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Stranger in car: "How do I get 
to the cx)mer of Graham Street and 
Harary Avenue?" 

Native on sidewalk: "You can't 
get diete from here.** 

n graph theory a graph is defined as any set of points joined by Unes, 

and a simple graph is defined as one that has no loops flines that join 

I a point to itself) and no parallel lines (two or more lines joining the 

same pair of points). If an arrowhead is added to each line of a graph, 

giving each line a direction that orders its end points, die graph be

comes a directed graph, or digraph for short Directed lines are called 

arcs. Digraphs are the subject here, and die old joke quoted above is 
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appropriate because on some digraphs it is actually impossible to get 
firom one specified point to another. 

A digraph is called complete if every pair of points is joined by an 
arc. For example, a complete digraph for four points is shown in Figure 
39 (left). The figure at the right is the adjacency matrix of the digraph, 
which is constructed as follows. Think of the digraph as a map of one
way streets. Starting at point A, it is possible to go direcdy only to point 
B, a fact that is indicated in the top row of the matrix (the row corrê  
sponding to A) by putting a 1 in the column corresponding to B and a 
0 in all the other columns. The remaining rows of the adjacency matrix 
are determined in the same way, so that the matrix is combinatorially 
equivalent to the digraph. It follows that given the adjacency matrix it is 
easy to construct the digraph. 

Other important properties of digraphs can be exhibited in other 
kinds of matrixes. For example, in a distance matrix each cell gives the 
smallest number of lines that form what is called a directed path from 
one point to another, that is, a path that conforms to the arrowheads 
on the graph and does not visit any point more than once. Similariy, 
the cells of a detour matrix give the number of lines in the longest 
directed path between each pair of points. And a reachability matrix 
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indicates (with Os and Is) whether a given point can be reached from 
another point by a directed path of any lengrfi- If every point is reach-
able from every other point, the digraph is said to be strongly con
nected. Otherwise diere will be one or more pairs of points for which 
"you can't get there from here.** 

The following dieorem is one of the most fundamental and surpris
ing results about complete digraphs: No matter how the arrowheads are 
placed on a complete digraph, diere will always be a directed path that 
visits each point just once. Such a path is called a Hamiltonian path 
after the Irish mathematician William Rowan Hamilton. Hamilton 
marketed a puzzle game based on a graph equivalent to the skeleton of 
a dodecahedron in which one task was to find all the paths that visit 
each point just once and return to the starting point. A cyclic path of 
this type is called a Hamiltonian circuit (Hamilton's game is discussed 
in Chapter 6 of my Scientific American Book of Mathematical Puzzles & 

Diversions.) 

The complete-digraph theorem does not guarantee that there will 
be a Hamiltonian circuit on every complete digraph, but it does ensure 
that there will be at least one Hamiltonian path. More surprisingly, it 
turns out that there is always an odd number of such paths. For ex
ample, on the complete digraph in Figure 40 there are five Hamiltonian 
paths: ABDC, BDCA, CABD, CBDA, and DCAB. All but one of diem 
iCBDA) can be extended to a Hamiltonian circuit. 

The theorem can be expressed in other ways, depending on the 
interpretation given the graphs. For ecample, complete digraphs are 
often called tournament graphs because they model the results of the 
kind of round-robin tournaments in which each player plays every other 
player once. If A beats B, a line goes from A to B. The theorem guaran
tees that whatever the outcome of a tournament is all players can be 
ranked in a column so that each player has defeated the player immedi
ately below him. (It is assumed here that, as in tennis, no game can end 
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Figure 40 

in a draw. If a game did allow draws, diey would be represented by 
undirected lines and tlie graph would be called a mixed graph. Mixed 
graphs can always be converted into digraphs by replacing each undi
rected line with a pair of directed parallel lines going in opposite direc
tions*) 

Tournament graphs can be applied to represent many situations 
other than tournaments. Biologists have used the graphs to diagram 
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the pecking order of a flock of chickens or, more generally, to dia
gram the structure that any other kind of pairwise dominance rela
tion imposes on a population of animals. Social scientists have used 
the graphs for modeling dominance relations among people or groups 
of people. Tournament graphs provide a convenient means of mod
eling a person's pairwise preferences for any set of choices, such as 
brands of coffee or candidates in an election. In all these cases the 
theorem guarantees that the animals, people, or objects in question 
can always be ordered in a linear chain by means of the one-way 
relation. 

The theorem is tridcy to prove, but to convince yourself of its valid
ity try labeling a complete graph of n points so that no Hamiltonian 
path is created. The impossibilitjr of the task suggested the following 
pendl-and-paper game to the madiematician John Horton Conway. Two 
players take turns adding an arrowhead to any undirected line of a 
complete graph, and the first player to complete a Hamiltonian path 
loses. The theorem ensures diat the game cannot be a draw. Conway 
finds the play is not interesting unless there are seven or more points in 
the graph. 

The digraph in Figure 40 appeared as a puzzle in the October 1961 
issue of die Cambridge mathematical annual Eureka. Although it is not 
a complete digraph, it has been cleverly labeled with arrowheads so that 
it has only one Hamiltonian circuit. Think of the graph as a map of 
one-way streets. You want to start at A and drive along the network, 
visiting each intersection just once before returning to A. How can it be 
done? (Hint: The circuit can be traced by a pencil held in either hand.) 

Digraphs can provide puzzles or be applied as tools for soĥ ing 
puzzles in innumerable ways. For example, the graphs serve to model 
the ways a flexagon flexes, and they are valuable in solving moving-
counter and sliding-block puzzles and chess-tour problems. Probability 
questions involving Maikov chains often yield readily to a digraph analysis. 
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and winning strategies for two-person games in which each move alters 
the state of the game are frequently found by exploring a digraph of all 
possible plays. In principle even the game of chess could be "solved** by 
examining its digraph, but the graph would be so enormous and so 
complex that it will probably never be drawn. 

Digraphs are extremely valuable in the field of operations research, 
where they can be applied to solve complicated scheduling problems. 
Consider a manufecturing process in which a certain set of operations 
must be performed. If each operation requires a fixed amount of time 
to perform and certain operations must be completed before others can 
be started, an optimum schedule for the operations can be devised by 
constructing a graph in which each operation is represented by a point 
and each point is labeled with a number that represents the time needed 
for completing the operation. The sequences in which certain opera
tions must be done are indicated by arrowheads on the lines. To deter
mine an optimum schedule the digraph is searched, with a computer if 
necessary, for a "critical path** that completes the process in a mini
mum amount of time. Complicated transportation problems can be 
handled the same way. For example, each line in a digraph can repre
sent a road and can be labeled with the cost of transporting a particular 
product on it. Clever algorithms can then be applied to find a directed 
path that minimizes the total cost of shipping the product fix^m one 
place to another. 

Digraphs also serve as playing boards for some unusual board games. 
Aviezri S. Fraenkel, a mathematician at the Weizmann Institute of Sci
ence in Israel, has been the most creative along these lines. (For a good 
introduction to a dass of digraph games Fraenkel calls annihilation 
games, see "Three Annihilation Games,** a paper Fraenkel wrote with 
Uzi Tassi and Yaacov Yesha for Mathematics Magazine^ Vol. 51, No. 1, 
pages 13-17; January 1978.) In 1976 the excellent game Arrows, which 
Fraenkel developed with Roger B. Eggjeton of Northern Illinois Uni-
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versity, was marketsed in Israel by Or Da Industries and distributed in 
the U.S. by Leisure Learning Products of Greenwich, CT 

Traffic Jam, another Fraenkel game, is played on the directed graph 
in Figure 41. A coin is placed on each of four spots: A, D, F, and M. 
Players take turns moving any one of the coins along one of the lines of 
the graph to an adjacent spot as is indicated by the arrowheads on the 
graph. A coin can be moved to any adjacent spot whether or not the 
spot is occupied, and each spot can hold any number of coins. Note 
that all die arrowheads at C point inward. Graph theorists call such a 
point a sink. Conversely, a point from which all the arrowheads point 
outward is called a source. (If the graph models a pecking order, the 
sink is the chicken all the other chickens peck and the source is the 
diicken that pecks all the others.) In this case there is just one sink and 

Hguie 41 
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one source, (A complete digraph can never have more than one sink or 
more than one source- Do you see why?) 

When all four coins are on sink C, the person whose turn it is to 
move has nowhere to go and loses the game. In Conway's book On 

Numbers and Games (Academic Press, 1976) he proves that the first 
player can always win if and only if his first move is from M to L 
Otherwise the opponent can force a win or draw. (It is assumed that 
both players make their best moves.) With the powerful game theory 
that Conway has developed it is possible to completely analyze any game 
of this type, with any starting pattern of counters. 

An ancient and fascinating class of puzzles that are best analyzed by 
digraphs are those known as river<rossing problems. Consider a clas
sic puzzle that turned up in the tide of Mary McCarthy's novel Canni

bals and Missionaries. In the simplest version of this problem three 
missionaries and three cannibals on the right bank of a river want to 
get to the left bank by means of a rowboat that can hold no more than 
two passengers at a time. If the cannibals outnumber the missionaries 
on either bank, the missionaries will be killed and eaten. Can all six get 
safely across? If they can, how is it done with the fewest crossings? (I 
shall not enter here into the current lively debate about whether canni
balism ever actually prevailed in a culture.) 

Benjamin L Schwartz, in an article tided "An Analytic Method for 
the 'Difficult Crossing' Puzzles" {Mathematics Magazine, Vol. 34, No. 
4, pages 187-193; March-April 1961), explained how to solve such 
problems by means of digraphs, but his method deals not direcdy with 
the digraphs but rather with their adjacency matrixes. I shall describe 
here a comparable procedure using the digraphs themselves that was 
first explained by Robert Fraley, Kenneth L Cooke and Peter Detrick in 
their article "Graphical Solution of Difficult Crossing Puzzles" (Math-
ematics Magazine, Vol. 39, No. 3, pages 151-157; May 1966). The 
paper has been reprinted with additions as Chapter 7 of Algorithms, 
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Graphs and Computers by Cooke, Richard E. Bellman and Jo Ann 
Lockett (Academic Press, 1970). The following discussion is based on 
diat chapter. 

L̂ t m stand for the number of missionaries and c for the number 
of cannibals, and consider all possible states on the right bank. (It is 
not necessary to consider states on the left bank as well because any 
state on the right bank ftdly determines the state on the left one.) 
Since m can be equal to 0, 1, 2, or 3, and the same is true for c, 
there are 4 x 4, or 16, possible states, which are conveniently repre-
sented by the matrix in Figure 42. Six of these states are not acceptable, 
however, because the cannibals outnumber the missionaries on one of 
the banks. The ten acceptable states that remain are marked by placing 
a point inside each of the ten corresponding cells of the matrix. 

The next step is to connect these points by lines that show all 
possible transitions between acceptable states by the transfer of one or 
two persons to the other side of the river. The result is the undirected 
graph in Figure 43. This graph is then transformed into a mixed graph 
by adding arrowheads to show the direction of each transition. The 
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c«0, msO 

Figure 43 

c=3,/r) = 3 

transformation of the undirected graph to a mixed graph must be car

ried out in accordance with two rules: 

1. The object is to create a directed "walk** that will start at the 
point at the upper right (c = 3, m = 3) and end at the point at the 
lower left (c = 0, m = 0), so that all the cannibals and missionaries 
end up on the left bank. (This route is called a walk rather than a 
path because by definition a path cannot visit the same point more 
than once,) 

2. The directed walk must alternate movements down or to the left 
with movements up or to the right, because each step down or to the 
left corresponds to a trip from the right bank to the left bank, 
whereas each step up or to the right corresponds to a trip in the 
opposite direction. 

With both of these rules in mind it takes only a short time to 
discover that there are just four walks that solve the puzzle. Their di
graphs are shown in Figure 44* Each walk completes the transfer in 
eleven moves. Note that the third through ninth steps are the same in 
all four walks. The four variants arise because there are two ways to 
make the first two steps and two symmetrical counterparts for the last 
two steps. 

If the problem is altered to deal with transporting four cannibals 
and four missionaries (and all other conditions remain the same), the 
digraph technique can be applied to show there is no solution. Sup-
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Figure 44 

pose now that die boat is enlarged to hold three passengers and that on 
the boat, as on the bank, the cannibals must not outnumber the miŝ  
sionaries. Under these conditions all eight can cross safely in as few as 
nine steps. Five cannibals and five missionaries can also cross in a boat 
that holds three passengers (in eleven steps), but six cannibals and six 
missionaries cannot 

It is easy to see that given a boat holding four or more passengers 
any group evenly divided between cannibals and missionaries can be 
safely transported across the river. One cannibal and one missionary 
simply do all the rowing, transporting the others one cannibal-mis' 
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sionary pair at a time until the job is done- Now let n be the number of 
cannibals (or missionaries). If the boat holds just four passengers, the 
problem is solvable in 2n - 3 steps. If the boat holds an even number 
of passengers that is greater than 4, more than one cannibal-mission-
ary pair can of course be taken each time. The technique of always 
keeping the same number of cannibals and missionaries on both sides 
of the river is diagrammed as a braided pattern along the diagonal of 
the matrix of the problem as is shown in Figure 45. This nine-step 
digraph solves the cannibal-missionary problem when n equals 6 and 
the boat holds four passengers. 

Figure 45 
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When the capacity of the boat is an even number greater than or 
equal to 4, the diagonal method always gives the best solution. If the 
number of cannibals n is just one more than the capacity of the boat, 
which is an even number greater than 4, then there is always a five-step 
minimum solution. Actually the diagonal method is more powerful 
than this last case implies. With a boat that holds an even number 
greater than 4 it will always provide a five-step minimum solution for 
any case fiiom b + 1 cannibals through (3b/2) - 2 cannibals, where b is 
the capacity of the boat. 

If the number of passengers the boat can hold is odd, moving 
down the diagonal does not always give the best answer. For example, if 
n equals 6 and the boat holds five, the diagonal method gives the same 
nine-move solution shown in Figure 45, but the problem also has a 
seven-step solution. More generally, if the boat holds an odd number of 
passengers that is greater than three and one less than n, there always is 
a minimum solution in seven moves. Can you find one of many seven-
step solutions for six cannibals and six missionaries crossing the river 
in a boat that holds five passengers? This is the simplest of an infinity 
of examples in which, for a boat with an odd capacity, there is a proce
dure superior to the diagonal procedure. (I am ignoring here the trivial 
cases of a boat with an odd capacity of one or three, where the diagonal 
method will not work at all.) The next simplest case is the one where n 
equals 10 and the boat holds seven passengers. 

The digraph method can be applied to almost any kind of river-
crossing problem. One î mous problem, which goes back at least to the 
eighth century, concerns three jealous husbands and their wives, who 
want to cross a river in a boat that holds two passengers. How can this 
goal be accomplished so that a wife is never alone with a man who is 
not her husband? If you construct the digraph for the problem, you 
may be surprised to discover that it is solved by the same four walks as 
the classic cannibal-missionary problem and has no other solutions. 
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The only difference—and diis applies also to generalizations of die jeal-
ous-husband variant of die puzzle—is diat die pairings of individual 
men and women have to be manipulated to meet conditions not essen
tial to the cannibal-missionary version. 

Many puzzle books include more exotic variations of the canni
bal-missionary problem. For example, in some cases only certain 
people may be able to row. (In the classic problem if only one canni
bal and one missionary can row, the solution requires 13 crossings.) 
The boat may also have a minimum capacity (greater than one) as 
well as a maximum capacity. Or missionaries may outnumber canni
bals and be safe only if they outnumber them at all times. An island 
in the river may also be employed as a stopover spot, and certain pairs 
of individuals may be singled out as being too incompatible tx) be left 
alone together. 

An ancient problem of this last type (it too can be traced back to the 
eighth century) is about a man who wants to ferry a wolf, a goat, and a 
cabbage across a river in a boat diat allows him to take only one of them 
at a time. He cannot leave die wolf alone widi the goat or the goat alone 
with the cabbage. In this case there are two minimal solutions, each of 
which requires seven trips. One of these solutions is shown in Figure 
46, taken ftom Moscow Puzzles^ by Boris A. Kordemsky (Charles 
Scribner's Sons, 1972). Interested readers will find a good selection of 
such river-crossing problems in books by the British puzzle expert Henry 
Ernest Dudeney. 

I have space for one more digraph puzzle. Paul Erdos has shown 
that on a complete digraph for n points, when n is less than 7, it is not 
possible to place arrowheads so that for any two specified points it is 
always possible to get to each point in one step fix>m some third point 
Figure 47 shows a complete graph for seven points. Think of the points 
as towns joined by one-way roads. Your task is to label each road with 
an arrowhead so that for any specified pair of towns there is a diird 
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Figure 46 

town from which you can drive ditecdy to each of the other two. There 

is only one solution. 

Graphs of this sort are usually called tournament graphs because the 

points can represent players, and the arrows show who beats who. In 
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Figure 47 

this interpretation, no graph with fewer than seven points can show 

that for any two players there is always a third person who beats them 

both* The seven-point graph is the smallest in which this can be the 

case* It is nontransitive. There is no "best" player because each player 

can be defeated by another person. 

Answers 

The unique Hamiltonian circuit is found by starting at A and fol' 

lowing a directed path that spells AMBIDEXTROUS- One more step joins S 

to A, honoring Scientific American. 

Figure 48 shows a digraph for one of many seven-step solutions to 



Directed Graphs and Cannibals 117 

6 c 

Figure 48 

the problem of six missionaries and six cannibals who want tD cross a 
river safely in a boat that holds five. 

TTie Paul Erdos problem is solved by placing arrows on the com
plete graph for seven points as is shown in Figure 49. Of course, the 
points and their connecting lines can be permuted in any way to pro
vide solutions that do not appear in this symmetrical form, but all such 
solutions are topologically the same. See **C)n a General Problem in 
Graph TTieory,*' by Paul Erdos in The Mathematical Gazette (Vol. 47, 
No. 361, pages 220-223; October 1963). 
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Figure 49 

ADDENDUM 

Frank Harary was the first to define the distance matrix, die reachability 

matrix, and the detour matrix, as well as the first to introduce many other 

graph theory terms that are now standard such as strongly and weaUy con

nected digraphs. This is why Gerhard Ringel, reviewing Harary*s classic text-

book Graph Theory, called him the graph dieory Pope. It is because Harary 

gives the word! 

For many years Harary has been inventing and solving two-person games 

played on graphs. He calls a game in which a defined goal is reached by the 

winner an "achievement game.** If the first person forced to reach the goal is 

the loser, it is an "avoidance game," His massive work on both types of 

games remains, alas, unpublished except for occasional papers. 
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An example of one of Harary's digraph games, which he described to 

me in a 1980 letter, is a game he calls Kingmaker. Every tournament 

graph—a complete digraph, every pair of points joined by an arc or di

rected line—has at least one point called the King that has a distance of 1 

or 2 from every other point This is sometimes known as the King Chicken 

Theorem. 

Kingmaker starts with an undirected complete graph of n points. The 

first player draws an arrow on any line. Of course it doesn't matter what line 

he selects because all are alike for symmetry reasons. (Harary suggests that 

the second player and all onlookers shout "Shrewd move!** after this first 

arrow is drawn.) The winner is the first to produce a King, in this case a 

point with a distance of 1 or 2 fix)m all points joined directly fix)m the King 

by arrows. This usually occurs before all the lines are oriented. In the avoid

ance game, the player forced to make a King loses. This tends to occur after 

almost all lines have an arrow. 

Steve Maurer, at Swarthmore College, has done much of the work on 

theorems involving Kings. Every toumament-that is, every complete digraph-

must have at least one King, but no such graph can have exacdy two Kings. If 

diere are two, there must be a third. Interpreting the points as chickens, a 

chicken who pecks every other chicken must be the group's only King. A 

chicken pecked by all the others cannot be a King. A graph with an odd 

number of points (chickens) can consist entirely of Kings. These theorems 

provided an amusing page of brain teasers tided "Chicken a la King,** by 

Maxwell Carver (a pseudonym of Joel Spencer), in Discover, March 1988, 

page 96. 

Digraphs fiimish a neat, litde known mediod for diagramming prob

lems in the propositional calculus of formal logic. See "The Propositional 

Calculus with Directed Graphs," on ̂ i c h Harary and I collaborated (giving 

me my first Erdos number of 2). It appeared in Cambridge University's 

undergraduate mathematics journal Eureka, March 1988, pages 34-40. The 

tedinique is also covered in an appendix added to the second edition (Uni

versity of Chicago Press, 1982) of my Lope Machines and Diagrams, 
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