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Introduction

INDUCED GEOMETRIC OBJECTS

P - set of n points in R? in general position.
R - Set of all distinct geometric objects of a particular class
induced(spanned) by P.

For example, let R be the set of all the ('2’) axis-parallel rectangles induced
by a distinct pair of points in P.

FIGURE: Set of all axis-parallel
Rectangles induced by P
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Focus orF THE PAPER

Broadly, we look at 2 kinds of problems in this paper

@ What is the largest subset of R that is hit/pierced by a single point?
(Selection Lemma)
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@ What is the largest subset of R that is hit/pierced by a single point?
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© What is the minimum set of points needed to hit all the objects in R?
(Hitting Set)
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@ For induced triangles in R2, Boros and Fiiredi (1984), showed that

the centerpoint is present in g—; (constant fraction) triangles induced

by P. This constant is tight.

4/17



Introduction

FIRST SELECTION LEMMA (FSL)

@ For induced triangles in R2, Boros and Fiiredi (1984), showed that

the centerpoint is present in g—; (constant fraction) triangles induced

by P. This constant is tight.

© For induced simplices in RY, Barany (1982) showed that there exists a
point p € R contained in at least ¢y - (dj’rl) simplices induced by P.
Result used in the construction of weak e-nets for convex objects
(Matousek 2002).

4/17



Introduction

FIRST SELECTION LEMMA (FSL)

@ For induced triangles in R2, Boros and Fiiredi (1984), showed that
the centerpoint is present in g—; (constant fraction) triangles induced
by P. This constant is tight.

© For induced simplices in RY, Barany (1982) showed that there exists a
point p € R contained in at least ¢y - (dj’rl) simplices induced by P.
Result used in the construction of weak e-nets for convex objects
(Matousek 2002).

@ FSL type results have not been explored for other classes of induced
objects like axis-parallel rectangles, disks etc.

© Strong first selection lemma (p € P).
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@ Generalization of the first selection lemma, which considers an
m-sized arbitrary subset S C R and shows that there exists a point
which is contained in f(m, n) objects of S.

@ SSL type results have been explored for various objects like simplices,
boxes and hyperspheres in RY.

© Applications in the classical halving plane problem and slimming
Delaunay triangulations in R3.

@ For axis-parallel rectangles in R? Chazelle et al.(1994) showed a lower
m2

bound of Q(m) using induction.

@ Smorodinsky et al.(2004) gave an alternate proof of the same bounds
m2 )

and also gave an upper bound of O(@

5/17



Introduction
HITTING /PIERCING SET FOR INDUCED OBJECTS
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Introduction
HITTING /PIERCING SET FOR INDUCED OBJECTS

@ The algorithmic question of computing the minimum hitting set is
NP-Hard, even for simple objects like lines, unit disks, axis-parallel
rectangles etc.

@ We explore these questions for special cases of induced axis-parallel
rectangles like skylines, slabs etc.

© Combinatorial Bounds studied for induced disks, axis-parallel
rectangles and triangles.
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© For the strong first selection lemma for axis-parallel rectangles, we
show a tight bound of {’—;.

© (Second selection lemma) We show that f(m, n) = Q(’:—:) for
axis-parallel rectangles. Improvement over the previous bound in
Smorodinsky et al.(2004), when m = Q( .

@ Hitting set for induced objects
@ The hitting set problem for all induced lines is NP-complete.
® Induced axis-parallel skyline rectangles.
@ O(nlog n) time algorithm to compute the minimum hitting set.
® Exact combinatorial bound of %n on the size of the hitting set.
® Exact combinatorial bound of %n on the size of the hitting set for all
induced axis-parallel slabs.

Iog2 n)'
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Some notation -
@ P - Pointset of size nin R? in general position.
© R(u,v) - axis-parallel rectangle induced by u and v where u,v € P.
@ R - set of all R(u,v) for all u,v € P.
@ R, C R - set of axis-parallel rectangles that contain p € R2.
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First Selection Lemma for Axis-Parallel Rectangles (Weak)

FSL rOR AXIS-PARALLEL RECTANGLES (WEAK)

Let f(n) = min (max|R,|).
(M) = min (max|Ry)
There exists a point p in R? (not necessarily belonging to P), which is

present in at least %2 axis-parallel rectangles induced by P i.e f(n) > %2.
This bound is tight.
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First Selection Lemma for Axis-Parallel Rectangles (Weak)

FSL rOR AXIS-PARALLEL RECTANGLES (WEAK)

Let f(n) = min (max|R,|).
(M) = min (max|Ry)
There exists a point p in R? (not necessarily belonging to P), which is

present in at least %2 axis-parallel rectangles induced by P i.e f(n) > %2.
This bound is tight.

Horizontal line h and vertical
\ line v, each of which bisects

‘.7”(?7/744»x) (n/a =) the pointset.
| IRl = (3 =)+
(/4 —x) | (n/a+x) = |Rp| =% +2x2
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+

=

N
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Second Selection Lemma for Axis-Parallel Rectangles
SSL FOR AXIS-PARALLEL RECTANGLES

The problem - Let S C R, |S| = m. We bound the maximum number of
rectangles in S that can be pierced by a single point p € R?.
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The problem - Let S C R, |S| = m. We bound the maximum number of
rectangles in S that can be pierced by a single point p € R?.

@--0--- ®
i

Construct a grid out of P. Let
the grid points be G (P C G),
where |G| = n?. G is the can-
R P S didate set of points for the sec-
‘ ‘ ond selection lemma.

THEOREM

m3

4 . . o ,
If m = Q(n3), there exists a point p € G which is present in at least 57

rectangles of S.
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Second Selection Lemma for Axis-Parallel Rectangles

SKETCH OF THE PROOF
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@ We find a lower bound for the sum of grid points contained in each
rectangle in S.

@ Same as counting the number of rectangles of S pierced by a grid
point, summed over all grid points.
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@ We find a lower bound for the sum of grid points contained in each
rectangle in S.

@ Same as counting the number of rectangles of S pierced by a grid
point, summed over all grid points.

e By pigeonhole principle, we find a lower bound on the rectangles of S
pierced by some grid point.
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Second Selection Lemma for Axis-Parallel Rectangles

NUMBER OF GRID POINTS IN X! - LOWER BOUND

Some notations used in the proof -

@ The rectangle R(x;,u) € S where x;, u € P is added to the partition

Xi, if u is higher than x; (similarly P;). Further partitioned into X/
and X! (right and left).

@ Let |Xj| = [Pi[ = m;.

© Let J; be the number of grid points in G, present in any rectangle
res.
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NUMBER OF GRID POINTS IN X! - LOWER BOUND

Some notations used in the proof -

@ The rectangle R(x;,u) € S where x;, u € P is added to the partition
Xi, if u is higher than x; (similarly P;). Further partitioned into X/
and X! (right and left).

@ Let |Xj| = [Pi[ = m;.

© Let J; be the number of grid points in G, present in any rectangle
res.

LEMMA

Let c = Z J,. Then c > (,72)3'
rex!

Proof is by induction on m’.
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Second Selection Lemma for Axis-Parallel Rectangles

BaAase CASE

o Base Case, m) =2

A1 A1

‘an o an

Xi Xi
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Second Selection Lemma for Axis-Parallel Rectangles

BaAase CASE

o Base Case, m) =2

A1 A1

;a2 o an

X Xij
(i) (i)
@ Assume that the statement is true for m; = k — 1 and let m} = k.

@ We prove that the lower bound is achieved when P! is monotonically
decreasing i.e. any other configuration of P! gives a higher count for
c.

13/17



Second Selection Lemma for Axis-Parallel Rectangles

INDUCTIVE HYPOTHESIS - CASE 1

Case 1 : a1 is not the leftmost point.

i /
|
j points |
N
ai 7 ai
a Lo Ay
LIS R S 2 :
: : > :
az : 2 az :
3 5
® : :
?ak §ak
Xi 3 Xi

o Make a; the leftmost point. We have,
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INDUCTIVE HYPOTHESIS - CASE 1

Case 1 : a1 is not the leftmost point.
I I

|
Jj points
-
ai ai

a2 az
{ JE

as a3

II\/

Ak Ak

]
Xi ! Xi

o Make a; the leftmost point. We have,
o Theincreasein cis < k+(k—1)+-- -+ (k—j+1).
o R(x;,a1) loses (j +2)(k + 1) —2(k + 1) points.

@ Thus, we see that ¢ does not increase.
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Second Selection Lemma for Axis-Parallel Rectangles

INDUCTIVE HYPOTHESIS - CASE 2

Case 2 : aj is the leftmost point.

1

|

i

PRt
a < a2
ag i —4d L
Adding a
k points &
Ak Ak

v
I
Xi Xjpl
i

e Remove a; from P/ and apply the induction hypothesis to the
remaining k — 1 points.
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Case 2 : aj is the leftmost point.

a a:
2. : o—o—x2.

ag i —4d L
Adding a;

k points

Ak Ak

v
I
Xi Xjpl
i

e Remove a; from P/ and apply the induction hypothesis to the
remaining k — 1 points.
. . k(k
@ The line / contributes % —1to Z Jr.
rex;
e R(xj,a1) contributes 2k + 2.
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INDUCTIVE HYPOTHESIS - CASE 2

Case 2 : aj is the leftmost point.

a2

a3

a

a3

Adding a
k points &

Ak

Ak

v
I
Xi Xjpl
i

Remove a; from P! and apply the induction hypothesis to the

remaining k — 1 points.

The line / contributes % —1to Z Jr.
rex;

R(xi, a1) contributes 2k + 2.

By summing all these quantities, we see that the induction hypothesis

is true.
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Second Selection Lemma for Axis-Parallel Rectangles

PROOF OF THEOREM 2

THEOREM

4 . . L .
If m = Q(n3), there exists a point p € G which is present in at least %
rectangles of S.
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THEOREM
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If m = Q(n3), there exists a point p € G which is present in at least %
rectangles of S.

Sketch of the proof -

n 3
o U=z % (Lemma 3 and Halder's inequality).
resS i=1 reX;

@ Iz - the number of rectangles of S containing the grid point g € G.

° ZI :ZJr

geai reS
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PROOF OF THEOREM 2

THEOREM

4 . . L .
If m = Q(n3), there exists a point p € G which is present in at least %
rectangles of S.

Sketch of the proof -

n 3
o U=z % (Lemma 3 and Halder's inequality).
resS i=1 reX;

@ Iz - the number of rectangles of S containing the grid point g € G.

° ZI :ZJr

geai reS

o We use an averaging argument(n® grid points) and prove the theorem.
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Moving Forward
OPEN QQUESTIONS

o First selection lemma for induced boxes in higher dimensions.
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Moving Forward

OPEN QQUESTIONS

o First selection lemma for induced boxes in higher dimensions.
o First selection lemma for other induced objects like disks etc.

e Can the hitting set for the set of all induced objects (disks,
axis-parallel rectangles etc.), be computed in polynomial time ?
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