify results by superimposing the extracted structures upon visualizations of the

density field or the particle distribution. However the visualization plays a role

only after structure extraction process in these methods. We differ in this respect

by providing the capability to interact with the structure finding procedure and ex-

tract structures that are visually relevant. To accomplish such a visual exploration

framework, a succinct model of filament definition, an efficient representation of

hierarchical structures, and an appropriate query mechanism that supports the

extraction of these structures are paramount. The following exposition details our

framework on these terms.

5.4.1 Density estimation and filament modeling

Cosmological simulations are N-body particle experiments that simulate structure

formation and evolution by tracing positions of the particles under the influence

of physical laws. In the observational reality, the information about structures in

the cosmos comes through observing the galaxies. The galaxies can be treated as

particles also for the purpose of analysis in the context of large scale structures.

The input to Felix is the logarithm of the density scalar field on the given

3D domain of interest. The domain could be 3D structured grids or tetrahedral

meshes, with the density specified on the vertices of the grid/mesh. We find that
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Figure 5.1: Ascending manifolds of a 2-saddle (yellow sphere). The scalar function
is a sum of two 3D Gaussians centered on either side of the volume. The two arcs
incident on the 2-saddle constitute the ascending manifold and terminate at the
two maxima (red spheres) of the scalar function.

(a) (b)

Figure 5.2: (a) A scatter plot of the function values of the canceled critical point
pairs for the function shown in Figure 5.1. A 2-saddle-maximum pair is the only
pair that is far removed from the diagonal. This corresponds to cancellation of
the 2-saddle with a maximum that represents one of the Gaussians in Figure 5.1.
Other pairs close to the diagonal represent insignificant features that manifest
due to the added Gaussian noise as well as sampling noise. (b) A scatter plot of
the function values of the canceled critical point pairs for the Voronoi-Kinematic
dataset B (see Section 5.5.1). No discernible separation of points is seen, though
there are many points that are far removed from the diagonal. Thus, no clear
global simplification threshold may be used for filament extraction.
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the logarithm of the density field, instead of the density field itself, resolves the

structures with more visual clarity. This has also been independently established

in an earlier work [80]. Additionally, the input may be specified as a distribution

of particles within a 3D region of interest. This could be a snapshot from a cos-

mological simulation, or galaxies in real observational data. We use the Delaunay

tessellation field estimator (DTFE) [97, 98] to estimate the density of the input

particles in the 3D region of interest. This procedure begins by computing the pe-

riodic Delaunay triangulation [99] on the points (simulation particles or galaxies).

Next, the density at each vertex of the triangulation is estimated by the inverse

of the volume of the tetrahedra incident upon it. Finally, the density is linearly

interpolated onto the edges, faces, and tetrahedra of the Delaunay triangulation

to yield a piecewise linear density function on the domain. The periodic Delaunay

triangulation, computed by the DTFE procedure, is used to represent the domain.

The Morse-Smale complex of the logarithm of the density field is computed.

Filaments are modeled as the ascending manifolds of 2-saddles of the Morse-Smale

complex. These arcs represent paths of steepest descent from the two maxima

merging at the 2-saddle. This 2-saddle represents the lowest density point along

the arcs connecting the two maxima. A schematic illustration of this is presented

in Figure 5.1. There are many algorithms available in the literature to compute

the 3D Morse-Smale complex. The algorithms are primarily based on either the

quasi Morse-Smale complex formulation [100, 31] or Forman’s [21] discrete Morse

theory [12, 13, 15, 16]. We use the parallel algorithm described in Chapter 4,

resulting in fast computation even for large datasets.

The density field is rarely smooth and several local maxima obscure a view of

the larger scale behavior of the density field. This is especially true if the density

field is computed on the raw particle distribution, where the density field tends

to be spiky and with a lot of fluctuations in the high density cluster-like regions.



CHAPTER 5. EXPLORING COSMIC FILAMENTS 96

The Morse-Smale complex is simplified by iteratively canceling pairs of singularly

connected critical points with least absolute difference in function value to generate

a hierarchy of Morse-Smale complexes.

In most applications, a specific version of the Morse-Smale complex from the

hierarchy is chosen based on a perceptibly clear separation of noise and features.

One way to choose such a threshold separating noise and feature is by using a

scatter plot of the function values of canceled critical point pairs (see Figure 5.2)

where the lower function value among the pair corresponds to the x-coordinate

and the higher function value corresponds to the y-coordinate. In datasets where

topological features are well separated (see Figure 5.2(a)), pairs representing sig-

nificant features appear far away and isolated from the diagonal. In such cases, the

coarsest Morse-Smale complex version wherein the insignificant pairs are removed

is selected for feature analysis/extraction. However, this strategy is not easily ap-

plicable to cosmology datasets (see Figure 5.2(b)). A well defined separation is

rarely discernible, though there are many scatter points that are far removed from

the diagonal. Hence, we drop the assumption that we must work with a specific

version. Instead, we query for features across all Morse-Smale complexes in the

hierarchy, as discussed in the following sub-section.

5.4.2 Density range based filament selection

Cosmic filaments exhibit a large range of variation in their density characteristics.

Indeed, one expects filaments to be present both in void like regions and between

cluster like regions. While strong dense filaments in between clusters define the

spine of the Cosmic Web, in the hierarchically evolving mass distribution we en-

counter a wide spectrum of ever more tenuous filaments on smaller mass scales.

Small filaments define the directions of mass inflow into galaxies, and form a crucial

component in the formation of galaxies [101]. Even more tenuous are the systems
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of filaments stretching over the hollows of voids, often conspicuously aligned along

the direction defined by neighbouring superstructures. The understanding of this

network is tightly related to the issue of the “missing” dwarf galaxies in voids [102].

While this illustrates the complexity of the multiscale filigree of filaments in the

Cosmic Web, we follow a strategy in which we focus our attention on specific as-

pects and details of the cosmic web. Dependent on the identity of objects and

structures of interest, we wish to be able to zoom in on to the corresponding fil-

amentary network. This is largely dependent on the mass scales of the objects

involved, and the density values of the corresponding filament generating density

peaks [103, 84].

Following this rationale, we translate this strategy into the use of queries that

depend on the density properties of interest. Specifically, we query for filaments

by specifying the density range [Mb,Me] of the clusters they connect (the maxima

at the end points), as well as the density range [Sb, Se] of the lowest point along

the connecting path (the density range of the 2-saddles). Figure 5.3 conceptually

illustrates the characterization of filaments using density ranges, where density

along filaments vary significantly necessitating simplification.

Algorithm Select2Saddles lists the algorithm to process such a query. The

algorithm accepts, together with the combinatorial Morse-Smale complex MSC,

the density ranges [Sb, Se] and [Mb,Me] as input. The algorithm returns a list of

2-saddles that satisfy the above criteria together with the maximal Morse-Smale

complex version in which they do so.

The algorithm begins by creating a list S of 2-saddles that have their function

value in the given 2-saddle range [Sb, Se]. Then, for each 2-saddle in S, a Morse-

Smale complex version in which it possibly connects two maxima within [Mb,Me]

is computed. The appropriate version is given by the minimum of three version

indices va, vb and vc.
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Figure 5.3: (a) Filaments are modeled as the ascending paths of 2-saddles con-
necting two extrema. The 2-saddles are filtered based on the range constraints
[Mb,Me] and [Sb, Se] on the highest and lowest values respectively along the as-
cending paths. The highest values along the 2-saddle’s ascending manifold are at
extrema and the lowest value is at the 2-saddle. The function along the paths
is rarely smooth and needs to be simplified. In the illustration, a simplification
threshold of t reveals a filament with appropriate density characteristics. How-
ever, imposing such a threshold uniformly will cause another filament (b) having
the required density characteristics to be destroyed. It is therefore necessary to
extract filaments by querying all Morse-Smale complexes within a given hierarchy.

Algorithm 5.1 Select2Saddles

1: procedure Select2Saddles([Sb, Se], [Mb,Me])
2: Sver ← Empty Map
3: S ← {s|s is a 2-saddle,Sb < f(s) < Se}
4: for all s ∈ S do
5: va ←Max{i|s is not simplified in MSCi}
6: vb ←Max{i|ti < Mb − f(s)}
7: vc ←Max{i|s connects distinct Maxima in MSCi}
8: Sver[s]←Min(va, vb, vc)

9: Sort S by Sver
10: Ssel = Empty Set
11: for all s ∈ S do
12: i = Sver[s]
13: ma,mb = Maxima connected to s in MSCi
14: if Mb < f(ma), f(mb) < Me then
15: insert (s, Sver[s]) in Ssel

return Ssel
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The version index va is the finest Morse-Smale complex version in which the

2-saddle s survives. In other words, s is canceled in MSCva+1 but not in MSCva .

This is pre-computed by examining the cancellation sequence. The version index

vb corresponds to the last Morse-Smale complex version at which the 2-saddle s

connects two maxima, both with function value less than Me. This is possible

because in successive versions of the Morse-Smale complex, the maxima connected

to a 2-saddle via the same arc form an increasing sequence in terms of their function

value. Thus, in the version where the absolute difference in function value of the

last canceled pair is less than Mb − f(s), the 2-saddle s still possibly connects

two maxima with function value less than Me. The version index vc is the last

Morse-Smale complex version at which the 2-saddle s separates distinct maxima.

In other words, it is not a strangulation in MSCvc . As a consequence of the

cancellation preconditions, once a strangulation is created by a 2-saddle, it may

be destroyed only by canceling the 2-saddle with a 1-saddle. Thus there exists a

maximal version index vc after which the 2-saddle remains connected to a single

maximum. The version index vc is −1 when the 2-saddle is a strangulation in the

initial Morse-Smale complex. In this case, the 2-saddle is not considered in further

steps and is removed from S. Again, this is easily pre-computed for each 2-saddle

by examining the cancellation sequence.

The 2-saddles in the set S are sorted based on their version indices. This is

done to optimize switching between the required Morse-Smale complex versions.

Next, each 2-saddle s in S is checked to see if it separates two maxima within

the maxima density range [Mb,Me]. The list of 2-saddles that fulfill all of the

above criteria are returned together with their associated version numbers. This

above list of 2-saddles is used to extract the filament geometry. Specifically, the

ascending manifold of each 2-saddle is extracted from the corresponding version

of the Morse-Smale complex. This may be done efficiently using the cancellation
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merge DAG data structure discussed by Gyulassy et al. [104].

In some situations, it is desirable to perform some simplification to eliminate

Poisson noise introduced due to meshing the domain. In these cases, a global sim-

plification specifically for noise elimination, can be optionally introduced. Specif-

ically, Algorithm Select2Saddles returns only those 2-saddles that survive in

hierarchical Morse-Smale complex versions above a specified threshold Ts, where

Ts is specified as a normalized fraction of the range of log-density values (normal-

ized to [0, 1]). Ts is set to 0.0 unless specifically mentioned. Similar to the inputs

of Algorithm Select2Saddles, Ts may be updated during run-time.

5.4.3 Volume Rendering and Enhancement

We use volume visualizations of the density field to aid selection of parameters for

Algorithm Select2Saddles. The geometry of the selected filaments using Algo-

rithm Select2Saddles is superimposed upon a volume rendering of the density

field. Based on the visualization of the extracted filaments and the density volume

rendering, the parameters may be adjusted so that the structures correspond with

the density volume rendering. Figure 5.5 shows an example of the overlay of the

volume visualization with the selected structures. For volume rendering, we use a

standard implementation [105] of the Hardware Accelerated Projected Tetrahedra

(HAPT) technique proposed by Maximo et al. [106], which in turn is an adaptation

of the classic Projected Tetrahedra algorithm by Shirley and Tuchman [107].

Direct volume rendering of the density is often not effective for visualization

because of the formation of clusters at multiple scales. Furthermore, these clusters

are often spatially far removed from the features of interest. Figure 5.10(a) shows

the visual clutter caused in a cosmic web density field.

We modify the HAPT algorithm to suppress the opacity of regions spatially far

removed from filamentary features of interest. The input to our modified algorithm
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is the set of selected features, in addition to the density field and a transfer function

that translates density values to color and opacity. The HAPT algorithm projects

tetrahedra in visibility order, while blending their raster pixels in a back-to-front

order. The color and opacity of each raster pixel of a tetrahedron is given by the

volume integral, which integrates color and opacity values along view rays as they

enter and exit the tetrahedron. Moreland and Angel [108] propose a linearized

form of the integral for efficient evaluation and acceptable quality. The integral

resolves into a linear expression with one non-linear term obtained from a pre-

integrated table. A key advantage of this method is that the input required for

each view ray is the color and opacity value at the end points of each view ray along

with the length of the view ray through the tetrahedron. In the HAPT algorithm,

the density at the vertices of the tetrahedron is first linearly interpolated to the

endpoints of the view-ray tetrahedron intersection and then translated to color

and opacity values using the transfer function. In an analogous manner, we first

compute the distance of the vertices from the selected set of features. This may

be efficiently computed using a kd-tree [109] in O(n log n) time, where n is the

number of vertices. Then, this distance is linearly interpolated to each end point

of each view-ray tetrahedron intersection . The interpolated distance value at each

end point of the view-ray tetrahedron is then used as an argument of a Gaussian to

compute corresponding secondary opacity values. These secondary opacity values

are multiplied by the opacity values obtained from the transfer function. The

variance is used as a distance control parameter, where a lesser variance results

in the suppression of the opacity of features that are spatially far removed from

the selected set of features. The remainder of the HAPT algorithm is retained

unchanged.
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5.5 Model Description

In this section, we briefly describe the models used to test our filament detec-

tion routine. These are the Voronoi evolution models and ΛCDM cosmological

simulations.

The Voronoi models provide us with vital quantitative information on the sen-

sitivity of Felix to anisotropic filamentary patterns in the galaxy distribution. To

this end it is of key importance that the Voronoi models have an a-priori known

population fraction in different morphological elements: clusters, filaments, walls

and voids. This makes them perfect test models for evaluating success and failure

rates of the various identification methods.

Although they involve filaments with a broad distribution of densities, the

Voronoi models do not incorporate the multi-scale web-like patterns we see in

realistic cosmological scenarios. To assess this aspect of the cosmic mass dis-

tribution, we turn to simulations of structure formation in the standard ΛCDM

cosmology. Implicitly these include all relevant physical and dynamical processes

of the evolving cosmic dark matter distribution. However, as we have no control

over all aspects of the emerging mass distribution in ΛCDM simulations, for testing

purposes they are not as informative as Voronoi models 4

5.5.1 Voronoi evolution models

The Voronoi evolution models are a class of heuristic models for cellular distribu-

tions of galaxies that mimics the evolution of the Megaparsec universe towards a

weblike pattern. They use Voronoi tessellations as a template for distribution of

matter and related galaxy population [114, 115, 112], and its subsequent evolution.

4In the literature, several studies use simplistic models using Voronoi tessellations. The models
we use here are considerably more sophisticated, and represent a rather realistic depiction of the
cosmic web in void-dominated cosmologies, see e.g. [110, 111, 112, 113].
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(a) (b) (c)

Figure 5.4: Density rendering of the snapshots in the Voronoi evolution time-
series: (a) is the least evolved stage with almost 50 percent particles located in the
Voronoi cells, (b) at a medium stage of evolution, while (c) is the most evolved
stage of the model. We refer to Table 5.1 for a percentage distribution of particles
in different morphological components.

In these models, one begins by fixing an underlying Voronoi skeleton, defined

by a small set of randomly distributed nuclei in the simulation box. One then

superposes a set ofN randomly distributed particles on this skeleton. The resulting

spatial distribution of particles in the model is obtained by projecting the initially

random distribution of particles on to the faces, edges, and nodes of the Voronoi

tessellation. This results in a pattern in which one can distinguish four structural

components: field particles located in the interior of Voronoi cells, wall particles

within and around the Voronoi faces, filament particles within and around the

Voronoi edges and cluster particles within and around the Voronoi nodes.

One particular class of Voronoi clustering models are the Voronoi kinematic

models, which seek to approximate the dynamical evolution of the large scale

cosmic mass distribution. These models involve a continuous flow of galaxies

towards the nearest wall, along a filament at the wall’s edge, and subsequently

towards the final destination, a vertex of the Voronoi tessellation. This motion is

regulated by the increase of mean distance between the galaxies, an expression of

void expansion and evacuation as a function of time.
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cell wall filament cluster
A 29.88% 43.57% 22.20% 4.33%
B 9.82% 32.13% 38.62% 19.42%
C 3.5% 16.50% 28.70% 51.30%

Table 5.1: The relative abundance of particles in each structural element through-
out the course of evolution.

The Voronoi models used in our experiments have 262, 144 particles distributed

along the vertices, edges, faces and cells of the Voronoi skeleton in a box of side-

length 200h−1Mpc. The skeleton is generated by 32 randomly placed nuclei in the

box. For the least evolved stage, most of the particles are in the cells, while for

the most evolved stage, most of the particles are located in and around clusters.

Table 5.1 presents the percentage distribution of particles in the various structural

elements, as it changes with time. Stage 1 (dataset A) is the least evolved, while

Stage 3 (dataset C) is the most evolved. The number density of particles in

and around the nodes, edges, and walls are Gaussian distributed around these

elements, characterized by a thickness scale Rf which is the standard deviation

of the distribution. For our models, Rf = 2h−1Mpc. Figure 5.4 presents volume

renderings of the density distribution. From left to right, we depict progressively

higher stages of evolution.

5.5.2 ΛCDM cosmological simulations

The ΛCDM simulations are fully physical models that trace the distribution and

evolution of dark matter in the universe based on current understanding of real

physical laws. Dark matter is the gravitationally dominant matter component in

the Universe and constitutes the major fraction of matter. As it is known to only

interact gravitationally, modeling the behavior of dark matter is computationally
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fast and efficient. Such dark matter simulations form one of the principal tools

towards understanding the evolution of the matter distribution in the Universe.

The cosmological simulations that we used follow the standard ΛCDM cosmol-

ogy. In this model, the matter content of this Universe is dominated by collisionless

cold dark matter (CDM) particles. The biggest contribution to the energy content

of this Universe comes from dark energy, in the form of the cosmological constant

Λ (see [116]), which drives its accelerate expansion at the current epoch.

We use two different ΛCDM simulations. They differ in the scale over which

they simulate the Universe.

Cosmogrid datasets. To present the results of our visual exploration framework,

we use the Cosmogrid simulation [117]. Cosmogrid is a suite of dark matter only

high-resolution simulations that simulates the universe at a relatively small scale

of 21h−1Mpc. Here, 5123 particle realization was used, which achieves a mass

resolution of 8.21× 106M�. The initial conditions are set up at z = 65 using the

Zel’dovich approximation [118].

Particularly characteristic in the evolving mass distribution of the Cosmogrid

simulation is the large central under-density, surrounded by a range of smaller voids

near its outer edge. In combination with its extremely high spatial resolution and

state-of-the-art dynamic range, this renders the Cosmogrid simulation uniquely

suited as a testbed for a case study of the internal structure of voids. It was

precisely this circumstance that formed the rationale behind its exploitation in a

previous study of the formation of dark halos along tenuous void filaments [119].

We use two realizations of this simulation. The first is defined on the entire

domain, with a box size of 128×128×128. This dataset, referred to as CosmogridA,

captures the void features described in the paragraph above. The second dataset

we use, referred to as CosmogridB, is a subset of the particle distribution of the

simulation. The region chosen is characterized by a wide density range, multiple
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structural morphologies and low visual confusion. The particle distribution is used

as input for computing a tetrahedral domain using a periodic triangulation and

the density field is computed using the DTFE methodology [97].

subhaloes dataset. For presenting the results of our volume enhancement

routine, we use a large scale simulation in a box of 300h−1Mpc, that uses 5123

particles [60, 120]. The particles have a mass resolution of 4.43 × 109M�, and

the initial conditions are set up at z = 60. For this experiment, we use the dark

matter haloes instead of the particles. The halos consist of dark matter particles

that clump together to form gravitationally bound, often virialized objects. The

mean halo mass at z = 0 is 1.1× 1012M�, with a halo mass range of 4.9× 1011 −

7.9× 1014M�.

The dark matter haloes fairly accurately trace the patterns of the underlying

mass distribution. We detect the haloes using one of the standard halo finding

algorithms SUBFIND [121]. The first basic step involves the friends-of-friends

method for finding halos. Particles are assigned to a group when they are within

some linking length of any other particle in the group. This step is augmented by a

sophisticated sequence of criteria for identifying gravitationally bound subclumps

within the halo, ultimately producing a sample of halos and their subhalos in the

simulated dark matter distribution.

5.6 Experiments

In this section, we demonstrate and discuss the salient features and potential

applications of Felix. First, we evaluate the filaments extracted using Felix and

compare with those extracted using MMF, SpineWeb, and DisPerSE using the

Voronoi kinematic datasets. Next, we present a visual exploration of the filaments

in the Cosmogrid simulation. Lastly, we present results from applying the structure
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based volume enhancement algorithm (see Section 5.4.3). The methods described

above were implemented and tested on a computer system with an Intel Xeon(R)

CPU, running at 2.0 GHz, with 8 GB of RAM. We begin by describing briefly the

structure finders to which we compare Felix.

DisPerSE. DisPerSE [9, 10] is a closely related structure finder that also

uses the Morse-Smale complex of the logarithm of the density field. It simplifies

the Morse-Smale complex using Topological Persistence. The function values are

normalized by the rms of the density field fluctuation with respect to the mean,

and the significance level for simplification is quoted in this unit. Felix is closely

related to DisPerSE as both use the Morse-Smale complex of the log-density field

and involve feature extraction from it. DisPerSE defines significant features as

only those that remain unsimplified using the user defined significance threshold.

It ignores the density range characteristics of the extracted features. A significant

consequence is that filaments within void-like regions and cluster like regions are

ignored/simplified away. If they are retained, then the mixing of features causes

visual clutter. Furthermore, the significance parameter selection is a fixed constant

and visual interaction plays no role in its selection. In contrast, given the ubiquity

of filaments in various density regimes, Felix allows for density ranged based probes

into filaments, within clusters and voids. Furthermore, the visual interactive aspect

allows for user engagement in parameter selection, which is crucial for the set of

features identified. Another difference is that Felix uses simplification only for

noise removal and not feature identification.

SpineWeb. Spineweb [94] is also a technique based on Morse theory and

exploiting the singularity structure of the density field. It exploits the fact that

the watershed transform naturally outlines the basins around the local minima of

the density field and directly defines the topological structure of the field, and as

such forms a direct and practical tool for its analysis in terms of Morse theory.
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In this sense, SpineWeb is a direct development of the Watershed Void Finder

WVF [93], which introduced the definition of voids in terms of watershed basins.

As a preprocessing step, SpineWeb uses DTFE [97, 98] to compute the density

field on a regular grid from the given particle distribution. SpineWeb subsequently

identifies the spine of the web as the regions that are excluded from the watershed

basins. A given location in this spine is classified as belonging to a filament if it has

three distinct void regions in its neighborhood. A region is classified as belonging

to a wall if it has two and no more distinct void regions in its neighborhood.

Nexus/MMF. The Nexus/MMF Multiscale Morphology filter [78, 80] iden-

tifies the morphology of regions on the basis of the ratio of the eigenvalues of the

Hessian of the density field (MMF, [78]) or of fields that have a physical relation

to the evolution and formation of the weblike structure in the cosmic mass distri-

bution. The exact conditions for the classification as cluster, filament, wall and

void are give by Aragón-Calvo et al. [78] and Cautun et al. [80].

A key aspect of Nexus/MMF is its explicit multi-scale nature. The density field

is translated into a four-dimensional scale space map by convolving the density field

with a Gaussian filter over a large range of different scales. The morphological iden-

tity of a give location is determined on the basis of a set well-defined morphological

filters that compare the corresponding Hessian signature over a stack of convolved

images in scale space.

As a result, we obtain a “scale-free” morphological assessment, in the sense that

each region gets a unique classification tag based on a criterion that determines

the most dominating morphology across the chosen range of scales.

5.6.1 Filaments in the Voronoi model: a comparison

Here we present an analysis of the filamentary structures extracted using Felix,

and compare the results with the techniques detailed above. The comparison study
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concerns the analysis results obtained for the set of heuristic Voronoi evolution

models described above. Since they are input parameters, in these models the

classification of galaxies as void, wall, filament, and cluster are known a-priori.

Following the application of one of the detection techniques we may then examine

the validity and authenticity of the extracted structures by direct comparison with

the true identity of a galaxy.

For the comparison study, we define two measures. One quantifies the true

detection rate of a method, the other the false identifications. We classify all

galaxies within a distance d from the extracted structures to be filament and

cluster particles and the others to be void and wall galaxies. For a given set

of structures extracted from a given dataset and a distance d, the true positive

classification rate TPd is defined as

TPd =
# filament and cluster galaxies correctly classified

# filament and cluster galaxies
.

Similarly, the false positive classification rate FPd is defined as

FPd =
# filament and cluster galaxies incorrectly classified

# filament and cluster galaxies
.

A large separation between these two measures indicates good discriminatory

power of the classifier, and thus the proximity of relevant galaxies to the extracted

structures.

As we discuss in more detail below, the Felix’s true and false detection rates

are comparable, and in some situations better, than those obtained by DisPerSE,

SpineWeb, and Nexus/MMF.

Felix Figure 5.5 shows the extracted filaments for the Voronoi kinematic datasets

A, B, and C using Felix. The input density range parameters for Algorithm Se-

lect2Saddles are selected interactively, using the visualization information of
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(a) (b) (c)

Figure 5.5: Filamentary structures extracted from datasets A, B, and C of the
Voronoi evolution time-series using Felix with parameters for Algorithm Se-
lect2Saddles set as follows: (a) [Sb, Se] = [10−1.6,∞] and [Mb,Me] =
[10−0.1,∞], (b,c) [Sb, Se] = [10−1.6,∞] and [Mb,Me] = [100,∞]. Filaments are
shown as orange tubes along with a volume rendering of the log-density field. The
dense knot like structures show filaments within cluster-like regions.

(a) (b) (c)

Figure 5.6: Filamentary structures extracted from datasets A, B and C of the
Voronoi evolution time-series using DisPerSE with significance level of 5σ. Fila-
ments are shown as orange tubes along with a volume rendering of the log-density
field. The inset pictures show identified filaments that are within wall-like and
void-like regions of the Voronoi kinematic datasets.
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the procedure. Each update is accomplished within 2-3 seconds. This enables in-

teractive visual feedback so that parameters may be adjusted further in subsequent

iterative steps. For the given rendering and extraction, the parameter values are

[ln(Sb), ln(Se)] = [−1.6,∞] and [ln(Mb), ln(Me)] = [−0.1,∞] for dataset A and

[ln(Sb), ln(Se)] = [−1.6,∞] and [ln(Mb), ln(Me)] = [1,∞] for datasets B and C.

Comparison A: Felix and DisPerSE In this experiment, we demonstrate the

consequences of not correlating the density characteristics for filament extraction.

Specifically, we demonstrate that the filaments extracted using Felix are more

spatially proximal to filament and cluster particles in the Voronoi Kinematic sim-

ulation. Furthermore, we show that tuning the significance parameter is not a

sufficient mechanism to extract the desired filaments in this dataset. In the next

experiment, we demonstrate the exploration of filaments within high-density clus-

ter like regions and low-density void like regions. Such a delineation, coupled with

the visual exploration process, is not possible using DisPerSE.

The recovery and failure rates for the Voronoi kinematic models A, B, and C

are shown in Figure 5.7. The TPd and FPd of the Felix filaments are plotted in

the top-left panel, the ones for DisPerSE can be found in the top right-hand panel

(1σ significance threshold), bottom left-hand panel (3σ significance threshold) and

bottom-right panel (5σ significance threshold).

Felix shows good recovery rates for all datasets, particularly around d =

3h−1Mpc. For the least evolved configuration A, and for locations where struc-

tures are least distinct, Felix still obtains moderately good recovery rates. The

results for DisPerSE with simplification thresholds 1σ and 3σ are comparable: at

short distances the true detection rate is slightly lower than that of Felix, while

at larger distances it performs marginally better. The situation is slightly differ-

ent in the case of DisPerSE with a 5σ simplification threshold. In the case of
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Figure 5.7: Classification recovery rates for Voronoi kinematic datasets A, B, and
C. Top left: Felix; top right: DisPerSE, 1σ significance level; bottom left: Dis-
PerSE, 3σ significance level, and (bottom right) DisPerSE with a 5σ significance
level. False positive rates greater than 1.0 are clipped and respective values are
shown.
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the more strongly evolved B and C datasets, the DisPerSE and Felix results have

similar false detection rates FPd, while the true detection rates TPd of Felix are

consistently higher.

For the lesser evolved datasets A and B, the false detection rates FPd for

DisPerSE quickly increase to rather large values. For simplification thresholds of

1σ and 3σ it even surpasses values of unity. This may indicate that in certain

circumstances an automatic detection of filaments from the Morse-Smale complex

runs the risk of over-determining the population of filaments, even after consider-

able simplification. While the problem is not so acute in the most evolved stage

C, where the morphologies are well separated, direct simplification strategies may

not always succeed in properly classifying all filament, wall and void regions in the

more moderately evolved stages A and B.

Figure 5.6 shows the filaments in the three Voronoi models detected by Dis-

PerSE, with a simplification threshold of 5σ. In comparison with the structures

in Figure 5.5, the knot like structures present in clusters are absent. This leads

to the cluster particles being far away from the filament end points, and thus

the reduced TPd rates of DisPerSE. In contrast, Felix’s ranged query allows us

to retain only the filaments in cluster like regions and those that connect these

cluster like regions, leading to better TPd rates. Also, many filaments found by

DisPerSE are within the wall-like and void-like regions of the Voronoi Kinematic

simulation. Some examples are highlighted using insets in Figure 5.6. Again these

are filtered out by Felix’s ranged query, which is not directly possible in DisPerSE.

The inclusion of such structures in DisPerSE leads to its higher FPd rates.

These findings suggest that a structure identification strategy based on a di-

rect simplification procedure of the Morse-Smale complex should be applied with

care to the density regimes being studied. Specifically, the superior classification

rate profiles confirm that, using Felix, we can easily extract filaments that are
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Dataset TPd FPd

A Felix(d = 3h−1Mpc) 0.67 0.36
A DisPerSE(5σ, d = 3h−1Mpc) 0.59 0.31

B Felix(d = 3h−1Mpc) 0.84 0.13
B DisPerSE(5σ, d = 3h−1Mpc) 0.69 0.11

Nexus/MMF 0.85 0.13

C Felix(d = 3h−1Mpc) 0.90 0.05
C DisPerSE(5σ, d = 3h−1Mpc) 0.78 0.05

SpineWeb 0.87 0.10

Table 5.2: Recovery rates of galaxies within 3h−1Mpc of structures extracted us-
ing Felix compared with Nexus/MMF, SpineWeb, and DisPerSE (5σ significance
level).

spatially more proximal to the cluster and filament particles in the Voronoi Kine-

matic datasets. This issue is not easily addressed by the significance threshold of

DisPerSE. In contrast, Felix provides an intutive density based handle to extract

the desired features. Also, the possibility of having FPd value larger than 1 in

extreme situations is indicative of over-detection of filaments. This is potentially

cumbersome for the analysis of genuine cosmological simulations and observational

surveys. In more complex realistic circumstances, cosmic structure involves fea-

tures over a wide range of densities and scales and structural morphologies that

are not as well separated as in the simpler Voronoi models.

Comparison B: Felix and SpineWeb For the comparison of the Felix and

Spineweb [103], we use a Voronoi Evolution model realization that is comparable to

the advanced state of dataset C. We use the test result reported by Aragon-Calvo

et al. [103] with respect to the model that had a similar percentage of particles in

the four morphological features. In these model realizations, the clusters, filaments

and walls had a Gaussian density profile with a scale of Rg = 1h−1Mpc. The spine
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has an effective width d = 2Rg as the identified structures are thickened by 1 voxel,

with a size of Rg = 1h−1Mpc.

For this configuration, Aragon-Calvo et al. [103] report true and false detection

rates of TPd = 0.87 and FPd = 0.10 (see Table 5.2). Felix attains the same

recovery rate of TPd = 0.87 at a smaller distance d = 3h−1Mpc = 1.5Rg. For the

same configuration, the failure rate parameter, FPd = 0.05, is comparable to that

reported for Spineweb. By comparison, at d = 2Rg, for Felix the recovery rates

are TPd = 0.93 and FPd = 0.07.

In summary, these results appear to suggest that Felix performs as well as

SpineWeb.

Comparison C: Felix and Nexus/MMF Since Nexus/MMF concerns a so-

phisticated formalism based on a scale space analysis, the parameters of detection

do not have a direct correspondence with topology based techniques like DisPerSE,

SpineWeb, and Felix.

We use dataset B for a comparison with Nexus/MMF. This dataset is similar

to the least evolved dataset used in the evaluation evaluation of the MMF [78] ,

the original density field based Nexus/MMF implementation. For similar values

of the detection rate TPd, both Felix and MMF have identical failure rates FPd.

This indicates that both procedures have a comparable detection behavior.

5.6.2 Filament Exploration

In this section we discuss the application of Felix to explore different classes of

filaments from cosmological simulations. The ability to filter filaments on a com-

bination of morphological and density properties is helpful in situations where we

wish to focus on, for example, the properties of galaxies residing in filaments in

low-density void regions or in the high-density outskirts of clusters. This ability



CHAPTER 5. EXPLORING COSMIC FILAMENTS 116

Figure 5.8: Exploring filaments in high-density cluster-like environments and low-
density void like regions in the CosmogridA dataset. The selected region, compris-
ing of a 3D region of z-slices from 69 through 105, contains filamentary structures
in both types of environments. Volume rendering of the density field with opac-
ity adjusted to highlight filaments in (a) high density cluster-like regions, and
(c) low density void-like regions. (b) Filaments within high density cluster-like re-
gions extracted with parameters [Sb, Se] = [100, 109.6] and [Mb,Me] = [102.3, 109.6].
(d) Filaments within low density void-like regions extracted with parameters
[Sb, Se] = [10−2.5, 100.5] and [Mb,Me] = [100.5, 103.5]. For both sets of filaments,
the value of Ts was set to 0.05.
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of Felix to identify a specified population of intravoid filaments or cluster inflow

channels provides us with a microscopic instrument that allows a detailed and

systematic exploration of the fine structure in the hierarchy of cosmic structure.

Felix is able to zoom in on such regions and delineate its detailed infrastructure.

As the criteria for the identification of filaments and other web-like features

still differ substantially between the various available techniques, the visual inter-

action aspect of Felix is a major practical asset in obtaining a proper user-defined

selection of filaments. To this end, we may also point out that available automatic

detection techniques may produce significant spurious results, which may substan-

tially influence the results of targeted studies as the one illustrated here. A telling

example of this has been discussed in the previous section.

CosmogridA: Figures 5.8a and 5.8c present volume renderings of a 3d region

of the CosmogridA dataset ranging from z-coordinates 69 to 105. The bound-

ing box of the dataset is 128 × 128 × 128. This region was selected as it con-

tains a large void like region surrounded by a large number of high density re-

gion. The transfer function opacities have been adjusted to highlight the filament

like structures in cluster-like and void-like regions respectively. The hierarchical

Morse-Smale complex computation and the filament selection are executed on the

entire dataset. The resulting filaments and volume rendering are clipped to the

above mentioned region of interest. The filament selection parameters of Algo-

rithm Select2Saddles are adjusted interactively, via a visualization step. A

video demonstrating the visual exploration process in this experiment is available

at https://youtu.be/8TRtX937Xjk. Each selection query takes approximately

1 second to process (Intel Xeon processor, 2 GHz, 8 GB ram). The subsequent

extraction of filament geometry depends on the number of selected 2-saddles. This

takes approximately 4 seconds. Thus, the query framework may be used to in-

teractively change parameters and visually correlate the set of extracted features

https://youtu.be/8TRtX937Xjk
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with the underlying density distribution.

The filament selections obtained following the application of the interactive

procedure are illustrated Figures 5.8b and 5.8d. Each shows filaments in a dif-

ferent environmental density regime. Figure 5.8b shows filaments that exist near

and within the high density cluster like regions. These are the filaments that

form the spine of the cosmic web. Figure 5.8d shows filaments within void-like

regions. The combination of density criteria and interactive visualization enables

us to zoom in on this system of intravoid filaments. They are the faint residuals of

the smaller-scale filaments that constituted the spine of the cosmic web at earlier

cosmic epochs, and as such represent a direct manifestation of the hierarchical

buildup of cosmic structure. At the current epoch, the intravoid filaments appear

to define a different pattern than the prominent filamentary bridges between clus-

ters of galaxies. As a result of the tidal influence of surrounding large-scale mass

concentrations they are conspicuously aligned along a direction correlated with the

main axis of the embedding void.

CosmogridB: The filament selections obtained following the application of the

interactive procedure using the CosmogridB dataset are illustrated in three panels.

Each shows filaments in a different environmental density regime. Figure 5.9(b)

shows filaments that exist near and within the high density cluster like regions,

Figure 5.9(c) shows filaments within void-like regions and Figure 5.9(d) shows

filaments that stretch all the way from cluster to void like regions. The latter are

the filaments that form the spine of the cosmic web.

5.6.3 Volume enhancement

In this section, we illustrate the use of the volumetric enhancement routine in

presenting a three-dimensional impression of the web-like network. The routine

suppresses the depiction of components far removed from filaments of interest
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(a) (b)

(c) (d)

Figure 5.9: Three classes of filaments extracted from the CosmogridB dataset.
(a) Particle distribution shown along with a volume rendering of the DTFE
density. (b) Filaments within cluster like regions extracted with parameters
[Sb, Se] = [105, 108] and [Mb,Me] = [108, 1012]. The highlighted region shows the
retention of intricate topological structures within a large cluster region. (c) Fila-
ments within void like regions extracted with parameters [Sb, Se] = [100, 105] and
[Mb,Me] = [100, 105]. Shown in the inset is a cluster like region within which
filamentary structures are filtered away as desired by the query to the framework.
(d) Filaments that stretch from cluster like regions all the way down to void like
regions using parameters [Sb, Se] = [103, 1011] and [Mb,Me] = [109, 1011]. The
highlighted region shows a single filament passing through the large cluster like
region with intricate topological details filtered out by the framework.
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(a) (b) (c)

Figure 5.10: Extracting filamentary features from the 300h−1Mpc LCDM dataset
and enhancing the volume rendering. (a) Volume rendering of the density field. (b)
Filaments selected by Algorithm Select2Saddles with [Sb, Se] = [e−4.0,∞] and
[Mb,Me] = [e1.0,∞] retains the filaments in high density regions. The intricate
filamentary structure within a predominantly high density region is highlighted
in the inset. (c) An enhancement produced by the volume rendering procedure
applied to the selected filaments.

(see Section 5.6.3). One potential application of the enhancement algorithm is

as a noise removal tool that is able to render the density field in the vicinity of

structures of interest. This will help substantially towards elimination of the visual

confusion and of possibly less interesting structures in the process.

For the experiment shown in Figure 5.10, we use the the subhaloes dataset

described in Section 5.5.2. This large-scale simulation provides an appropriate

setting to illustrate the ability of the volume enhancement method. The dataset

contains a multitude of structures spanning a wide range of density values that

usually evoke a significant visual confusion. This may be clearly appreciated from

the lefthand Figure 5.10(a). The subsequent filament selection and volume en-

hancement are shown in Figure 5.10(b). It provides a better appreciation of the

spine of the filamentary network.
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5.7 Conclusions

We have presented a Topology based Framework, named Felix, to probe filament

structure in the large scale universe. The framework is particularly designed to

probe filamentary structures in different density regimes, and optimally preserve

structural detail in regimes of interest. While other cosmic structure analysis tools

do not include a facility to select web-like features according to tailor-made aspects

and characteristics, this is precisely the mission of the Felix procedure. We directed

Felix towards a case study of the the filamentary infrastructure and architecture of

cosmic voids and demonstrated that it successfully extracts the network of tenuous

filaments pervading their interior [110, 111, 112, 113] .

In an accompanying study, we plan to exploit the Felix facility to systematically

study the physical characteristics of the extracted samples of intra-void filaments.

This also involves their halo and subhalo population, their gas content, and the

relation of these with the embedding voids and surrounding large-scale mass dis-

tribution. This will be of key importance towards understanding the formation

and evolution of void galaxies [122, 123, 124] and specifically that of of the issue

of the missing dwarf galaxies [102]. In addition, following the recognition that

void architecture represents a potentially sensitive probe of dark energy and dark

matter and a keen test of modified gravity theories [56, 57, 58, 59, 60, 61, 62, 63],

the filament samples extracted by Felix will be subjected to a systematic study of

their dependence on cosmological parameters.

As an immediate extension, we plan use Felix with other scalar fields such as

the tidal force field. Another possible direction is the visualization and analysis

of the hierarchy of voids, walls, and filaments in cosmological datasets. Interac-

tive methods for the visualization of these intricate structural networks remains a

challenging and largely unexplored problem of major significance.



Chapter 6

Molecular Surface Alignments

Aligning similar molecular structures is an important step in the process of bio-

molecular structure and function analysis. Often, as in the case of Electron Mi-

croscopy (EM) data, fully resolved molecular structure is not available. The data

is however geometric in nature, in the form of electron density maps as well as

simple derived forms such as isosurfaces. Molecular surfaces often contain sev-

eral significant protrusions that are manifestations of groups of atoms, such as

aromatic rings and amino groups, close to the exterior surface. Such significant

protrusions may be leveraged to determine alignments between molecules, where

surface patches corresponding to these protrusions are aligned. In this chapter, we

present a method that aligns molecular surfaces based on such significant protru-

sions on the molecular surface1. A key step of the method involves identification

and segmentation of the molecular surface. For this step, the 2D Morse-Smale

complex is employed to segment significant protrusions on the molecular surface

using the mean surface curvature as a scalar field on the surface. We implement

our method to develop ms3align: the multi-scale Morse-Smale molecular surface

1This work was carried out in collaboration with Sonali Patil, who is with the College of
Technology at Purdue University, Amrisha Bhosle and Nagasuma Chandra, who are with the
Department of Biotechnology at the Indian Institute of Science.
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aligner.

6.1 Related Work

Three dimensional solved crystal structures of proteins provide valuable insights

regarding the function of the protein as the precise position of all functionally and

structurally important residues is known. Since structure determines function, the

function of an unknown protein may be determined by comparing its structure to

structures of proteins whose functions are already known. Tools such as mustang

and dali [125, 126], which are widely used to compare protein structures, use

three-dimensional co-ordinates of atoms in the protein structures as inputs and

report structural dissimilarities in terms of an RMS distance between their aligned

coordinates.

Proteins that function as enzymes and transporters contain a pocket or the

binding site in the structure that accommodates the substrate and cargo small

molecules respectively. The arrangement of amino acid residues in the binding

site often determines the specificity of a small molecule ligand towards a receptor

protein. It is intuitive therefore that structurally similar ligands will bind to pock-

ets that are structurally similar. Therefore, pocket and ligand alignments could

potentially provide insights into protein function

There exists a large number of tools that determine alignments. Common ap-

proaches for determining alignments include aligning residues [125, 127, 128, 129],

secondary structures [130, 131], or molecular surfaces [132, 27, 133, 134, 135]. Sur-

face based methods offer advantages in the study of protein-ligand and protein-

protein interactions as they determine alignments based on the molecular surfaces

at the site of interaction. The tool MolLoc [132] and the image based method by

Merelli et al. [134] compute alignments by comparing images of the surface from
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oriented points to determine corresponding points on surfaces. Since the number of

oriented points is large, these tools are computationally intensive and require fine

tuning for efficient execution. ProBis [133] aligns proteins/nucleic acids by align-

ing the centroids of sub-residue level functional units (aliphatic/ aromatic rings,

hydrogen donor/acceptors etc) that lie close to the molecular surface. The tool

SurfComp aligns small ligand surfaces using either surface curvature or electro-

static potential on the molecular surfaces. SurfComp identifies local maxima of

these scalar fields as features and attempts to align them across pairs of surfaces.

The tool PBSAlign aligns protein-protein interaction surfaces using an approach

similar to SurfComp with a few key differences. It defines feature points as sur-

face points that are closest to Cα atoms and computes a feature vector comprising

of principal curvatures and statistics of electrostatic potential and hydrophobicity

near each feature point.

6.2 Contributions

We present ms3align, a Multi-Scale, Morse-Smale, Molecular Surface aligner.

The tool ms3align begins by computing mean curvature at all points on the sur-

face and then segmenting significant protrusions. Segmentation is performed by

a topological analysis of the surface mean curvature using the Morse-Smale com-

plex. Correspondences between pairs of protrusions on either surface are then

established using a two-step procedure, computation of a multi-scale curvature

descriptor followed by neighbor identification in the descriptor space. These cor-

respondences are then grouped together into maximal sets. Each maximal set is

used to compute a rigid body transformation that aligns the first surface to the

second surface. These alignments are evaluated and ordered using a distance mea-

sure that is based on the RMS distance between surfaces and the corresponding
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area fraction.

The key benefit of the method is that it is agnostic to how the molecular surface

was generated. We show experiments where surfaces generated from atom location

data in the PDB as well as density maps in the cryo-Electron-Microscopy data bank

are aligned. Thus, the method is not dependent on a particular source of data.

Rather, the only input to the method is the surface data. This is a key advantage

over existing methods such as SurfComp, PBSAlign, and PyMol, which rely

on protein sequence data and other derived scalar values such as the electro-static

potential, which are often not directly available/computable. Another benefit of

our method is that the implementation allows for visual analysis of the alignment,

which leads to direct comprehension of the results. A third benefit is that our

method is purely based on the local geometric structure. Thus, it is applicable in

scenarios where local geometric context is preserved.

Our method may be viewed as an improvement of SurfComp [27], and hence

we perform a detailed comparison with their results. We validate ms3align using

surface representations of ligands and their site of interaction. Specifically, we use

the PocketMatch [136] tool to quantify structural variation between various

interaction sites and compare their alignments obtained using ms3align. In this

experiment, we also demonstrate the benefit of visual analysis where we visually

validate results.

6.3 Background

We briefly review the additional background material relevant for this application.

In particular, we discuss the mathematical notion of curvature.

A regular curve is defined as a twice differentiable function l(t) : I→ R3 from

the unit interval to 3D space where the magnitude of the tangent equals one,
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(a) (b) (c) (d)

Figure 6.1: (a) Curvature κ of a regular curve at a point is defined as the magnitude
of the second differential at that point. (b) The principal curvatures of a point
x on a smooth surface is defined as the maximal κ1 and minimal κ2 curvature of
regular curves formed by intersecting planes rotated about the surface normal nx
with the surface. Mean curvature is defined as (κ1+κ2)/2. Mean curvature is (c) high
at convex regions (d) and low at concave regions. Green arrows depict surfaces
normals at respective surface points.

|| dl
dt
|| = 1 [137]. The curvature at a point t is defined as the magnitude of the

second differential at t, κ(t) = || d2l
dt2
||.

A family of regular curves through a point x on a surface S is defined by a

collection of planes that contain the surface normal nx at the point x and the

point itself (see Figure 6.1(b)). Each of these curves has an associated curvature

κ. For curves on surfaces, one associates a sign with the curvatures given by the

dot product of the surface normal and the second differential of the regular curve.

The curves with maximum and minimum curvature (with sign) are referred to as

the principal curvatures at x and are denoted by κ1 and κ2 respectively. The mean

curvature at a point x, H(x) is the mean of κ1 and κ2 i.e. H(x) = (κ1+κ2)/2. Con-

vex surfaces have positive κ1 and κ2 and therefore have positive mean curvature,

whereas concave surfaces have negative mean curvature (see Figures 6.1(c) and

6.1(d)).
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Figure 6.2: The surface alignment pipeline comprises of five stages. P and Q
are input surfaces represented as triangle meshes. i) Mean curvature is computed
for both surfaces. ii) Significant landmarks are extracted by first computing the
Morse-Smale complex of the curvature field and then simplifying the Morse-Smale
complex using topological persistence. The maxima that survive simplification
(red spheres) are used as landmark points. iii) Correspondences between landmark
points on either surface is established by comparing the multi-scale curvature vec-
tors. iv) A graph is constructed where each landmark correspondence is considered
as a node, and edges are placed between nodes if they satisfy inequalities (6.1) and
(6.2). Each maximal clique in this graph generates a maximal correspondence set.
v) Each maximal correspondence set is evaluated using the measure given by (6.3).
Those evaluating to the smallest values are ranked as the best alignments.

6.4 Surface Alignment Pipeline

In this section we describe the design of ms3align in detail. The tool ms3align

comprises of multiple stages where the primary input is the two surfaces repre-

sented as triangle meshes. Figure 6.2 depicts the various stages. In the following

sections each stage is explained in detail.

6.4.1 Curvature Computation

The mean curvature at every vertex of the two input surfaces P and Q is computed

in the first stage. There exist many algorithms to estimate the mean curvature of

triangle meshes. We use the algorithm based on the theory of normal cycles by

Cohen-Steiner et al. [138]. We choose this approach for two reasons. First, this

algorithm guarantees linear convergence to the curvature of a smooth surface, with
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a sufficiently well sampled set of points. Second, the definition of the curvature

is based on averaging the curvature tensor over a neighborhood of size Rc on the

triangle mesh. This allows for a smoother estimate of the mean curvature where

meshing artifacts are overcome by the averaging operation. Good selection of the

neighborhood size Rc for curvature computation is crucial to avoid isotropy issues

introduced by mesh discretization. For computing a smooth curvature estimate

at each vertex, we find that the neighborhood size Rc needs to span at least two

rings of vertices. The maxima of mean curvature correspond to the protrusions on

each surface patch.

6.4.2 Landmark extraction

In the second stage, landmark points, representing significant protrusions of both

surfaces P and Q, are identified from the maxima of the mean curvature scalar

field. However, several maxima may correspond to near-flat regions. Significant

protrusions are identified by a topological analysis using the Morse-Smale complex

of the mean curvature field. Segmenting molecular surfaces using the Morse-Smale

complex has been reported earlier [139, 140] using the Connolly function [141],

which is related to the surface curvature. The Morse-Smale complex of the mean

curvature field is first computed [15] and then simplified by iteratively canceling

insignificant maxima using the topological cancellation procedure. The significance

of a maximum is determined by the notion of topological persistence [24] where

each maximum is paired with a saddle critical point. The measure of significance

of a maximum, referred to as its persistence, is the absolute difference in mean

curvature value of the maximum and its paired saddle critical point. Thus, maxima

are eliminated in increasing order of persistence upto a given threshold, denoted by

Ts. The threshold Ts is specified as a fraction of the average of the mean curvature

at all local maxima.
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6.4.3 Landmark correspondences

In the third stage, correspondences between pairs of landmark points on either

surface P and Q is established. This is done by analysis of the curvature at

multiple scales. The mean curvature computed using a neighborhood size Rc gives

an estimate of curvature at that scale. We compute mean curvature at multiple

scales at each landmark point p ∈ P and q ∈ Q. We use 15 uniformly sampled

curvature scales from the interval [Rc, 2Rc]. Landmark points p ∈ P and q ∈ Q

are declared as a corresponding pair (p,q) if the absolute difference between their

mean curvatures at every scale is bounded by a threshold Tms. The threshold Tms

is specified as a fraction similar to Ts.

6.4.4 Maximal correspondence sets

In the fourth stage, correspondences between landmark points in P and Q are

collected into maximal sets of correspondences. A maximal set C := {(p1,q1),

(p2,q2), ..., (pn,qn)} is constructed so that for each pair of correspondences (pi,qi)

and (pj,qj), the two landmark points pi and pj in P have relative pairwise geo-

metric properties similar to that of the two landmark points qi and qj in Q. We

use two geometric properties to establish relative pairwise similarity . First, we

ensure that the absolute difference between the distances of the two landmarks on

either surface is less than a threshold Tmrd, referred to as the maximum relative

distance threshold. Second, we ensure that the absolute difference in the angles

between the surface normals of two landmarks on either surface is less than π/2.

In other words, for a given maximal set C := {(p1,q1), (p2,q2), ..., (pn,qn)}, we

ensure that

|‖pi − pj‖ − ‖qi − qj‖| < Tmrd (6.1)

| cos−1(N(pi).N(pj))− cos−1(N(qi).N(qj))| < π/2 (6.2)
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for all (pi,qi), (pj,qj) ∈ C, where N(p) represents the surface normal at point p.

The constructed sets are maximal in the sense that no other correspondence may

be added without violating conditions (6.1) and (6.2).

Finding maximal correspondence sets may be recast as the problem of enu-

merating maximal cliques in graphs. The nodes of the graph are correspondences

between landmark points (p,q). Edges exist between pairs of correspondences

(p,q) and (p′,q′) if they satisfy conditions (6.1) and (6.2) and if p 6= p′ as well as

q 6= q′. Maximal correspondence sets are found by enumerating maximal cliques

from this graph. We use the greedy pivot heuristic modification of the Bron-

Kerbosch algorithm [142] by Koch [143, 144] to enumerate maximal cliques in this

graph. This modification exhibits near linear complexity in the number of maximal

cliques for most graphs.

Indeed, the total number of maximal correspondence sets may be exponen-

tial in the number of landmark points. The number of maximal correspondence

sets depends on the tolerance for positional uncertainty of the landmark points,

captured by Tmrd, as well as the number of correspondences, captured by Tms.

Choosing a very small Tms and Tmrd causes the algorithm to demand near exact

matches in the mean curvature as well as the relative positions of the landmarks,

whereas higher values allow larger variations.

6.4.5 Surface Alignment

In the final stage, each maximal correspondence set is first used to determine a rigid

body transformation (R, t) from P to Q via a least squares minimization [145].

Next, for each correspondence set C := {(p1,q1), (p2,q2), ..., (pn,qn)}, we com-

pute a measure DP,Q(C) that quantifies the error of the transformation (R, t),
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given by

D′P,Q(C) :=

√∑n
i=1 AP (pi)‖(Rpi+t)−qi‖2

AP (C)
AP (C)/AP

DP,Q(C) := min{D′P,Q(C), D′Q,P (C)}

(6.3)

Here, AP (pi) is the area of the descending manifold of pi, AP (C) is the total area

of all landmarks of P in C i.e. AP (C) :=
∑n

i=1A(pi), and AP is the area of P .

Also, DP,Q(C) is a symmetric version of D′P,Q(C), where D′Q,P (C) inverts the roles

of P and Q in D′P,Q(C) with the exception that the transformation (R, t) is again

applied only to landmarks in P . The numerator of D′P,Q(C) in Equation (6.3)

represents a coarse approximation of the RMS distance between the matching

portions of both surfaces. The denominator is the fraction of the area of descending

manifolds of all landmark points of P in C with respect to the total area of P . Due

to the denominator, correspondence sets having larger area fractions are preferred.

Maximal correspondence sets that result in the least values of this measure are

reported along with their transformations. Computing this measure is efficient

even with a large numbers of maximal correspondence sets since it only requires

landmarks and not all points on the surface. It is possible for some spurious

correspondence sets consisting of a few landmarks to align nearly perfectly. Hence,

we consider only those correspondence sets so that the area of the corresponding

regions of either surface is atleast 15% of its total area.

In general, the choice of Rc and Tmrd are constrained by the scale of the ex-

pected size of features. In our experiments, this choice depends on the dataset

being studied. In the first experiment (Section 6.5.2), we study alignments by

fixing Rc and Tmrd and varying Ts and Tms. We conclude that we are able to

compute satisfactory alignments with a value of 0.1 for both parameters. However,

in datasets with fewer feature points, it becomes necessary to decrease Ts so that



CHAPTER 6. MOLECULAR SURFACE ALIGNMENTS 132

more feature points are retained and increase Tms to ensure that more correspon-

dences are established. In these cases, it does not adversely impact performance

because of the fewer number of feature points in these datasets.

6.5 Experiments

In this section we discuss our evaluation of ms3align. We begin with a discus-

sion on the molecular surfaces used in our experiments (Section 6.5.1). In the

first experiment (Section 6.5.2), we evaluate its perfomance under conditions of

noise, partial overlap, and running times using a random set of 20 proteins from

the PDB [2]. In the second experiment (Section 6.5.3), we compare ms3align

with the results discussed in the evaluation of SurfComp [27]. As the MolLoc

web-server [132] and the code from Merelli et al. [134] is unavailable, we could not

compare our results with theirs. In the third experiment (Section 6.5.4), we vali-

date the alignments of binding sites computed by ms3align comparing them with

those generated using PyMol [3]. Here, we quantify the structural variation of bind-

ing sites using PocketMatch [136]. In the fourth experiment (Section 6.5.5), we

use ms3align to compute alignments of iso-surfaces extracted from cryo-electron

microscopy scans.

6.5.1 Molecular surfaces

In our experiments, we use three types of surfaces extracted from proteins/ligands

obtained from the PDB [2] which are built upon the van-der-Waal’s molecular

model. The first type is the molecular skin surface (Section 6.5.1) [146] . The

second type of surface used is the ligand surface, which is representative of the

ligand interacting with the protein in a protein-ligand interaction obtained from

the PDB [2] (Section 6.5.1). The third kind of surface used is the pocket surface
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(Section 6.5.1). This is representative of the surface of interaction of the protein

with the ligand. Additionally, we generate partially overlapping surfaces by cut-

ting skin surfaces to generate pairs of surfaces with approximately known overlap

fractions (Section 6.5.1).

Skin Surface

The molecular skin surface is a mathematically robust surface model that is similar

in geometry to the solvent excluded surface. The molecular skin surface of a protein

is computed in two steps. First, its atomic locations are augmented with van der

Waal radii after adding missing hydrogen atoms using the pdb2pqr tool [147].

Next, the skin surface is extracted using the NanoShaper tool [148] using the

atomic locations and radii as input.

Ligand Surface

The ligand surface is computed in three steps. First, the chimera [149] program

is used to extract the molecular structure of the ligand from the protein’s PDB file.

Then, together with the protein’s PDB file, the molecular structure of the ligand

is used to determine atomic positions and radii of the ligand using the pdb2pqr

tool. Finally, the ligand position and radii data is used to compute the skin surface

of the ligand using NanoShaper.

Pocket Surface

The pocket surface is extracted as a subset of the molecular skin surface of the

protein. This subset is the part of the surface that belongs to the residues (within

4.5Å) that interact with the ligand. These residues are referred to as the pocket

residues or just the pocket. A subset of the molecular surface is extracted so that

all vertices of the subset are within the Van der Waal’s sphere of at least one of the
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Figure 6.3: Pairs of surfaces which overlap with each other with an approximately
known fraction of area of each other are generated by cutting the molecular skin
surface using a pair of planes. Here, the skin surface of 4j2m (orange, center) is
cut by two planes into two pieces (violet on the left and green on the right) such
that 20% of the area of either overlaps with the other.

atoms of the pocket. An additional 0.5Å is added to the Van der Waal’s sphere to

account for the possible error introduced when extracting the skin surface, because

NanoShaper uses a structured grid with edge length 0.5Å. This subset surface

may be disconnected and/or contain holes. This topological noise is repaired using

a variant of the dilation-erosion operation applied to triangle meshes [150]. The

radius for both steps is set to 1.2Å, the radius of the hydrogen atom.

Partially overlapping surfaces

In this section, we describe in detail our approach for the generation of overlapping

skin surface pairs with approximately known overlap fractions. Each skin surface

is split by a pair of planes into two surfaces such that they overlap with each

other with an approximately known overlap fraction (see Figure 6.3). Pairs of

surfaces are generated for overlap fractions of approximately 20%, 40%, 60%, and

80% of each other. To do this, first, a coordinate system about the centroid of the
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molecule is constructed from the principal components of the centroid subtracted

positions of the surface’s vertices [151]. The plane containing the first two principal

components is rotated about the second component by 0, π/5, 2π/5, 3π/5 and 4π/5

radians to obtain five planes, each of which slice the surface into two pieces. The

piece on the right of each plain is retained to generate five partial surfaces. The

first partial surface overlaps with the other four partial surface with approximately

20%, 40%, 60%, and 80% of its area.

6.5.2 Performance analysis

In this experiment, we study three aspects of ms3align. First, we study its

ability to determine correct alignments in the presence of noise. Second, we study

its ability to detect alignments in the presence of partial overlaps. Finally, we

study the runtime performance of ms3align. We use twenty structurally different

proteins from the PDB [2] having 1500–3000 atoms. We set the parameter Rc =

3Å. This enables landmarks to be located on protrusions of 2–4 atoms, which is

typical of groups such as ammonium, hydroxy, and methyl that are close to the

surface. We set the parameter Tmrd = 1Å. Alignments are studied with varying

choices of the Ts parameter. The Tms parameter is set to be equal to the Ts

parameter.

We now study performance in the presence of noise. Noise is introduced by

adding standard Gaussian noise of known variance to all atom locations of the

protein. The molecular skin surface of this perturbed molecule is used as the

noisy version of the surface. Multiple such noisy versions of the skin surface are

generated by adding increasing levels of noise. The level of noise is quantified by

computing the RMS distance of all atoms from their original position to their po-

sition after adding noise. We compute the RMS distance between the two surfaces

by mapping each vertex of the original surface to the closest vertex in the noisy
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Figure 6.4: (top-row) RMS distance between skin surfaces of various molecules
after each surface is aligned with noisy versions of itself shown for Ts = 0.08, 0.1
and 0.12 respectively. The y-axis is log-scaled beyond 2Å. (bottom-row) RMS dis-
tance between a subset of the skin surface and four other surfaces that it partially
overlaps with. The y-axis is log-scaled beyond 1Å.

surface after alignment. We conclude that the alignment is successful if the RMS

distance is within 2Å. The top row of Figure 6.4 shows three graphs for respective

simplification threshold Ts values of 0.08, 0.10, and 0.12. With a Ts threshold of

0.1, we observe that surfaces align with RMS distance approximately equal to the

RMS distance between the noisy and noiseless surfaces upto 1Å. We also observe

that most alignments fail after the introduced noise causes RMS distance between

surfaces to be more than 1Å. A primary reason for this is the choice of the maxi-

mum relative distance threshold Tmrd = 1Å, which specifies the amount acceptable

relative movement of the landmark points.

We next study the ability of ms3align to detect alignments in the presence of

partial overlaps. Five partially overlapping surfaces are generated as subsets of the

skin surface. The first surface is generated by a cut plane that partitions the skin

surface. The remaining surfaces are also generated by rotated cut planes such that

the overlap fractions with the first surface is approximately 20%, 40%, 60%, and

80% respectively. In other words, the first and second partial surfaces intersect
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Figure 6.5: Stacked bar graph showing
breakup of ms3align run-times for the
surfaces used in the partial overlap study.
The time taken for alignment (stages
iii − v) is significantly lesser than time
taken for the first and second stage.

in approximately 20% of the area of each other, the first and third intersect in

approximately 40% of the areas of each other, and so on. Since we already know

the transformation that aligns the first partial surface with the others, namely the

identity transformation, we study the RMS distance from the first partial surface

after applying the the alignment transformation determined by ms3align. The

bottom row of Figure 6.4 shows three graphs for respective simplification threshold

Ts values of 0.08, 0.10, and 0.12. The alignment RMS distance of the first partial

surface is mapped to the y-axis and the overlap fractions with the remaining four

partial surfaces is mapped to the x-axis. We find that, in all cases, alignments

were successfully determined with RMS distance less than 1Å.

Next, we present the runtime breakup of the various stages of ms3align in

Figure 6.5. We conducted our experiments on a HP xw7700 workstation with

an Intel(R) Xeon(R) CPU E5405 2.00GHz dual quad-core processor and 8 GB of

RAM. Figure 6.5 presents the running times for the partial overlap experiment

discussed above for a simplification threshold parameter Ts value of 0.1. We note

from the figure that the alignment time is consistently under 1 second for each

alignment.

6.5.3 A comparison with SurfComp

In this experiment, we compare ms3align with the SurfComp tool [27]. The

authors of SurfComp validate using the ligand surfaces from two datasets. The
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first dataset consists of thermolysin inhibitor ligands of two kinds, the first con-

taining tryptophan and the second with an aliphatic residue at the C-terminal end.

The second dataset consists of ligands bound with the Dihydrofolate Reductase

(DHFR) enzyme. In both experiments, surfaces obtained from ligand molecules

are aligned. Hofbauer et al. consider two types of physico-chemical properties on

molecular surfaces to determine alignments. Since they conclude that electrostatic

potential (ESP) results in better alignments, we only compare against these align-

ments. The chemical structures of the ligands in both datasets are presented in

Figures 6.6 and 6.10. For these experiments, the Rc parameter is set to 1.2Å since

we wish to study alignments at the scale of a single atom. The Ts parameter is set

to 0.06 for the first dataset and 0.1 for the second dataset. The Tms parameter is

set to 0.09 and 0.15 respectively. The Tmrd parameter is set equal to Rc. In the

following paragraphs, we discuss the alignments determined by ms3align for each

of the datasets in detail and compare them with SurfComp.

In the thermolysin dataset, SurfComp compares eight thermolysin inhibitor

ligands considered in two groups. The first group consists of ligands from PDBs

1THL, 1TLP, 1TMN and 3TMN. In our experiment, we were unable to extract

the ligand structure from 3TMN because of a failure in the pdb2pqr tool which is

used in a preprocessing step to compute the molecular skin surface. Hence remove

3TMN from this list. The second group consists of ligands from PDBs 4TLN,

5TLN, 5TMN, and 6TMN. For consistency of labeling of datasets with respect

to Hofbauer et al., we use the PDB id to reference the ligand considered. We

were able to determine the same alignments as SurfComp for the first group.

However, in the case of 1THL-1TMN our sixth best alignment corresponds to

the SurfComp’s best alignment. For the same pair 1THL-1TMN, SurfComp

reports an alignment of the tryptophan moiety of both ligands. ms3align reports

it as the sixth best alignment with other meaningful alignments being detected as
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(a) 1THL (0DB) (b) 1TLP (RDF)

(c) 1TMN (0ZN) (d) 3TMN (TRP)

(e) 4TMN (0PK) (f) 5THL (BAN)

(g) 5TMN (0PJ) (h) 6TMN (0PI)

Figure 6.6: Thermolysin Inhibitors. (a)-(d) Ligand structures with Tryptophan
shown in the orange boxes. (e)-(h) Ligand structures with aliphatic residue shown
within green shaded regions. The ligand structure images were generated via the
RCSB’s [2] Protein Data Bank website.
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(a)

(b)

Figure 6.7: Alignments of the ligand surfaces found by ms3align and not Surf-
Comp for the thermolysin inhibitor dataset. The aligning portions of the surface
are shown as opaque and the rest is shown with transparency. A stick represen-
tation of the ligands is also shown. (a) The best three alignments of the 4TMN’s
0PK ligand (light pink) with 5TLN’s BAN ligand (green) aligns the two aromatic
rings of 0PK with those of BAN. (b) The best two results of 6TMN’s 0PJ ligand
(dark blue) with the 5TLN’s BAN(green) show alignment of aromatic rings from
both ligands.
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Figure 6.8: Alignment of 1THL with 1TMN exhibits multiple partial alignments.
In all figures 1TMN is fixed (blue) and 1THL (pink) is transformed. (Top Left
and Center): The two mirrored alignments of the aromatic rings in 1THL and
1TMN are detected as the best two alignments. (Top Right and Bottom Left):
The two mirrored alignments of the benzyl ring of 1THL with the hetero-cycle
of tryptophan in 1TMN are detected third and fourth best alignments. (Bottom
Center): A variant of the the alignment of the aromatic ring in 1THL with the
other parts of the penta-cycle of tryptophan in 1TMN. (Bottom Right): Alignment
of the tryptophan parts of both ligands.
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Figure 6.9: Alignments of the 4TMN’s 0PK ligand (light pink) with: (left column)
5TMN’s 0PJ ligand(cyan). (right column) 6TMN’s 0PK ligand (purple). The
alignment of 0PK in 5TMN with BAN in 5TLN is shown in Figure 6.7(a).

better. Figure 6.8 shows the other alignments detected for the pair 1THL-1TMN.

From the visualization, we conclude that they are also chemically relevant. Also,

Hofbauer et al. state that they were not able to determine relevant alignments of

the ligand in 5TLN with the other ligands. Figure 6.7 show the best alignments of

the ligand in 5TLN with the ligands in 4TMN and 5TMN using ms3align. Since

the ligand 0PI (6TMN) is structurally very similar to the ligand 0PJ (5TMN), the

same alignments with respect to other ligands were also found, and thus images

of these alignments are omitted. Thus, we find that ms3align aligns relevant

portions of the surfaces of the ligand BAN in 5TLN with all the other considered

ligands. For many pairs, we determine partial alignments of other substructures.

Figure 6.9 presents the additional alignments of 4TMN with the others in its group.
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(a) Folic Acid (FOL) (b) Trimethoprim
(TOP)

(c) Methotrexate (MTX) (d) Br-WR99210 (WRB)

Figure 6.10: DHFR ligands FOL, MTX, TOP, and WRB taken from pdbs 1DHF,
1DF7, 1DG5, and 1DG7 respectively. The ligand structure images were generated
via the RCSB’s [2] Protein Data Bank website.

Dihydrofolate Reductase Dataset

In the DHFR dataset, alignments of surfaces of four ligands interacting with

DHFR are analyzed. The ligands used are Folic acid (FOL), Methotrexate (MTX),

Trimethoprim (TMP), and BR-WR99210 (WRB) from PDBs 1DHF, 1DF7, 1DG5

and 1DG7 respectively. Figure 6.10 shows the chemical structures of the consid-

ered ligands. We note that SurfComp reports only two good alignments of FOL

with MTX and WRB. We were able to recover a similar alignment of FOL and

MTX. ms3align does not determine the same alignment reported by SurfComp

for the case of FOL and WRB. Figure 6.11(a) shows the alignment determined

by ms3align where the alignment is along the C=N-C=N moieties with amino

groups at the two and four positions from triazine and pteridine of WRB and MTX

respectively. SurfComp reports an alignment where the brominated benzyl group

of WRB aligns with the central benzyl group of FOL which is different from the

best alignment we determine. Relevant alignments determined by ms3align for
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(a) (b)

(c)

Figure 6.11: Alignments of the ligand surfaces found by ms3align and not Sur-
fComp for the DHFR dataset. The aligning portions of the surface are shown
as opaque and the rest is shown with transparency. A stick representation of the
ligands is also shown. (a) The best alignment of FOL (light pink) with WRB
(purple) is along the two amnio groups attached to the aromatic ring in both lig-
ands. (b) Alignment between MTX(green) and TOP (cyan), where the two amino
groups attached to an aromatic ring align. (c) The best two alignments MTX
(green) and WRB (purple).
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Figure 6.12: Plot of the RMS distance
between ligand surfaces after alignment
using ms3align and SurfComp. (left)
Plot for the dataset of thermolysin in-
hibitor ligands. The ligands are iden-
tified by the PDB they were extracted
from. (right) Plot for the dataset of lig-
ands bound to DHFR enzymes. The lig-
ands are identified by their abbreviation.

the pairs MTX-TMP, MTX-WRB, and FOL-WRB, that were not determined by

SurfComp are shown in Figures 6.11.

Figure 6.12 presents the RMS distances between the pairs of surfaces after

alignment using both ms3align and SurfComp. We note here that small RMSD

values (< 1.5Å) are indicative of successful alignments whereas larger RMSD val-

ues (1.5−5) do not necessarily indicate failure of the alignment. This is particularly

true when the reported alignment is that of a partial alignment of surfaces. Ta-

ble 6.1 tabulates and compares the aligning portions of the ligands in both datasets

using ms3align and SurfComp. In conclusion, we were able to replicate all align-

ments, except one, reported by Hofbauer et al. in their evaluation of SurfComp.

Additionally, we were able to obtain other chemically relevant alignments in many

cases.

6.5.4 A validation using PocketMatch and PyMol

In this experiment, we validate alignments generated using ms3align against those

generated using PyMol [3]. We curate a dataset of thirty one protein structures

from the PDB [2], each interacting with one of eight types of ligands. A vari-

ety of ligands ranging from small sugars such as glucose to molecules containing

substituted sugars such as NDP, fatty acids such as ACD (arachidonic acid), vita-

mins such as Biotin (BTN) and Retinoic Acid (REA) are chosen. The structural
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Ligand Pair SURFCOMP Aligns MS3ALIGN Aligns  

1THL-1TLP Tryptophan moiety  Tryptophan moiety

1THL-1TMN Tryptophan moiety Benzyl moiety 
Tryptophan moiety (6th best)

1THL-3TMN  Tryptophan moiety -

1TLP-1TMN  Tryptophan moiety  Tryptophan moiety

1TLP-3TMN  Tryptophan moiety -

1TMN-3TMN  Tryptophan moiety -

4TMN-5TLN - Benzyl moiety

4TMN-5TMN L-Alanine moiety L-Alanine moiety

4TMN-6TMN L-Alanine moiety L-LAanine moiety

5TLN-5TMN - Benzyl moiety

5TLN-6TMN - Benzyl moiety

5TMN-6TMN 4-methyl pentanoic
acid group

4-methyl pentanoic acid group

FOL-TOP - -

FOL-MTX Entire ligands Entire ligands

FOL-WRB Benzyl moiety C=N-C=N part of triazine and pteridine
groups along with amino groups 

TOP-MTX - C=N-C=N part of triazine and pteridine
groups along with amino groups 

TOP-WRB - C=N-C=N part of triazine and pteridine
groups along with amino groups 

MTX-WRB - C=N-C=N part of triazine and pteridine
groups along with amino groups 

Table 6.1: Comparison of the chemically relevant alignments of SurfComp and
ms3align. The chemical structures of the ligands are presented in Figures 6.6 and
6.10
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Figure 6.13: Alignments of pockets formed by the ligands STI in 4BKJ and 3HEC
(left), STI in 3K5V and 3HEC (middle), and BTN in 4GGZ and 4JNJ (right),
using ms3align (top-row) and PyMol (bottom-row).

variability of the pocket is quantified using PocketMatch [136]. For each bind-

ing site, PocketMatch generates 90 sorted lists of distances from the three

dimensional coordinates and chemical properties of the site. For a pair of sites, a

normalized score based on the similarity of the pair of 90 lists is computed. Sites

having a PocketMatch Pmax score greater than 0.6 are statistically shown to be

structurally similar, with a score of 1 indicating identical sites. Independently, an

alignment of the pocket residues is generated using PyMol’s “super” command.

This command aligns proteins using a dynamic programming approach followed

by multiple refinement cycles that improve the fit by eliminating pairings with

high relative variability.

For this experiment, the pocket surfaces of each ligand type is aligned with

each other using ms3align with Rc = 1.2Å, Ts = 0.1, Tms = 0.15, Tmrd = 1.2Å.

In Figure 6.14, the RMS distance between the pockets transformed by PyMol’s

and ms3align’s alignment is plotted for the set of considered pocket pairs . The
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Figure 6.14: The RMS distance between pockets transformed by PyMol’s and
ms3align’s alignment. The corresponding PocketMatch indicate overall con-
sensus between the different methods.

PocketMatch score between each pair is also shown for comparison. When

the RMS distance between the pockets transformed by PyMol’s and ms3align’s

alignment is less than 1.2Å, we conclude that both alignments are equivalent. In

Figure 6.13, we visually verify the validity of alignments of pairs where the RMS

distance is between 1.2 and 5Å. We conclude that we were able to successfully

determine alignments of pocket surfaces whose PocketMatch score is greater

than 0.7 and in some cases even 0.6.

6.5.5 Aligning Electron Microscopy Iso-Surfaces

In this experiment, we consider two sets of related iso-surfaces generated from cryo

electron microscopy scans obtained from the EMDataBank [26]. The first dataset

comprises of a related set of Fragment antigen binding of HIV antibodies. The

second dataset comprises of a related set of HIV antibodies. Both datasets are

available at resolutions of approximately 20Å. Table 6.2 summarizes the details

of the two datasets used. An iso-surface is defined as the set of points where the

density value is equal to a pre-specified constant. Molecular surfaces are extracted
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Figure 6.15: Alignments of the iso-surfaces of the cryo Electron Microscopy
datasets. Pairwise alignments of the first dataset is shown in the top row
and pairwise alignments of the second dataset is shown in the bottom row.
Pairwise alignments between: top-left) 5918 (skin pink) and 5919 (green), top-
middle) 5918 (skin pink) and 5920 (cyan), top-right) 5919 (green) and 5920 (cyan),
bottom-left) 5323 (purple) and 5324 (magenta), bottom-middle) 5323 (pur-
ple) and 5325 (skin pink), and bottom-right) 5324 (magenta) and 5325 (skin pink).
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EMDB ID Iso-Value Imaging Imaging Box
Resolution (Å) Size (Å× Å× Å)

5918 2.05 21 328× 328× 328
5919 2.69 19 348× 348× 348
5920 2.27 25 328× 328× 328

5323 2.2 20 410× 410× 410
5324 1.45 20 410× 410× 410
5325 2.0 20 410× 410× 410

Table 6.2: Electron Microscopy datasets used in the alignment experiments. The
iso-value refers to the density value suggested by EMData bank for representing
the molecular surface.

A B RMSD (Å)

5918 5919 6.69
5918 5920 7.00
5919 5920 8.32

5323 5324 5.71
5323 5325 8.74
5324 5325 10.75

Table 6.3: RMS distances between pairs of iso-surfaces after alignment from both
datasets shown in Table 6.2.

from cryo-EM data by computing the iso-surface at a carefully chosen iso-value.

For both datasets, we set the parameter Rc = 30Å, Ts = 0.05, Tms = 0.1,

Tmrd = 30Å, and computed alignments using ms3align. Figure 6.15 shows the

respective pairwise alignments of the iso-surfaces of both datasets. Table 6.2 shows

the RMS distance between pairs surfaces from the two datasets after alignment

using ms3align. Here the RMSD is computed after alignment as the root mean

square of the closest distance from every point of the first surface to the second

surface and vice versa. Thus, we conclude that the alignments were successful.
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6.6 Conclusions

We presented a method to align molecular surfaces by identifying and establishing

correspondences between significant protrusions on the surface. We also present

ms3align, a tool that implements this method. A key advantage of our method

is robust segmentation of the surface into segments that can be individually eval-

uated for correspondences. Furthermore, due to its purely geometric design, it is

applicable to molecular surfaces arising from various sources such as the PDB and

Electron-Microscopy scans. This is a key advantage over existing methods such as

SurfComp, PBSAlign, and PyMol, which rely on protein sequence data and

other derived scalar values such as the electro-static potential, which are often not

directly available/computable. In the future, we plan to expand ms3align to align

surfaces by including other geometric properties such as spherical harmonics and

Zerninke coefficients of individual segments. These global properties may be ap-

plied to smaller segments resulting in a method for determining alignments using

a blend of local and global properties. Currently, we use only the local curvature

property. Another potential avenue is the further refinement of the alignment us-

ing physico-chemical properties. In terms of leveraging topological properties, the

application of the 3D Morse-Smale complex for three-dimensional electron density

distributions is another avenue. Here, topology based methods potentially have

an advantage of being able to study stable core structures that track the backbone

of protein chains. These may then be leveraged to develop efficient identification

and alignment algorithms.
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Conclusions

The focus of this thesis has been two-fold. The first part focused on efficient

algorithms to compute the Morse-Smale complex of large 2D and 3D domains.

The second part focused on two novel applications of the Morse-Smale complex.

Computation

In this part, we described a discrete Morse theory based method to compute the

Morse-Smale complex. It begins by first defining a valid discrete Morse function

which is then used to compute discrete gradient consistently and in parallel. Next,

we describe algorithms to efficiently traverse the structure of the gradient field

to determine the combinatorial and geometric structure of the Morse-Smale com-

plex. These methods were implemented for 2D and 3D structure grids. They

were both evaluated using synthetic and real world datasets. We found that both

implementations exhibited a near linear scaling with data sizes. We compared

desktop implementations of other Morse-Smale complex algorithms using stan-

dard datasets. We found a significant runtime advantage of our method over other

methods, which is an order of magnitude better for all the considered datasets.

152
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We also presented theoretical results that allow us to partially reconcile the sim-

plification of Morse-Smale complexes with the notion of persistence. In particular,

we showed that if one were to only topologically cancel extremum-saddle critical

points pairs in the Morse-Smale complex in increasing order of the least absolute

difference in function value between the two critical points, then resulting set of

critical point pairs are persistent critical point pairs.

Applications

In the second part of the thesis, we described two novel applications of the Morse-

Smale complex in the field of cosmology and structural biology.

Exploring Cosmic Filaments: In this application, we described a framework

to explore the structure of cosmic filaments using the Morse-Smale complex. The

Morse-Smale complex plays a key role in identifying filamentary structures. In

particular, filaments are determined in a hierarchy of Morse-Smale complexes so

as to be able to interactively explore the topologically rich filamentary structure.

We used two classes of cosmological simulation datasets to test our framework

and showcase its capabilities. We first compared cosmic filaments extracted with

those found by other methods. We reconfirm that we are able to identify similar

structures and in few cases more relevant structures. Then, we used our framework

to explore filaments in three different density regimes, those that existed in high

density regions, those that existed in low-density regions, and those that stretch

from high density to low density regions.

Aligning Molecular Surfaces: In this application, we used the Morse-Smale

complex to identify and segment significant protrusions on molecular surfaces.

These protrusions allowed us develop an efficient method to align molecular sur-

faces. The alignment method was implemented as a tool named ms3align. We
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evaluated the performance of ms3align to study its resilience to noise and also to

determine alignments when only parts of the surfaces overlapped. We compared

the method with related software and showcased its advantages. We validated the

tool with the alignments determined using PyMol’s [3] and scored using Pock-

etMatch [136].

Future Directions

In recent years, the body of applications that leverage Morse-Smale complexes for

topological analysis has been growing rapidly. Therefore, near real time compu-

tation is of immediate value to anyone looking for such analysis. Furthermore,

our methods are easily accessible due to its deployability on commodity CPU and

GPU systems. We believe that our methods will find wide-spread application in

time-varying datasets as well as ensemble datasets, where rapidly emerging data

needs to be quickly and automatically analyzed for features. Examples of such

data include climate simulations, cosmological simulations, fluid dynamics, and

hydrodynamic mixing simulations. In such data streams, identifying key frames

in the data is of vital interest due to volume and rapidity of the data.
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“A dynamical classification of the cosmic web,” MNRAS, vol. 396, pp. 1815–

1824, 2009. 88

[83] N. I. Libeskind, Y. Hoffman, A. Knebe, M. Steinmetz, S. Gottlöber,
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