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Introduction

Induced Geometric Objects

P - set of n points in R2 in general position.
R - Set of all distinct geometric objects of a particular class
induced(spanned) by P.
For example, let R be the set of all the

(n
2

)
axis-parallel rectangles induced

by a distinct pair of points in P.

u

v

Figure: Set of all axis-parallel
Rectangles induced by P
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Figure: Set of all diametrical Disks
induced by P
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Introduction

Focus of the Paper

Broadly, we look at 2 kinds of problems in this paper

1 What is the largest subset of R that is hit/pierced by a single point?
(Selection Lemma)

2 What is the minimum set of points needed to hit all the objects in R?
(Hitting Set)
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Introduction

First Selection Lemma (FSL)

1 For induced triangles in R2, Boros and Füredi (1984), showed that

the centerpoint is present in n3

27 (constant fraction) triangles induced
by P. This constant is tight.

2 For induced simplices in Rd , Bárány (1982) showed that there exists a
point p ∈ Rd contained in at least cd ·

( n
d+1

)
simplices induced by P.

Result used in the construction of weak ε-nets for convex objects
(Matousek 2002).

3 FSL type results have not been explored for other classes of induced
objects like axis-parallel rectangles, disks etc.

4 Strong first selection lemma (p ∈ P).
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Introduction

Second Selection Lemma (SSL)

1 Generalization of the first selection lemma, which considers an
m-sized arbitrary subset S ⊆ R and shows that there exists a point
which is contained in f (m, n) objects of S.

2 SSL type results have been explored for various objects like simplices,
boxes and hyperspheres in Rd .

3 Applications in the classical halving plane problem and slimming
Delaunay triangulations in R3.

4 For axis-parallel rectangles in R2,Chazelle et al.(1994) showed a lower

bound of Ω( m2

n2 log2 n
) using induction.

5 Smorodinsky et al.(2004) gave an alternate proof of the same bounds

and also gave an upper bound of O( m2

n2 log( n
2

m
)
).
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Introduction

Hitting/Piercing Set for Induced Objects

1 The algorithmic question of computing the minimum hitting set is
NP-Hard, even for simple objects like lines, unit disks, axis-parallel
rectangles etc.

2 We explore these questions for special cases of induced axis-parallel
rectangles like skylines, slabs etc.

3 Combinatorial Bounds studied for induced disks, axis-parallel
rectangles and triangles.
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Our Contribution

Our Results

1 Selection Lemmas
1 For the first selection lemma for axis-parallel rectangles, we show a

tight bound of n2

8 .
2 For the strong first selection lemma for axis-parallel rectangles, we

show a tight bound of n2

16 .

3 (Second selection lemma) We show that f (m, n) = Ω(m3

n4 ) for
axis-parallel rectangles. Improvement over the previous bound in

Smorodinsky et al.(2004), when m = Ω( n2

log2 n
).

2 Hitting set for induced objects
1 The hitting set problem for all induced lines is NP-complete.
2 Induced axis-parallel skyline rectangles.

1 O(n log n) time algorithm to compute the minimum hitting set.
2 Exact combinatorial bound of 2

3
n on the size of the hitting set.

3 Exact combinatorial bound of 3
4n on the size of the hitting set for all

induced axis-parallel slabs.
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Notation

Some notation -

1 P - Pointset of size n in R2 in general position.

2 R(u, v) - axis-parallel rectangle induced by u and v where u, v ∈ P.

3 R - set of all R(u, v) for all u, v ∈ P.

4 Rp ⊂ R - set of axis-parallel rectangles that contain p ∈ R2.
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First Selection Lemma for Axis-Parallel Rectangles (Weak)

FSL for Axis-Parallel Rectangles (Weak)

Theorem

Let f (n) = min
P,|P|=n

(max
p∈R2
|Rp|).

There exists a point p in R2 (not necessarily belonging to P), which is

present in at least n2

8 axis-parallel rectangles induced by P i.e f (n) ≥ n2

8 .
This bound is tight.

(n/4 − x) (n/4 + x)

(n/4 − x)(n/4 + x)

p

v

h

Horizontal line h and vertical
line v , each of which bisects
the pointset.
|Rp| = (n4 − x)2 + (n4 + x)2

=⇒ |Rp| = n2

8 + 2x2

Thus, |Rp| ≥ n2

8 .
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Second Selection Lemma for Axis-Parallel Rectangles

SSL for Axis-Parallel Rectangles

The problem - Let S ⊆ R, |S| = m. We bound the maximum number of
rectangles in S that can be pierced by a single point p ∈ R2.

Construct a grid out of P. Let
the grid points be G (P ⊂ G ),
where |G | = n2. G is the can-
didate set of points for the sec-
ond selection lemma.

Theorem

If m = Ω(n
4
3 ), there exists a point p ∈ G which is present in at least m3

24n4

rectangles of S.
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Second Selection Lemma for Axis-Parallel Rectangles

Sketch of the proof

We find a lower bound for the sum of grid points contained in each
rectangle in S.

Same as counting the number of rectangles of S pierced by a grid
point, summed over all grid points.

By pigeonhole principle, we find a lower bound on the rectangles of S
pierced by some grid point.

11 / 17
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Second Selection Lemma for Axis-Parallel Rectangles

Number of grid points in X ′i - Lower Bound

Some notations used in the proof -

1 The rectangle R(xi , u) ∈ S where xi , u ∈ P is added to the partition
Xi , if u is higher than xi (similarly Pi ). Further partitioned into X ′

i

and X ′′
i (right and left).

2 Let |X ′
i | = |P ′

i | = m′
i .

3 Let Jr be the number of grid points in G , present in any rectangle
r ∈ S.

Lemma

Let c =
∑
r∈X ′

i

Jr . Then c ≥ (m′
i )

3

6 .

Proof is by induction on m′
i .
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Second Selection Lemma for Axis-Parallel Rectangles

Base Case

Base Case, m′
i = 2

(i)

xi

a1

a2

(ii)

xi

a1

a2

Assume that the statement is true for m′
i = k − 1 and let m′

i = k .

We prove that the lower bound is achieved when P ′
i is monotonically

decreasing i.e. any other configuration of P ′
i gives a higher count for

c .
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Second Selection Lemma for Axis-Parallel Rectangles

Inductive Hypothesis - Case 1

Case 1 : a1 is not the leftmost point.

xi

a1

a2

a3

ak

xi

a1

a2

a3

ak

ll

j points

≥

Make a1 the leftmost point. We have,

The increase in c is ≤ k + (k − 1) + · · ·+ (k − j + 1).
R(xi , a1) loses (j + 2)(k + 1)− 2(k + 1) points.

Thus, we see that c does not increase.

14 / 17



Second Selection Lemma for Axis-Parallel Rectangles

Inductive Hypothesis - Case 1

Case 1 : a1 is not the leftmost point.

xi

a1

a2

a3

ak

xi

a1

a2

a3

ak

ll

j points

≥

Make a1 the leftmost point. We have,

The increase in c is ≤ k + (k − 1) + · · ·+ (k − j + 1).

R(xi , a1) loses (j + 2)(k + 1)− 2(k + 1) points.

Thus, we see that c does not increase.

14 / 17



Second Selection Lemma for Axis-Parallel Rectangles

Inductive Hypothesis - Case 1

Case 1 : a1 is not the leftmost point.

xi

a1

a2

a3

ak

xi

a1

a2

a3

ak

ll

j points

≥

Make a1 the leftmost point. We have,

The increase in c is ≤ k + (k − 1) + · · ·+ (k − j + 1).
R(xi , a1) loses (j + 2)(k + 1)− 2(k + 1) points.

Thus, we see that c does not increase.

14 / 17



Second Selection Lemma for Axis-Parallel Rectangles

Inductive Hypothesis - Case 1

Case 1 : a1 is not the leftmost point.

xi

a1

a2

a3

ak

xi

a1

a2

a3

ak

ll

j points

≥

Make a1 the leftmost point. We have,

The increase in c is ≤ k + (k − 1) + · · ·+ (k − j + 1).
R(xi , a1) loses (j + 2)(k + 1)− 2(k + 1) points.

Thus, we see that c does not increase.

14 / 17



Second Selection Lemma for Axis-Parallel Rectangles

Inductive Hypothesis - Case 2

Case 2 : a1 is the leftmost point.

xi

l

a1

a2

ak

xi

a2

ak

k points

a3 a3
Adding a1

Remove a1 from P ′
i and apply the induction hypothesis to the

remaining k − 1 points.

The line l contributes k(k+1)
2 − 1 to

∑
r∈X ′

i

Jr .

R(xi , a1) contributes 2k + 2.
By summing all these quantities, we see that the induction hypothesis
is true.
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Second Selection Lemma for Axis-Parallel Rectangles

Proof of Theorem 2

Theorem

If m = Ω(n
4
3 ), there exists a point p ∈ G which is present in at least m3

24n4

rectangles of S.

Sketch of the proof -∑
r∈S

Jr =
n∑

i=1

(
∑
r∈Xi

Jr ) ≥ m3

24n2
(Lemma 3 and Hölder’s inequality).

Ig - the number of rectangles of S containing the grid point g ∈ G .∑
g∈G

Ig =
∑
r∈S

Jr

We use an averaging argument(n2 grid points) and prove the theorem.
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Moving Forward

Open Questions

First selection lemma for induced boxes in higher dimensions.

First selection lemma for other induced objects like disks etc.

Can the hitting set for the set of all induced objects (disks,
axis-parallel rectangles etc.), be computed in polynomial time ?
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