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Abstract

A properedge coloringof G = (V, E) is a mapc : E → C (whereC is the set of available

colors ) with c(e) 6= c(f) for any adjacent edgese,f . The minimum number of colors needed

to properly color the edges ofG, is called the chromatic index ofG and is denoted byχ′(G).

A proper edge coloring c is called acyclic if there are no bichromatic cycles in the graph.

In other words an edge coloring is acyclic if the union of any two color classes induces a

set of paths (i.e., linear forest) inG. Theacyclic edge chromatic number(also calledacyclic

chromatic index), denoted bya′(G), is the minimum number of colors required to acyclically

edge colorG.

The primary motivation for this thesis is the following conjecture by Alon, Sudakov and

Zaks [7] (and independently by Fiamcik [22]):

Acyclic Edge Coloring Conjecture: For any graphG, a′(G) ≤ ∆(G) + 2.

The following are the main results of the thesis:

1. From a result of Burnstein [16], it follows that any subcubic graph can be acyclically

edge colored using at most 5 colors. Skulrattankulchai [38] gave a polynomial time

algorithm to color a subcubic graph using∆ + 2 = 5 colors. We proved that any non-

regular subcubic graph can be acyclically colored using only 4 colors. This result is

tight. This also implies that the fifth color, when needed is required only for one edge.

2. Let G be a connected graph onn vertices,m ≤ 2n − 1 edges and maximum degree

∆ ≤ 4, thena′(G) ≤ 6. This implies that graph of maximum degree 4 are acyclically

edge colorable using at most 7 colors.

3. The earliest result on acyclic edge coloring of 2-degenerate graphs was by Caro and

Roditty [17], where they proved thata′(G) ≤ ∆ + k − 1, wherek is the maximum

edge connectivity, defined ask = maxu,v∈V (G) λ(u, v) , whereλ(u, v) is the edge- con-

nectivity of the pair u,v. Note that herek can be as high as∆. Muthu,Narayanan and

v
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Subramanian [34] proved thata′(G) ≤ ∆+1 for outerplanar graphs which are a subclass

of 2-degenerate graphs and posed the problem of proving the conjecture for 2-degenerate

graphs as an open problem. In fact they have also derived an upper bound of∆ + 1 for

series-parallel graphs [35], which is a slightly bigger subclass of 2-degenerate graphs.

We proved that 2-degenerate graphs are∆ + 1 colorable.

4. Fiedorowicz, Hauszczak and Narayanan [24] gave an upper bound of2∆+29 for planar

graphs. Independently Hou, Wu, GuiZhen Liu and Bin Liu [29] gave an upper bound of

max(2∆−2, ∆+22). We improve this upper bound to∆+12, which is the best known

bound at present.

5. Fiedorowicz, Hauszczak and Narayanan [24] gave an upper bound of∆ + 6 for triangle

free planar graphs. We improve the bound to∆ + 3, which is the best known bound at

present.

6. We have also worked on lower bounds. Alon et. al. [7], along with the acyclic edge

coloring conjecture, also made an auxiliary conjecture stating that Complete graphs of

2n vertices are the only class of regular graphs which require∆+2 colors. We disproved

this conjecture by showing infinite classes of regular graphs other than Complete Graphs

which require∆ + 2 colors.

Apart from the above mentioned results, this thesis also contributes to the acyclic edge col-

oring literature by introducing new techniques like Recoloring, Color Exchange (exchanging

colors of adjacent edges), circular shifting of colors on adjacent edges (derangement of col-

ors). These techniques turn out to be very useful in proving upper bounds on the acyclic edge

chromatic number.
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Chapter 1

Introduction

The origins of graph theory are humble, even frivolous. Whereas many branches of mathe-

matics were motivated by the fundamental problems of calculation, motion, and measurement,

the problems which led to the development of graph theory were often little more than puzzles,

designed to testify the ingenuity rather than to stimulate the imagination. But despite the ap-

parent triviality of such problems, they captured the interest of mathematicians, with the result

that graph theory has become a subject rich in theoretical results of a surprising variety and

depth[13].

Little did Francis Gutherie knew that his simple observation would catapult the evolution

of graph theory to what it is now and much little did he knew that his observation (conjecture)

would take mathematicians more than 100 years to prove! Yes, we are talking about the most

famous problem of graph theory- The Four Color Problem (now Theorem): Is it true that any

map drawn in the plane may have its regions colored with four colors, in such a way that any

two regions having a common border have different colors?

In terms of graphs1 Four Color Problem is equivalent to asking whether a planar graph

( i.e., a graph drawn on a plane such that none of its edges cross ) can be four colored such that

adjacent vertices get different colors.

Tait came up with an equivalent statement to the Four Color Problem in terms of edge

coloring (coloring of the edges of a graph such that adjacent edges get different colors) of a

cubic graph- Is every bridgeless (a bridge is a cut edge) cubic planar graph edge colorable using

three colors? Though he gave a proof, it was a wrong one. But this introduced edge coloring

1The termgraph as we use now was coined for the first time bySylvester in a paper published in 1878 in
Nature

1



2 Chapter 1. Introduction

as a problem. A coloring of vertices (edges) is called proper if adjacent vertices (edges) get

different colors. Now if we examine carefully even-cycles could be colored using 2 colors,

where as odd-cycles require 3 colors. And hence the presence of odd-cycles in a graph increase

the number of colors required to color the graph properly. Researchers thought what would

happen if we restrict all cycles (odd or even) to use at least three colors in addition of being

properly colored. This is how the concept of acyclic coloring originated. Acyclic coloring is a

proper coloring of the vertices (edges) such that there exists no bichromatic (2-colored) cycle

in the graph. The concept ofacyclic coloringof a graph was introduced by Grünbaum [27].

Theacyclic chromatic indexand its vertex analogue can be used to bound other parameters like

oriented chromatic numberandstar chromatic numberof a graph, both of which have many

practical applications, for example, in wavelength routing in optical networks ( [9], [31] ).

Now let us look at the acyclic edge coloring of graphs throughout this thesis.

1.1 Basics and Notations

A graph is a pairG = (V, E) of sets satisfyingE ⊆ V × V ; thus, the elements of E are

2-element subsets ofV . The elements ofV are thevertices (or nodes, or points) of the graph

G, the elements ofE are itsedges (or lines). The usual way to picture a graph is by drawing

a dot for each vertex and joining two of these dots by a line if the corresponding two vertices

form an edge. How these dots and lines are drawn is considered irrelevant: all that matters is

the information, which pairs of vertices form an edge and which do not.

The vertex set of a graphG is referred to asV (G) and its edge set asE(G). Two vertices

x, y ∈ G are adjacent or neighbours if they have an edge between them, i.e.(x, y) ∈
E(G). Then the edge(x, y) is said to beincident on verticesx andy. If all the vertices

of a graph are pairwise adjacent, then the graph is known as acomplete graph. A complete

graph onn vertices is denoted byKn. Thedegree of a vertexv in graphG is the number

of edges incident onv and is denoted bydegG(v). The numberδ(G) = min{degG(v)|v ∈
V (G)} is theminimum degree of G and the number∆(G) = max{degG(v)|v ∈ V (G)}
is its maximum degree. NG(u) denotes all the neighbours of vertexu in G. Whenever the

underlying graphG is clear from the context, we omit the subscript and usedeg(u) andN(u)

to denote the degree and neighbours ofu respectively.

A graphH is asubgraph of a graphG if V (H) ⊆ V (G) andE(H) ⊆ E(G). H is said

to be aninduced subgraph of graphG if it is a subgraph ofG and for every pair of vertices
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x, y ∈ V (H), edge(x, y) ∈ E(H) if and only if (x, y) ∈ E(G). A matching is a set of

independent edges in the graph. A matching is calledperfect if all the vertices are present in

the matching. A graph is calledfinite if the number of vertices and edges in the graph are

finite. A graph is calledsimple if between each pair of vertices, there is at most one edge and

no loops. A graph isdirected if the edges have direction. Here the edge(x, y) is different from

edge(y, x). If the edges are not directed, then the graph isundirected. All graphs considered

in this thesis are finite, simple and undirected. See [18] for further notations and definitions.

Definition 1.1. A properedge coloringof G = (V, E) is a mapc : E → C (whereC is the

set of availablecolors ) with c(e) 6= c(f) for any adjacent edgese,f . The minimum number

of colors needed to properly color the edges ofG, is called the chromatic index ofG and is

denoted byχ′(G).

Definition 1.2. A proper edge coloring c is called acyclic if there are no bichromatic cycles

in the graph. In other words an edge coloring is acyclic if the union of any two color classes

induces a set of paths (i.e., linear forest) inG. Theacyclic edge chromatic number(also

calledacyclic chromatic index), denoted bya′(G), is the minimum number of colors required

to acyclically edge colorG.

1.2 Motivation

The primary motivation for this thesis is the following conjecture:

Acyclic Edge Coloring Conjecture: For any graphG, a′(G) ≤ ∆ + 2.

The conjecture is due to Fiamcik [20] (Alon, Sudakov and Zaks [7] also independently

conjectured the same). The conjecture is open and is proved true for only few special classes

of graphs.

The problem of findinga′(G) is intimately related to other well known conjectures in graph

theory. We briefly comment about them here.

1. Perfect 1-factorization Conjecture: For anyn ≥ 2, K2n can be decomposed into2n−1

perfect matchings such that the union of any two matchings forms a hamiltonian cycle

of K2n.
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Apart from proving that the conjecture holds for certain values of n, for instance, if n

is prime (see [13] for a summary of the known cases), this conjecture of Kotzig and

others is still open. Alon et. al. in [7] observed the equivalence of this conjecture to

determininga′(G) of the complete graph.

If such a decomposition ofK2n+2 (called a perfect 1-factorization) exists, then by color-

ing every perfect matching using a different color and removing one vertex we obtain an

acyclic edge coloring ofK2n+1 with 2n + 1 = ∆(K2n+1 + 1 colors. Such a coloring is

best possible forK2n+1 since it is2n-regular (It is easy to prove that any d-regular graph

requires at leastd + 1 colors. A proof is given in one of the later chapters in the thesis).

A decomposition ofK2n+1 into 2n + 1 matchings each havingn edges, such that the

union of any two matchings forms a Hamiltonian path ofK2n+1 is called aperfect near-

1-factorization. As shown above, ifK2n+2 has a perfect 1-factorization thenK2n+1 has

a perfect near-1-factorization, which is turn implies thata′(K2n+1) = 2n + 1. It is easy

to see that the converse is also true: ifK2n+1 has an acyclic edge coloring with2n + 1

colors, then this coloring corresponds to a perfect near-1-factorization ofK2n+1 which

implies thatK2n+2 has a perfect 1-factorization. Therefore the following statements are

equivalent:

• K2n+2 has a perfect 1-factorization.

• K2n+1 has a perfect near-1-factorization.

• a′(K2n+1) = 2n + 1.

2. The linear arboricity of a graph, denoted byla(G), is the minimum number of linear

forest into which the edges of the graph can be partitioned. It was shown by Akiyama,

Exoo and Harary [3] that la(G) = 2 when G is cubic, and they conjectured that for every

d-regular graph,

Linear Arboricity Conjecture: la(G) = d(d + 1)/2e.

This conjecture can be restated in terms of Maximum degree∆ as follows: For any

graphd(∆ + 1)/2e. Akiyama, Exoo and Harary ([3], [4]) proved the conjecture for

complete graphs, complete bipartite graphs, trees and graphs with∆ = 3, 4. Alon [5]

proved that, for everyε > 0, la(G) ≤ (1
2
+ ε)∆ for every graphG with sufficiently large
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∆; moreover, the conjecture for every graphG with an even (or odd) maximum degree

∆ and with girthg ≥ 50∆ (g ≥ 100∆). See [2], [19], [28] for more details.

As we know any two color classes of an acyclic edge coloring induce a linear forest in

the graph and thus it is obvious thatla(G) ≤ da′(G)/2e. If we can show that for a given

class of graphs,a′(G) ≤ ∆+1, then it would immediately follow that the conjecture for

linear arboricity is true for that class of graphs.

1.3 History and Literature Survey

The concept ofacyclic coloringof a graph was introduced by Grünbaum [27]. He introduced

acyclic vertex coloring and conjectured that the vertices of every planar graph can be colored

acyclically using 5 colors. Later Borodin [14] proved it.

Acyclic Edge Coloring was studied by Fiamcik [20] and he proposed the acyclic edge

coloring conjecture in 1978. He solved the conjecture for subcubic graphs. His papers were

not available in English till recently and hence was unknown. Alon, McDiarmid and Reed [6]

introduced it independently and using probabilistic methods proved thata′(G) ≤ 64∆. They

also mentioned that the constant64 could be improved with more careful application of the

Lovasz Local Lemma. Later Molloy and Reed showed thata′(G) ≤ 16∆. This is the best

known bound currently for arbitrary graphs. Muthu, Narayanan and Subramanian [32] proved

thata′(G) ≤ 4.52∆ for graphsG of girth at least 220 (Girth is the length of a shortest cycle in

a graph). All the above results use probabilistic methods. The best known constructive bound

is by Subramanian [39] who showed thata′(G) ≤ 5∆(log ∆ + 2).

Though the best known upper bound for general case is far from the conjectured∆ + 2,

the conjecture has been shown to be true for some special classes of graphs. Alon, Sudakov

and Zaks [7] proved that there exists a constantk such thata′(G) ≤ ∆ + 2 for any graphG

whose girth is at leastk∆ log ∆. They also proved thata′(G) ≤ ∆+2 for almost all∆-regular

graphs. This result was improved by Nešeťril and Wormald [36] who showed that for a random

∆-regular grapha′(G) ≤ ∆ + 1. Muthu, Narayanan and Subramanian proved the conjecture

for grid-like graphs [33] and outer planar graphs [34]. In fact they gave a better bound of

∆ + 1 for those classes of graphs. From Burnstein’s [16] result it follows that the conjecture

is true for subcubic graphs. Skulrattankulchai [38] gave a polynomial time algorithm to color

a subcubic graph using∆ + 2 = 5 colors.

Determininga′(G) is a hard problem both from a theoretical and from an algorithmic point
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of view. Even for the simple and highly structured class of complete graphs, the value of

a′(G) is still not determined exactly. The difficulty in determininga′(G) for complete graphs

could be observed by its equivalence to thePerfect 1-factorization Conjecture. It has also

been shown by Alon and Zaks [8] that determining whethera′(G) ≤ 3 is NP-complete for an

arbitrary graphG.

A generalization of the acyclic edge chromatic number has also been studied. Ther-acyclic

edge chromatic numbera′r(G) is the minimum number of colors sufficient to color the edges

of the graphG such that every cycleC of G has at least min{|C|,r} colors ( see [25], [26]).

1.4 Thesis Overview

In Chapter 2, we develop the preliminaries which are extensively used in the proofs of our

theorems.

Chapters 3-7 deal with the upper bound for special classes of graphs. Chapter 3 gives a tight

bound for subcubic graphs, while Chapter 4 gives an upper bound for graphs with maximum

degree 4. Chapter 5 shows that 2-degenerate graphs are∆ + 1 acyclically edge colorable and

this bound is tight. In Chapter 6, we look at the acyclic edge coloring of Planar graphs. We

obtain an upper bound of∆ + 12 for planar graphs. In Chapter 7, we look at triangle free

planar graphs where we reduce the upper bound to∆ + 3.

Chapter 8 deals with the lower bounds. Alon et.al. conjectured thatG = K2n might be

the only regular graphs which havea′(G) ≥ ∆ + 2. We disprove this conjecture. Here we

consider dense graphs which give us a lower bound of∆ + 2. Also we give the exact bound

for Kp,p, wherep is an odd prime.



Chapter 2

Preliminaries

In this chapter, we shall look at the definitions, facts and lemmas that are used in the later

chapters. The reader is advised to go through it carefully since these things are extensively

used in the proofs later.

Let G = (V, E) be a simple, finite and connected graph ofn vertices andm edges. Let

x ∈ V . ThenNG(x) will denote the neighbors ofx in G. For an edgee ∈ E, G−e will denote

the graph obtained by deletion of the edgee. For x, y ∈ V , whene = (x, y) = xy, we may

useG − {xy} instead ofG − e. Let c : E → {1, 2, . . . , k} be anacyclic edge coloringof G.

For an edgee ∈ E, c(e) will denote the color given toe with respect to the coloringc. For

x, y ∈ V , whene = (x, y) = xy we may usec(x, y) instead ofc(e). ForS ⊆ V , we denote

the induced subgraph onS by G[S].

Partial Coloring: Let H be a subgraph ofG. Then an acyclic edge coloringc′ of H is also

a partial coloring ofG. Note thatH can beG itself. Thus a coloringc of G itself can be

considered a partial coloring. A coloringc of G is said to be a proper partial coloring ifc is

proper. A proper partial coloringc is called acyclic if there are no bichromatic cycles in the

graph. Sometimes we also use the word valid coloring instead of acyclic coloring. Note that

with respect to a partial coloringc, c(e) may not be defined for an edgee. So, whenever we

usec(e), we are considering an edgee for which c(e) is defined, though we may not always

explicitly mention it.

Let c be a partial coloring ofG. We denote the set of colors in the partial coloringc by

C = {1, 2, . . . , ∆ + 1}. For any vertexu ∈ V (G), we defineFu(c) = {c(u, z)|z ∈ NG(u)}.
For an edgeab ∈ E, we defineSab(c) = Fb(c) − {c(a, b)}. Note thatSab(c) need not be the

7



8 Chapter 2. Preliminaries

same asSba(c). We will abbreviate the notation toFu andSab when the coloringc is understood

from the context.

Let G = (V,E) be a graph onm edges wherem ≥ 1. We will remove an edgee from G

and get a graphG′ = (V, E ′). By the minimality ofG, the graphG′ will have an acyclic edge

coloringc : E ′ → {1, 2, . . . , ∆ + 1}. Our intention will be to extend the coloringc of G′ to G

by assigning an appropriate color for the edgee thereby contradicting the assumption thatG

is a minimum counter example.

The following definitions arise out of our attempt to understand what may prevent us from

extending a partial acyclic coloring ofG− e to G.

Maximal bichromatic Path: Consider the subgraph induced by any two colorsα andβ with

respect to any proper coloringc. The (α, β)-subgraph consists of even cycles, bichromatic

paths of length at least two, isolated edges and isolated vertices. Now when we say maximal

bichromatic path, we only concentrate on bichromatic paths of length at least two, ignoring

the even bichromatic cycles, isolated edges and isolated vertices. Thus an (α,β) maximal

bichromatic path with respect to a proper coloringc of G is a path-component of the(α, β)-

subgraph that consists of at least two edges. An (α,β,a,b) maximal bichromatic path is an (α,β)

maximal bichromatic path which starts at the vertexa with an edge coloredα and ends atb.

We emphasize that the edge of the (α,β,a,b) maximal bichromatic path incident on vertexa is

coloredα and the edge incident on vertexb can be colored eitherα or β. Thus the notations

(α,β,a,b) and (α,β,b,a) have different meanings. Also note that any maximal bichromatic path

will have at least two edges. The following fact is obvious from the definition of acyclic edge

coloring:

Fact 2.1.Given a pair of colorsα andβ of a proper coloringc of G, there can be at most one

maximal (α,β) bichromatic path containing a particular vertexv, with respect toc.

Definition 2.2. A color α 6= c(e) is a candidatefor an edgee in G with respect to a partial

coloring c of G if none of the adjacent edges ofe are coloredα. A candidate colorα is valid

for an edgee if assigning the colorα to edoes not result in any bichromatic cycle inG.

Let e = (a, b) be an edge inG. Note that any colorβ /∈ Fa ∪Fb is a candidate color for the

edgeab in G with respect to the partial coloringc of G. A sufficient condition for a candidate

color being valid is captured in the Lemma below:
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Lemma 2.3. A candidate color for an edgee = uv, is valid if (Fu ∩ Fv) − {c(u, v)} =

(Suv ∩ Svu) = ∅.
Proof: Any cycle containing the edgeuv will also contain an edge incident onu (other than

uv) as well as an edge incident onv (other thanuv). Clearly these two edges are colored

differently since(Suv ∩ Svu) = ∅. Thus the cycle will have at least 3 colors and therefore any

of the candidate colors for the edgeuv is valid. ¥

Now even ifSab∩Sba 6= ∅, a candidate colorβ may be valid. But ifβ is not valid, then what

may be the reason? It is clear that colorβ is notvalid if and only if there existsα 6= β such

that a (α,β) bichromatic cycle gets formed if we assign colorβ to the edgee. In other words,

if and only if, with respect to coloringc of G there existed a (α,β,a,b) maximal bichromatic

path withα being the color given to the first and last edge of this path. Such paths play an

important role in our proof. We call themcritical paths. It is formally defined below:

Definition 2.4. Critical Path: Letab ∈ E andc be a partial coloring ofG. Then a(α, β,a,b)

maximal bichromatic path which starts out from the vertexa via an edge coloredα and ends

at the vertexb via an edge coloredα is called an(α, β, ab) critical path. Note that any critical

path will be of odd length. Moreover the smallest length possible is three.

Remark: When we define critical paths, we always keep the graphG in mind even though we

are dealing with coloring of a subgraph. Thus when we sayab is an edge, its an edge inG.

An obvious strategy to extend a valid partial coloringc of G would be to try to assign one

of the candidate colors to an uncolored edgee. The condition that a candidate color being not

valid for the edgee is captured in the following fact:

Fact 2.5. Let c be a partial coloring ofG. A candidate colorβ is not valid for the edge

e = (a, b) if and only if∃α ∈ Sab ∩ Sba such that there is a(α, β, ab) critical path in G with

respect to the coloringc.

Definition 2.6. Actively Present:Let c be a partial coloring ofG. Let a ∈ NG(x) and let

c(x, a) = α. Let β ∈ Sxa. Color β is said to beactively presentin a setSxa with respect to

the edgexy, if there exists a(α, β, xy) critical path. When the edgexy is understood in the
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context, we just say thatβ is actively present inSxa.

If all the candidate colors turn out to beinvalid, we try to slightly modify the partial

coloringc in such a way that with respect to the modified coloring, one of the candidate colors

becomes valid. An obvious way to modify is to recolor an edge so that some critical paths

are broken and a candidate color becomes valid. Sometimes we resort to a slightly more

sophisticated strategy to modify the coloring namelycolor exchange defined below:

Color Exchange: Let c be a partial coloring ofG. Let u, i, j ∈ V (G) andui, uj ∈ E(G). We

defineColor Exchange with respect to the edgeui anduj, as the modification of the current

partial coloringc by exchanging the colors of the edgesui anduj to get a partial coloringc′,

i.e., c′(u, i) = c(u, j), c′(u, j) = c(u, i) andc′(e) = c(e) for all other edgese in G. The color

exchange with respect to the edgesui anduj is said to be proper if the coloring obtained after

the exchange is proper. The color exchange with respect to the edgesui anduj is valid if and

only if the coloring obtained after the exchange is acyclic. The following fact is obvious:

Fact 2.7. Let c′ be the partial coloring obtained from a valid partial coloringc by the color

exchange with respect to the edgesui anduj. Then the partial coloringc′ will be proper if and

only if c(u, i) /∈ Suj andc(u, j) /∈ Sui.

The color exchange is useful in breaking some critical paths as is clear from the following

lemma:

Lemma 2.8.Let c be a partial coloring ofG and letu, i, j, a, b ∈ V (G), ui, uj, ab ∈ E. Also

let {λ, ξ} ∈ C such that{λ, ξ} ∩ {c(u, i), c(u, j)} 6= ∅ and{i, j} ∩ {a, b} = ∅. Suppose there

exists an (λ,ξ,ab) critical path that contains vertexu, with respect to a valid partial coloring

c of G. Let c′ be the partial coloring obtained fromc by the color exchange with respect to

the edgesui anduj. If c′ is proper, then there will not be any (λ,ξ,ab) critical path in G with

respect to the partial coloringc′.

Proof: Firstly, {λ, ξ} 6= {c(u, i), c(u, j)}. This is because, if there is a (λ,ξ,ab) critical path

that contains vertexu, with respect to a valid partial coloringc of G, then it has to contain the

edgeui anduj. Sincei /∈ {a, b}, vertexi is an internal vertex of the critical path which implies

that both the colorsλ andξ (that isc(u, i) andc(u, j)) are present at vertexi. That means

c(u, j) ∈ Sui and this contradictsFact 2.7, since we are assuming that the color exchange is
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proper. Thus{λ, ξ} 6= {c(u, i), c(u, j)}.
Now let P be the (λ,ξ,ab) critical path with respect to the coloringc. Without loss of

generality assume thatγ = c(u, i) ∈ {λ, ξ}. Since vertexu is contained in pathP , by the

maximality of the pathP , it should contain the edgeui sincec(u, i) = γ ∈ {λ, ξ}. Let us

assume without loss of generality that pathP starts at vertexa and reaches vertexi before it

reaches vertexu. Now after the color exchange with respect to the edgesui anduj, i.e., with

respect to the coloringc′, there will not be any edge adjacent to vertexi that is coloredγ. So

if any (λ,ξ) maximal bichromatic path starts at vertexa, then it has to end at vertexi. Since

i 6= b, by Fact 2.1we infer that the (λ,ξ,ab) critical path does not exist. ¥





Chapter 3

Subcubic Graphs

A graph is called subcubic if the maximum degree of the graph is three. In this chapter we will

look at the acyclic edge coloring of subcubic graphs.

3.1 Previous Results on Subcubic Graphs

Burnstein’s [16] proved that if∆(G) ≤ 4, G can be acyclically vertex colored using at most 5

colors. The line graph of any graph of maximum degree at most 3 (i.e., a subcubic graph) has

maximum degree at most 4. Since acyclic edge coloring of a graph is nothing but the acyclic

vertex coloring of its line graph, it follows that any subcubic graph can be acyclically edge

colored using at most 5 colors. Skulrattankulchai [38] gave a polynomial time algorithm to

color a subcubic graph using∆ + 2 = 5 colors. Alon,Sudakov and Zaks mentioned in [7] that

they have also found a polynomial time algorithm for the same.

3.2 The Theorem

Theorem 3.1.LetG be a non-regular connected graph of maximum degree 3, thena′(G) ≤ 4

(The reader may note that if∆(G) < 3, thena′(G) ≤ 3).

Proof: We prove the Theorem by induction on the number of edges. The smallest possible

number of edges in a non-regular connected graphG of maximum degree 3 onn vertices is

n−1. Then clearlyG is a tree and is acyclically edge colorable using 3 colors. Now letG be a

non-regular connected graph onn vertices andm ≥ n edges with maximum degree 3. Let the

Theorem be true for all non-regular connected graphs with maximum degree 3 with at most

13
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m − 1 edges. Without loss of generality we can assume thatG is 2-connected, since if there

are cut vertices inG, the acyclic edge coloring of the blocks ofG can easily be extended toG.

Thusδ(G) ≥ 2. SinceG is not 3-regular, there is a vertex of degree 2. Let it bex.

Let y ∈ NG(x). Let G′ = G − {xy}. Note thatG′ is connected, sinceG is 2-connected.

If ∆(G′) < 3, thena′(G′) ≤ 3. Otherwise by induction hypothesisa′(G′) ≤ 4. Let c :

E ′ → {1, 2, 3, 4} be an acyclic edge coloring ofG′. Let Fy = {c(y, z)|z ∈ NG′(y)}. Note

that 1 ≤ |Fy| ≤ 2, since2 ≤ degG(y) ≤ 3. Let a′ be the only neighbour ofx, in G′. Let

Sa′ = {c(a′, z)|z ∈ NG′(a
′) − {x}}. Note that|NG′(y)| ≥ 1 and leta ∈ NG′(y). Let

Sya = {c(a, z)|z ∈ NG′(a)− {y}}. Note that1 ≤ |Sya| ≤ 2, since2 ≤ degG′(a) ≤ 3.

Our aim now is to extend the acyclic edge coloringc of G′ to G by giving a color to the

edgexy from the available4 colors. Since|Fy ∪{c(x, a′)}| ≤ 3, there is at least one candidate

color for the edgexy.

case 1:c(x, a′) /∈ Fy

Then clearly all the candidate colors are valid for the edgexy, since any cycle involving the

edgexy will contain the edgexa′ as well as an edge incident ony in G′ and thus the cycle will

have at least 3 colors.

case 2:c(x, a′) ∈ Fy

Without loss of generality leta ∈ NG′(y) be the vertex such thatc(x, a′) = c(y, a) = 1.

Suppose first|NG′(y)| = 1. Then we have 3 candidate colors{2, 3, 4}. Supposeα ∈ {2, 3, 4}
is not valid, what may be the reason? It is because if we assign colorα to the edge xy, a

bichromatic cycle is formed. It is easy to check that this has to be a (1,α) bichromatic cycle. It

follows that ifα is not valid there exists a (1,α) maximal bichromatic path with x and y as end

vertices inG′ with respect to the coloringc. Now if a colorα is not valid, then it should be in

Sa′ to form a (1,α) maximal bichromatic path. But|Sa′ | ≤ 2 and hence|{2, 3, 4} − Sa′| ≥ 1.

Thus at least one color from{2, 3, 4} is valid for the edgexy.

Now we can assume|NG′(y)| = 2. Let NG′(y) = {a, b}. Without loss of generality let

c(y, b) = 2. Now colors{3, 4} are candidates for the edgexy. If both the colors 3 and 4 are not

valid for the edgexy, then there are (1,3) and (1,4) maximal bichromatic paths starting at the

vertexy, passing through vertexa and ending at vertexx. ThusSa′ = {3, 4} andSya = {3, 4}.
Now recolor the edgexa′ with color 2. Let the new coloring be calledc′. Note that since

2 /∈ Sa′ anda is a pendant vertex inG′, coloringc′ is a valid acyclic edge coloring of the graph

G′. Even with respect to the coloringc′, colors{3, 4} are candidates for the edgexy. If both

the colors 3 and 4 remain invalid for the edgexy even now, it means that there are (2,3) and

(2,4) maximal bichromatic paths starting at the vertexy, passing through vertexb and ending at
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the vertexx. ThusSyb = {3, 4}, whereSyb = {c(b, z)|z ∈ NG′(b)−{y}}. Let P be the above

discussed (2,4)- maximal bichromatic path with respect toc′. Note thatP does not containa

as2 /∈ Sya.

Now we can exchange the colors of the edgesya andyb to get the coloringc′′. That is, with

respect toc′′, we will havec′′(y, a) = 2, c′′(y, b) = 1 andc′′(e) = c′(e), for all other edgese

in G′. Note that the coloringc′′ is proper since1 /∈ Syb and2 /∈ Sya. Now suppose there is a

bichromatic cycle with respect toc′′. Then clearly this bichromatic cycle should contain both

the edgesya andyb asdegG′(y) = 2. Moreover, there has to be an edge colored2 at vertex

b. Recall thatSyb = {3, 4} and thus at vertexb only colors{1, 3, 4} are present. Thus the

coloringc′′ is acyclic. What happens to the pathP now? Sincec′′(y, b) = 1, the pathP , which

was bichromatic in coloringc′ has 3 colors in the coloringc′′. Let P ′ = P − y. It is easy to

verify thatP ′ is a (2,4) maximal bichromatic path which starts from vertexx and ends at vertex

b and does not contain vertexa. We havec′′(y, a) = c′′(x, a′) = 2. By fact 1 there can only be

at most one (2,4)-maximal bichromatic path starting from the vertexx. We knowP ′ is such a

path and it does not include vertexa. Thus there can not be a (2,4) maximal bichromatic path

which starts at vertexx and ends at vertexy, passing through vertexa. Thus color 4 is valid

for the edgexy.

¥

3.3 Comments

1. One natural question that may arise is whether the result can be extended to all subcubic

graphs, i.e., is it true for all 3-regular graphs also? But this is in general not true since

K4 is a 3-regular graph which requires 5 colors. It was proved by Fiamcik [21], that

every graph other thanK4 andK3,3 is 4 colorable. But his paper was in Russian and was

available only recently.

2. Every non-3-regular edge maximal connected graph with maximum degree 3 needs 4

colors to be properly acyclically edge colored. This is because, if n is even, then a

matching can have at mostn/2 edges. Only one color can taken/2 edges and all other

colors can have a maximum ofn/2 − 1 edges. Thus 3 colors can cover a maximum of

n/2+2(n/2−1) = 3n/2−2 edges. But the edge maximal graph contains3n/2−1 edges
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and thus needs 4 colors. If n is odd, then each matching can have maximum(n − 1)/2

edges and all the three colors can cover at most3(n− 1)/2 = (3n− 3)/2 edges. But the

edge maximal graph can have(3n− 1)/2 edges and thus needs 4 colors. Thus our result

is tight for all non-3-regular edge maximal connected subcubic graphs.



Chapter 4

Graphs with maximum degree 4

In this chapter we will see an upper bound for acyclic chromatic index for graphs with maxi-

mum degree 4.

4.1 Definitions and Preliminaries

Most of the definitions are as in the Chapter 2. Since the proof involves much more case anal-

ysis than other chapters on upper bounds, we give a more detailed notation for the operations

Recoloring andColor Exchange. This makes the presentation easier.

An obvious strategy to extend the coloringc of G′ to G would be to try to assign one of the

candidate colors inC − F to the edgexy. The condition that a candidate color is not valid for

the edgexy is captured in the following fact.

Fact 4.1.The colorβ ∈ C−F is not avalid color for the edgexy if and only if∃α ∈ Fx∩Fy

such that there is an(α, β, xy) critical path inG′.

If none of the colors inC − F is valid for the edgexy, then we can group the colors in

C − F into two categories namelyweak andstrong.

Definition 4.2. Weak Color: A color β ∈ C − F is calledweak if it forms only one critical

path withx andy as end points. Equivalently, there exists only oneα ∈ Fx∩Fy such that there

is an(α, β, xy) critical path. Leta ∈ NG′(x). A weak colorβ is said to beactively presentin

a setSxa, if ∃k ∈ NG′(a), such thatc(a, k) = β and the(α, β, xy) critical path contains the

edge(a, k). Sinceβ ∈ CF andc(a, k) = β, it is clear thatk 6= x. If a weak colorβ ∈ Sxa is

17
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not actively present inSxa then it is said to bepassively presentin Sxa.

Definition 4.3. Strong Color:If the colorβ ∈ C − F is not valid and also notweak, then it is

calledstrong. Note that it appears on at least two critical paths.

If there are weak colors, it makes sense to try to break the critical path containing one of

the weak colors, thus enabling us to use that weak color for the edgexy. For this purpose we

introduce the concept ofRecoloring.

Definition 4.4. Recolor: We definec′ = Recolor(c, e, γ) as the recoloring of the edgee with

a candidate colorγ to get a modified coloringc′ from c, i.e.,c′(e) = γ andc′(f) = c(f), for

all other edgesf in G′. The recoloring is said to be proper, if the coloringc′ is proper. The

recoloring is said to beacyclic (valid), if in coloring c′ there exists no bichromatic cycle.

Recall that our strategy is to extend the coloring ofG′ toG by assigning a valid color for the

edgexy. When all the candidate colors ofxy turn out to beinvalid, we try toslightly modify

the coloringc of G′ in such a way that with respect to the modified coloring, we have a valid

color for edgexy. Recoloringof an edge in the critical path which contained a weak color is

one such strategy. Sometimes we resort to a slightly more sophisticated strategy to modify the

coloring namelycolor exchange defined below.

Definition 4.5. Color Exchange: Let u, i, j ∈ V (G′) and ui, uj ∈ E(G′). We definec′ =

ColorExchange(c, ui, uj) as the the modification of the current coloringc by exchanging the

colors of the edgesui anduj, i.e.,c′(u, i) = c(u, j), c′(u, j) = c(u, i) andc′(e) = c(e) for all

other edgese in G′. The color exchange with respect to the edgesui anduj is said to be proper

if the coloring obtained after the exchange is proper. The color exchange with respect to the

edgesui anduj is valid if and only if the coloring obtained after the exchange is acyclic.

In our proof we use the strategy of color exchange many times and in different contexts.

All these contexts are more or less similar but differ in minor details. We would like to capture

all these different contexts in a general framework. The configuration defined below is an

attempt to formalize this:

Definition 4.6. Configuration A : Letu be a vertex andi, j ∈ NG′(u). LetN ′
G′(u)∪N ′′

G′(u) be

a partition ofNG′(u)−{i, j}, i.e.,N ′
G′(u)∪N ′′

G′(u) = NG′(u)−{i, j} andN ′
G′(u)∩N ′′

G′(u) = ∅.
The 5-tuple(u, i, j, N ′

G′(u), N ′′
G′(u)) is in configuration A if



4.2. The Theorem 19

1. c(u, i) /∈ Suj andc(u, j) /∈ Sui

2. ∀z ∈ N ′
G′(u), c(u, z) /∈ Sui andc(u, z) /∈ Suj

Suppose(u, i, j, N ′
G′(u), N ′′

G′(u)) is in configuration A with respect to the coloringc. Let

c′ be the coloring obtained after the color exchange with respect to the edgesui anduj. Then

note that condition 1 guarantees that the colorc(u, i) is a candidate for edgeuj and the color

c(u, j) is a candidate for edgeui and thus the coloring obtained after the color exchange

is proper. Condition 2 inhibits the possibility of any(c(u, i), c(u, z)) or (c(u, j), c(u, z))

bichromatic cycles being formed for anyz ∈ N ′
G′(u). Its obvious that there can not be

any (c(u, j), c(u, i)) bichromatic cycles after exchange. Thus the following fact is easy to

verify:

Fact 4.7.Let the 5-tuple(u, i, j, N ′
G′(u), N ′′

G′(u)) be inconfiguration A. Then the operation

c′ = ColorExchange(c, ui, uj) is not valid if and only if∃h ∈ N ′′
G′(u) such that after the

color exchange (i.e., inc′) there exists an(α, β) bichromatic cycle that passes throughh for

α ∈ {c′(u, i), c′(u, j)} andβ = c′(u, h).

In view of Fact 4.7, the followingFact is obvious:

Fact 4.8.Let the 5-tuple(u, i, j, N ′
G′(u), N ′′

G′(u)) be inconfiguration A. Then ifN ′′
G′(u) = ∅,

the color exchangec′ = ColorExchange(c, ui, uj) is valid.

4.2 The Theorem

Theorem 4.9. Let G be a connected graph onn vertices,m ≤ 2n − 1 edges and maximum

degree∆ ≤ 4, thena′(G) ≤ 6. (Note that if∆(G) ≤ 4, thenm ≤ 2n always).

Proof: We prove the Theorem by induction on the number of edges. LetH = (VH , EH) be a

connected graph ofn vertices andm ≤ 2n − 1 edges and∆(H) ≤ 4. Trivially the Theorem

is true for |E| = m = 0. Let the Theorem be true for all connected graphsW such that

∆(W ) ≤ 4 and|E(W )| ≤ 2|V (W )|− 1, with at mostm− 1 edges. Without loss of generality

we can assume thatH is 2-connected, since if there are cut vertices inH, the acyclic edge

coloring of the blocksB1, B2 . . . Bk of H can easily be extended toH (Note that each block

satisfies the property that∆(Bi) ≤ 4 and|E(Bi)| ≤ 2|V (Bi)| − 1). Thusδ(H) ≥ 2 (δ(H)

denotes the minimum degree of graphH). Now sinceH has at most2n − 1 edges, there is a

vertexx of degree at most 3.

Let y ∈ NH(x). The degree ofy is at most 4. LetH ′ = H − {xy}, i.e.,H ′ = (VH′ , EH′),

whereVH′ = VH andEH′ = EH − {xy}. Thus inH ′, deg(x) ≤ 2 anddeg(y) ≤ 3. Note that
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sinceH is 2-connected,H ′ is connected.

To avoid certain technicalities in the presentation of the proof, we construct the graphG′

from H ′ as below. IfdegH′(x) = 2, degH′(y) = 3 and∀z ∈ NH′(x) ∪NH′(y), degH′(z) = 4,

then letG′ = H ′ andG = H. Otherwise, we construct the graphG′ = (V ′, E ′) from H ′ in the

following manner. First add pendant vertices as neighbours to the verticesx andy such that

degG′(x) = 2 anddegG′(y) = 3. Next add pendant vertices as neighbours to the newly added

vertices and∀z ∈ NH′(x)∪NH′(y) such that∀z ∈ NG′(x)∪NG′(y), degG′(z) = 4. Note that

sinceH ′ was connected,G′ is also connected. LetG = G′ ∪ {xy}, i.e.,G = (V,E), where

V = V ′ andE = E ′ + {xy}.
By induction hypothesis, graphH ′ is acyclically edge colorable using6 colors. Note that

we can easily extend the coloring ofH ′ to G′ by coloring each of the newly added edges with

the available colors satisfying the acyclic edge coloring property. Letc0 : E ′ → {1, 2, ....., 6}
be an acyclic edge coloring ofG′. It is easy to see that if we extend the acyclic edge coloring of

G′ to G by assigning an appropriate color to the edgexy, then this coloring also corresponds

to the acyclic edge coloring ofH, sinceH is a subgraph ofG.

Our intention will be to extend the acyclic edge coloringc0 of G′ to G = G′ + {xy} by

assigning an appropriate color for the edgexy. We denote the set of colors ofc0 by C =

{1, 2, 3, 4, 5, 6}.
Let NG′(x) = {a, b} and NG′(y) = {a′, b′, d′}. Note thatNG′(x) ∩ NG′(y) need not

be empty. Also recall thatdegG′(a) = degG′(b) = 4. Let NG′(a) = {x, k1, k2, k3} and

NG′(b) = {x, l1, l2, l3}.

case 1:Fx ∩ Fy = ∅
Since|F | = 5, |C − F | = 1. Clearly thecandidate color inC − F is valid for the edgexy.

case 2:|Fx ∩ Fy| = 2

Assumption 4.10. Without loss of generality letFx = {1, 2} and Fy = {1, 2, 3}. Thus

F = {1, 2, 3}.
By Assumption 4.10, C − F = {4, 5, 6}. If none of the candidate colors arevalid, then

by Fact 4.1, the following Claim is easy to see:

Claim 4.11. With respect to the coloringc0, ∀β ∈ C − F, ∃α ∈ Fx ∩ Fy such that there is a

(α, β, xy) critical path.
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case 2.1:(Sxa ∪ Sxb) ∩ F = ∅
SinceF = {1, 2, 3}, Sxa = Sxb = {4, 5, 6}.
Claim 4.12. With respect to the coloringc0, all the colors ofC − F are weak.

Proof: Suppose not. Then there is a strong color inC − F . Without loss of generality let4

be a strong color. Letc0(x, a) = c0(y, a′) = 1 andc0(x, b) = c0(y, b′) = 2. Now it is easy to

check that the 5-tuple(x, a, b, ∅, ∅) satisfiesconfiguration A. Let

c′0 = ColorExchange(c0, xa, xb)

By Fact 4.8 the color exchange with respect to the edgesxa andxb is valid. Thus the

coloringc′0 is acyclic.

Since color 4 was strong in coloringc0, there was a(1, 4, xy) critical path as well as a

(2, 4, xy) critical path beforecolor exchange (i.e., with respect to the coloringc0). Thus

by Lemma 2.8, (1, 4, xy) critical path and(2, 4, xy) critical path will not exist after the

color exchange (i.e., with respect to the coloringc′0). Thus byFact 4.1, color 4 is valid for

edgexy. Thus we infer that with respect to the coloringc0, all the colors ofC−F are weak.¤

By Claim 4.12, all the colors ofC − F are weak. Each weak color should be actively

present in exactly one ofSxa or Sxb. Since there are 3 weak colors, we can infer that eitherSxa

or Sxb is such that at least 2 of the weak colors are actively present in it.

Assumption 4.13.Without loss of generality assume that colors4 and5 areactively present

in Sxa. Letc0(a, k1) = 4 andc0(a, k2) = 5.

From Assumption 4.13, it follows that sincec0(x, a) = 1, there exist(1, 4, xy) and

(1, 5, xy) critical paths. The following claim is obvious.

Claim 4.14. With respect to the coloringc0, 1 ∈ Sak1 and1 ∈ Sak2.

It is easy to verify that the 5-tuple(x, a, b, ∅, ∅) satisfies configurationA with respect to the

coloringc0.

c1 = ColorExchange(c0, xa, xb)

By Fact 4.8 the color exchange with respect to the edgesxa andxb is valid. Thus the

coloringc1 is acyclic.

But there were(1, 4, xy) and (1, 5, xy) critical paths beforecolor exchange (i.e., with

respect to the coloringc0). By Lemma 2.8, both(1, 4, xy) and(1, 5, xy) critical pathsdo not



22 Chapter 4. Graphs with maximum degree 4

exist after thecolor exchange (i.e., with respect to the coloringc1).

Thus even with respect to the coloringc1, if both the colors4 and5 are notvalid for the

edgexy, by Fact 4.1, there has to be(2, 4, xy) and(2, 5, xy) critical paths. Thus2 ∈ Sak1

and2 ∈ Sak2. Thus we canClaim the following:

Claim 4.15. With respect to the coloringc1, {1, 2} ⊂ Sak1 and{1, 2} ⊂ Sak2. Moreover there

will not be any(1, 4, xy) and(1, 5, xy) critical paths.

Now since the colors 4 and 5 are weak, we try to break the(2, 4, xy) and(2, 5, xy) critical

pathsby recoloring the edgexa.

c2 = Recolor(c1, xa, 3)

Note that color 3 is a candidate for the edgexa sinceSxa = {4, 5, 6} andc1(x, b) = 1. And

also sinceSxa ∩ Sax = ∅, by Lemma 2.3color 3 isvalid for the edgexa.

Note that with respect to the coloringc2, Fx ∩ Fy = {1, 3}. In view of Claim 4.15, there

will not be any(1, 4, xy) and(1, 5, xy) critical pathswith respect to the coloringc2 also. If

both the colors4 and5 are notvalid for the edgexy still, then byFact 4.1, there has to be

(3, 4, xy) and(3, 5, xy) critical paths implying 3 ∈ Sak1 and3 ∈ Sak2. Thus combined with

Claim 4.15, we infer the following:

Claim 4.16. With respect to the coloringc2, we haveSak1 = Sak2 = {1, 2, 3}. Moreover there

will not be any(1, 4, xy) and(1, 5, xy) critical paths.

Now the 5-tuple(a, k1, k2, {k3}, {x}) satisfies configurationA.

c3 = ColorExchange(c2, ak1, ak2)

By fact4.7if there is any bichromatic cycle (recalling thatc3(a, x) = 3), it has to be either

a (5, 3) or (6, 3) bichromatic cycle that passes through vertexa and hence vertexx. But any

cycle that passes through vertexx should contain edgexb also. Sincec3(x, b) = 1, this is a

contradiction and we infer thatc3 is acyclic.

There was a(3, 4, xy) critical path as well as a(3, 5, xy) critical path beforecolor exchange

(i.e., with respect to the coloringc2). Thus byLemma 2.8, both these critical paths does not

exist after the color exchange (i.e., with respect to the coloringc3) (Note thatk1, k2 /∈ {x, y}
sincec2(a, k1) = 4 andc2(a, k2) = 5 /∈ Fx or Fy. Therefore we can applyLemma 2.8)

To summarize,c3(x, a) = 3, c3(x, b) = 1 and thusFx ∩ Fy = {1, 3}. With respect to the

coloring c3, there exist no(3, 4, xy) and(3, 5, xy) critical paths. Recall that by Claim4.16,

there won’t be any(1, 4, xy) and(1, 5, xy) critical paths with respect to the coloringc2. It is



4.2. The Theorem 23

easy to see that even with respect to the coloringc3, there won’t be any(1, 4, xy) and(1, 5, xy)

critical paths.

Thus byFact 4.1, color 4 and 5 are valid for edgexy.

case 2.2:(Sxa ∪ Sxb) ∩ F 6= ∅
Assumption 4.17.Without loss of generality letSxa∩F 6= ∅. It follows that one of{4, 5, 6} is

missing inSxa since|Sxa| = 3. Without loss of generality let it be color 5. Also letc0(x, a) =

c0(y, a′) = 1 andc0(x, b) = c0(y, b′) = 2 andc0(y, d′) = 3.

Claim 4.18. With respect to the coloringc0, there exists a(2, 5, xy) critical path. Thus

5 ∈ Sxb.

Proof: Since color 5 is not valid for the edgexy, by Claim 4.11there has to be a(1, 5, xy)

critical path or a(2, 5, xy) critical path. But byAssumption 4.17, color 5 /∈ Sxa and hence

there can not be a(1, 5, xy) critical path. Thus there exists a(2, 5, xy) critical path. ¤

Claim 4.19. With respect to the coloringc0, all the colors ofC − F are weak.

Proof: Suppose not. Then there is at least one strong color inC−F . Without loss of generality

let 4 be a strong color. Thus we have4 ∈ Sxb. Combined withClaim 4.18, we have:

{4, 5} ⊂ Sxb. (4.1)

Now let

c′0 = Recolor(c0, xa, 5)

Note that color5 is a candidate for the edgexa sincec0(x, b) = 2 and 5 /∈ Sxa (by

Assumption 4.17). Now we claim that assigning color 5 to the edgexa can not result in any

bichromatic cycle. To see this first note that since any cycle containing the edgexa should

also contain the edgexb, but c0(x, b) = 2 and therefore if a bichromatic cycle gets formed it

must be a(2, 5) bichromatic cycle, implying that there is a(2, 5, xa) critical path. But there is

already a(2, 5, xy) critical path (byClaim 4.18) and byFact 2.1there can not be a(2, 5, xa)

critical path, a contradiction. Thus coloringc′0 is acyclic.

Note that with respect to the coloringc′0, color 6 remains to be a candidate color for the

edgexy. Also note thatFx ∩ Fy = {2}. If the candidate color6 is not valid for the edgexy,

then byFact 4.1 there has to be a(2, 6, xy) critical path and thus6 ∈ Sxb. Thus combined



24 Chapter 4. Graphs with maximum degree 4

with (4.1), we have:

Sxb = {4, 5, 6} (4.2)

With respect to the coloringc0, color 4 was strong (assumption) and thus there existed

a (1, 4, xy) critical path. After recoloring the edgexa with color 5 (i.e., with respect to the

coloringc′0), the(1, 4, xy) critical path gets curtailed to a(1, 4, y, a) maximal bichromatic path

without containing the vertexx. Moreover note that(1, 4, y, a) maximal bichromatic path does

not contain the vertexb, since ifb is in this path, then it is an internal vertex and thus both colors

1, 4 ∈ Fb, a contradiction (1 /∈ Fb). Thus we have,

With respect to the coloringc′0, a (1, 4, y, a) maximal bichromatic path exists, (4.3)

but this path does not contain the verticesx or b.

Now with respect to the coloringc′0, Fx ∩ Fy = {2}. Let

c′′0 = Recolor(c′0, xb, 1)

Note that color 1 is a candidate color for the edgexb sincec′0(x, a) = 5 and1 /∈ Sxb =

{4, 5, 6}. Color 1 isvalid for the edgexb because any bichromatic cycle containing edgexb

should also contain edgexa and since color1 /∈ Sxa (Recall thatc0(x, a) = 1. Thus1 /∈ Sxa

with respect to the coloringc0. Therefore1 /∈ Sxa with respect to the coloringc′0 also.), such a

(1, 5) bichromatic cycle can not be formed. Thusc′′0 is acyclic.

Thus with respect to coloringc′′0, Fx ∩ Fy = {1}. Now by (4.3), with respect to the

coloringc′0, there existed a(1, 4, y, a) maximal bichromatic path that does not contain vertex

b or x. Thus noting thatc′′0 is obtained just by changing the color of the edgexb to 1, by Fact

2.1we infer thatc′′0 can not contain(1, 4, xy) critical path.

Thus byFact 4.1 color 4 is valid for the edgexy. Thus we can infer that with respect to

the coloringc0, all the colors ofC − F are weak. ¤

Claim 4.20. In view ofAssumption 4.17, with respect to the coloringc0, eachα ∈ {4, 5, 6}
is actively present in Sxb.

Proof: Suppose not. ByClaim 4.18, we know that color 5 isactively present in Sxb.

Without loss of generality let color 6 be notactively present in Sxb. Therefore color 6 is
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actively present in Sxa. Now let

c′0 = Recolor(c0, xa, 5)

Note that color5 is a candidate since5 /∈ Sxa (by Assumption 4.17) andc0(x, b) = 2.

Now we claim that assigning color 5 to the edgexa can not result in any bichromatic cycle. To

see this first note that since any cycle containing the edgexa should also contain the edgexb,

butc0(x, b) = 2 and therefore if a bichromatic cycle gets formed it must be a(2, 5) bichromatic

cycle, implying that there is a(2, 5, xa) critical path with respect to the coloringc0. But in c0

there is already a(2, 5, xy) critical path (by Claim4.11and Claim4.18) and byFact 2.1there

can not be a(2, 5, xa) critical path, a contradiction. Thus coloringc′0 is acyclic.

Now Fx ∩ Fy = {2}. But in c0, there did not exist a(2, 6, xy) critical path since by

assumption color 6 is not actively present inSxb. Thus noting thatc′0 is obtained just by

changing the color of the edgexa to 5, we infer thatc′0 can not contain(2, 6, xy) critical path.

Thus byFact 4.1color 6 is valid for the edgexy. We infer that with respect to the coloring

c0, eachα ∈ {4, 5, 6} is actively present in Sxb. ¤

Recall thatc0(x, b) = c0(y, b′) = 2. In view of Claim 4.20, with respect to the coloring

c0, we have:

Sxb = Syb′ = {4, 5, 6} (4.4)

Let

c1 = Recolor(c0, xb, 3)

Note that color 3 is a candidate for edgexb since3 /∈ Sxb = {4, 5, 6} (by (4.4)) and

c0(x, a) = 1. Moreover sinceSxb ∩ Sbx = ∅, by Lemma 2.3 color 3 is alsovalid. Thus the

coloringc1 is acyclic.

With respect to the coloringc1, Fx ∩Fy = {1, 3}. In view ofClaim 4.19andClaim 4.20,

∀α ∈ {4, 5, 6}, α is notactively present in Sxa and thus(1, α, xy) critical path does not exist

with respect to the coloringc0. It is true with respect to the coloringc1 also. Hence if none

of the colors from{4, 5, 6} is valid for the edgexy with respect to the coloringc1, then by

Fact 4.1 there has to be(3, 4, xy), (3, 5, xy) and(3, 6, xy) critical paths. Recalling that by

Assumption 4.17c(y, d′) = 3, we infer thatSyd′ = {4, 5, 6}.
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Thus with respect to the coloringc1, we have:

Syb′ = Syd′ = {4, 5, 6} (4.5)

The 5-tuple(y, b′, d′, {a′}, ∅) is configurationA. Now let

c2 = ColorExchange(c1, yb′, yd′)

By Fact 4.8 the color exchange with respect to the edgesyb′ andyd′ is valid. Thus the

coloringc2 is acyclic.

For α ∈ {4, 5, 6} there was a(3, α, xy) critical path beforecolor exchange (with respect

to coloringc1). Thus bylemma 2.8, these critical paths do not exist after thecolor exchange

(with respect to coloringc2). Also recall that there was no(1, α, xy) critical path, forα ∈
{4, 5, 6}, with respect to the coloringc1. Noting that thecolor exchange involved only the

colors2 and3 there is no chance of any(1, α, xy) critical path to get formed with respect to

the coloringc2.

Thus byfact 4.1, colorα is valid for edgexy.

case 3:|Fx ∩ Fy| = 1

Assumption 4.21. Without loss of generality letFx = {1, 2} and Fy = {1, 3, 4}. Thus

F = {1, 2, 3, 4}. ThenC−F = {5, 6}. Letc0(x, a) = c0(y, a′) = 1, c0(x, b) = 2, c0(y, b′) = 3

andc0(y, d′) = 4.

If none of the colors fromC − F arevalid, then byFact 4.1, there exist(1, 5, xy) and

(1, 6, xy) critical paths. We capture this in the followingclaim:

Claim 4.22. With respect to coloringc0, there exist(1, 5, xy) and (1, 6, xy) critical paths.

Thus{5, 6} ⊂ Sxa and{5, 6} ⊂ Sya′.

Claim 4.23. With respect to coloringc0, {3, 4} ⊂ Sxb.

Proof: Suppose not. Then at least one of3, 4 is missing inSxb. Without loss of generality let

4 /∈ Sxb. Recalling thatc0(x, a) = 1, it follows that color4 is a candidate color for the edge

xb. We claim that there exists a(1, 4, xb) critical path with respect to the coloringc0. Suppose

not. Then let

c′0 = Recolor(c0, xb, 4)

Clearlyc′0 is acyclic since any bichromatic cycle being formed should involve the edgexa
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as well. Butc′0(x, a) = 1 and hence a(1, 4) bichromatic cycle has to be formed, implying that

there is a(1, 4, xb) critical path, a contradiction to our assumption.

With respect to the coloringc′0, |(Fx ∩ Fy) = {1, 4}| = 2, and bycase 2 we will be able to

find a valid color for the edge xy.

Thus we can infer that there exists a(1, 4, xb) critical path with respect to the coloring

c0. For a(1, 4, xb) critical path to exist clearly we should have4 ∈ Sxa, sincec0(x, a) = 1.

Combined withClaim 4.22, we get:

Sxa = {4, 5, 6} (4.6)

Moreover we have1 ∈ Sxb with respect toc0 since there is a(1, 4, xb) critical path. Now

let the other two colors inSxb be{α, β}. Thenγ ∈ ({3, 5, 6} − {α, β}) is a candidate color

for the edgexb. Let

c′′0 = Recolor(c0, xb, γ)

We claim thatc′′0 is acyclic. Otherwise if any bichromatic cycle gets formed with respect to

the coloringc′′0, then it should be a(γ, 1) bichromatic cycle since any cycle that contains edge

xb should contain edgexa also andc′′0(x, a) = 1, implying that there exists a(1, γ, xb) critical

path with respect to the coloringc0. If γ = 3, such a critical path can not exist since3 /∈ Sxa

(by (4.6)). On the other hand ifγ ∈ {5, 6}, by Fact 2.1, (1, γ, xb) critical path can not exist

with respect to the coloringc0 since there is already a(1, γ, xy) critical path (byClaim 4.22).

Thus we infer thatc′′0 is acyclic.

With respect to coloringc′′0, if γ = 3, |(Fx ∩ Fy) = {1, 3}| = 2, and bycase 2 we will be

able to find a valid color for the edgexy.

With respect to coloringc′′0, if γ ∈ {5, 6} we have(Fx ∩ Fy) = {1} and2 ∈ C − F . Thus

color 2 is a candidate color for the edgexy. Moreover sinceSxa = {4, 5, 6} (by (6)), there can

not be a(1, 2, xy) critical path and hence byFact 4.1, color 2 is valid for the edgexy. Thus

we infer that with respect to coloringc0, {3, 4} ⊂ Sxb. ¤

Claim 4.24. With respect to the coloringc0, Sxb = {3, 4, 1}.
Proof: Suppose not. Then in view of Claim4.23, we can infer that color1 /∈ Sxb. Recall that

by Claim4.22, {5, 6} ⊂ Sxa. Let the remaining color inSxa beα. Letβ ∈ {3, 4}−{α}. Now

let
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c′0 = Recolor(c0, xb, 1)

and

c′′0 = Recolor(c′0, xa, β)

Note thatc′′0 is proper since1 /∈ Sxb (by Assumption) andβ /∈ Sxa, by the definition ofβ.

The coloringc′′0 is acyclic since any cycle containing the edgexa should also contain the edge

xb (and vise versa), butc′′0(x, b) = 1 and therefore if a bichromatic cycle gets formed it must

be a(1, β) bichromatic cycle, implying that1 ∈ Sxa. But this is a contradiction since1 /∈ Sxa

with respect toc0 asc0(x, a) = 1 and therefore1 /∈ Sxa with respect toc′′0 also.

Now sinceβ ∈ {3, 4}, we have|(Fx ∩ Fy) = {1, β}| = 2 and thus the situation reduces

to case 2, thereby enabling us to find a valid color for the edgexy. Thus we infer that with

respect to the coloringc0, Sxb = {3, 4, 1}. ¤

Claim 4.25. There is a(1, 2, xy) critical path . Thus in combination withClaim 4.22Sxa =

{5, 6, 2} , Sya′ = {5, 6, 2} with respect to the coloringc0.

Proof: Suppose not. Let

c′0 = Recolor(c0, xb, 5)

Note that color 5 is a candidate color for the edgexb since, byClaim 4.24, Sxb = {3, 4, 1}
andc0(x, a) = 1. It is also valid since if there is a bichromatic cycle, then it should contain the

edgesxa andxb and hence it has to be a(1, 5) bichromatic cycle, implying that there exists a

(1, 5, xb) critical path with respect to the coloringc0. But there can not be a(1, 5, xb) critical

path (byFact 2.1) as there is already a(1, 5, xy) critical path (byClaim 4.22). Thus the

coloringc′0 is acyclic.

Now with respect to the coloringc′0, Fx ∩ Fy = {1}. Color 2 is a candidate color for

the edgexy since2 /∈ (Fx ∪ Fy = {1, 3, 4, 5}). Since there is no(1, 2, xy) critical path (by

assumption), byFact 4.1, color 2 is valid for the edgexy. Thus we can infer that there exists

a (1, 2, xy) critical path with respect to the coloringc0. ¤

Recall thatNG′(a) = {x, k1, k2, k3} andNG′(b) = {x, l1, l2, l3}. Also recall that by As-

sumption4.21, c0(x, a) = c0(y, a′) = 1,c0(x, b) = 2,c0(y, b′) = 3 and c0(y, d′) = 4. By
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Claim 4.24 and Claim4.25, Sxa = {5, 6, 2} andSxb = {3, 4, 1}. We make the following

Assumption:

Assumption 4.26.Without loss of generality letc0(a, k1) = 5, c0(a, k2) = 6, c0(a, k3) = 2,

c0(b, l1) = 3, c0(b, l2) = 4 andc0(b, l3) = 1.

The main intention of the next twoClaims is to establish thatSbl1 = Sbl2 = {2, 5, 6}.
Claim 4.27. With respect to the coloringc0, there exist(2, 3, xa) and(2, 4, xa) critical paths.

Thus2 ∈ Sbl1, 2 ∈ Sbl2.

Proof: Suppose not. Then without loss of generality let there be no(2, 3, xa) critical path. Let

c′0 = Recolor(c0, xa, 3)

Note that color 3 is a candidate color for edgexa since3 /∈ Sxa = {2, 5, 6} (by Claim

4.25) andc0(x, b) = 2. It is also valid since if there is any bichromatic cycle containing edge

xa, then it should also contain edgexb and sincec0(x, b) = 2, it has to be a(2, 3) bichromatic

cycle, implying that there is a(2, 3, xa) critical path, a contradiction to our assumption. Thus

the coloringc′0 is acyclic.

With respect to the coloringc′0, c
′
0(y, b′) = 3 and(Fx∩Fy) = {3}. Now if one of the colors

5 and 6 are valid for the edgexy, we are done. Otherwise byFact 4.1, there are(3, 5, xy) and

(3, 6, xy) critical paths. Thus

{5, 6} ⊂ Syb′ (4.7)

Let,

c′′0 = Recolor(c′0, xb, 5)

First note that color 5 is a candidate for the edgexb since5 /∈ Sxb = {3, 4, 1} (by Claim

4.24) and c′0(x, a) = 3 . It is also valid since if there is any bichromatic cycle containing

the edgexb then it should also contain edgexa and sincec′0(x, a) = 3, it has to be a(3, 5)

bichromatic cycle,implying that there exists a(3, 5, xb) critical path. But there can not be a

(3, 5, xb) critical path (byFact 2.1) as there is already a(3, 5, xy) critical path. Thus the

coloringc′′0 acyclic.

Now with respect to the coloringc′′0, (Fx ∩ Fy) = {3} and2 /∈ (Fx ∪ Fy) = {1, 3, 4, 5}.
Color 2 is acandidate for the edgexy. If it is valid then we are done. Otherwise byFact 4.1,

there exists a(3, 2, xy) critical path.
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Thus2 ∈ Syb′ and in combination with(4.7), we get,

Syb′ = {2, 5, 6} (4.8)

Recall thatSya′ = {2, 5, 6} by Claim 4.25with respect to the coloringc0. It is easy to see

thatSya′ = {2, 5, 6} even with respect to the coloringc2. Now in view of Assumption4.21,

we have the 5-tuple(y, a′, b′, {d′}, ∅) in Configuration A. Let,

c′′′0 = ColorExchange(c′′0, ya′, yb′)

By Fact 4.8, the color exchange with respect to the edgesya′ andyb′ is valid. Thus the

coloringc′′′0 is acyclic.

There was a(3, 6, xy) critical path beforecolor exchange (i.e., with respect to the coloring

c′′0) since otherwise color 6 would have been valid for the edgexy with respect to the coloring

c′′0. Thus byLemma 2.8 no (3, 6, xy) critical path exists after thecolor exchange (i.e., with

respect to the coloringc′′′0 ). Thus byFact 4.1, color6 is valid for edgexy. We can infer that

with respect to the coloringc0, there exist(2, 3, xa) and(2, 4, xa) critical paths. ¤

Claim 4.28. With respect to the coloringc0, ∀α ∈ {3, 4} and ∀β ∈ {5, 6}, there exist

(α, β, b, a) maximal bichromatic path which ends at vertexa with an edge coloredβ. Thus

Sbl1 = {2, 5, 6} andSbl2 = {2, 5, 6}.
Proof: Suppose not. Then∃α ∈ {3, 4} and∃β ∈ {5, 6} such that there is no(α, β, b, a)

maximal bichromatic path which ends at vertexa with an edge coloredβ. Without loss of

generality letα = 3 andβ = 5. Now let,

c′0 = Recolor(c0, xa, 3)

and

c′′0 = Recolor(c′0, xb, 5)

Note thatc′′0 is a proper coloring ( since (3 /∈ Sxa = {2, 5, 6} and c′′0(x, b) = 5) and

(5 /∈ Sxb = {3, 4, 1} andc′′0(x, a) = 3 )). Now to see thatc′′0 is acyclic, note that if there is a

bichromatic cycle with respect to the coloringc′′0, then it should contain both the edgesxa and

xb, thus forming(3, 5) bichromatic cycle, implying that there should be a(3, 5, a, b) maximal



4.2. The Theorem 31

bichromatic path which ends at vertexa with an edge colored3 with respect to the coloringc0,

a contradiction to our assumption.

Note that with respect to the coloringc′′0, F = {1, 3, 4, 5} and thus color 2 is a candidate

color for the edgexy. By Claim 4.27there was a(2, 3, xa) critical path with respect to the

coloringc0. From this it is easy to see that with respect to the coloringc′′0, there is a(3, 2, xb)

critical path. Thus byFact 2.1 there can not be a(3, 2, xy) critical path with respect to the

coloringc′′0. Hence color 2 is valid for the edgexy.

Thus∀α ∈ {3, 4} and∀β ∈ {5, 6}, there exist(α, β, b, a) maximal bichromatic path which

ends at vertexa with an edge coloredβ. Thus recalling thatc0(b, l1) = 3 andc0(b, l2) = 4 with

respect to the coloringc0, we have,

{5, 6} ⊂ Sbl1 (4.9)

{5, 6} ⊂ Sbl2 (4.10)

By Claim 4.27, 2 ∈ Sbl1 and2 ∈ Sbl2. Thus we have,

Sbl1 = Sbl2 = {2, 5, 6} (4.11)

¤

Now let,

c1 = Recolor(c0, xb, 5)

Recalling Claim4.24, sxb = {3, 4, 1} andc0(x, a) = 1, color 5 is a candidate for the edge

xb. Moreover color 5 is also valid since if there is any bichromatic cycle containing the edge

xb then it should also contain edgexa and sincec0(x, a) = 1, it has to be a(1, 5) bichromatic

cycle,implying that there exists a(1, 5, xb) critical path with respect to the coloringc0. But

there can not be a(1, 5, xb) critical path (byFact 2.1) as there is already a(1, 5, xy) critical

path (byClaim 4.22). Thus the coloringc1 is acyclic.

Recall that byClaim 4.28, with respect to the coloringc0, there was a(3, 5, b, a) maximal

bichromatic path that ends at vertexa with an edge colored5. After the recoloring of edgexb

with color 5 (i.e., with respect to the coloringc1),it is easy to see that this(3, 5, b, a) maximal

bichromatic path gets extended to a(5, 3, xa) critical path. Thus we have,
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With respect to the coloringc1, there exists a(5, 3, xa) critical path. (4.12)

Recall that byClaim 4.27, with respect to the coloringc0, there existed a(2, 3, xa) critical

path. After recoloring the edgexb with color 5 (i.e., with respect to the coloringc1), the

(2, 3, xa) critical path gets curtailed to a(2, 3, a, b) maximal bichromatic path that ends at

vertex b with an edge colored3. Note that(2, 3, a, b) maximal bichromatic path does not

contain the vertexy, since ify is in this path, then it is an internal vertex and thus both colors

2, 3 ∈ Fy, a contradiction (2 /∈ Fb). Thus noting thatc1(b, l1) = 3, we have,

With respect to the coloringc1, there exists a(2, 3, a, b) maximal bichromatic path(4.13)

that ends at vertexb with an edge colored 3. This path contains the edgebl1

but does not contain vertexy.

In view of Claim 4.28, we haveSbl1 = Sbl2 = {2, 5, 6}. The 5-tuple(b, l1, l2, {l3}, {x}) is

in configuration A. Let,

c2 = ColorExchange(c1, bl1, bl2)

By Fact 4.7 if there is any bichromatic cycle, recalling thatc2(x, b) = 5, there has to be

either(3, 5) or (4, 5) bichromatic cycle that passes through vertexx. But any cycle that passes

through vertexx should contain edgexa also. Sincec2(x, a) = 1, this is a contradiction and

we infer thatc2 is acyclic.

Note that by(4.13) there existed(2, 3, a, b) maximal bichromatic path containing the edge

bl1 with respect to the coloringc1. Since the color of edgebl1 is changed inc2, this path

gets curtailed to a(2, 3, a, l1) maximal bichromatic path which now ends at the vertexl1 since

3 /∈ Fl1 with respect to the coloringc2. Note that it still does not contain vertexy. Thus we

have,

With respect to the coloringc2, there exists a(2, 3, a, l1) maximal bichromatic path(4.14)

which does not contain vertexy.

But beforecolor exchange (i.e., with respect to the coloringc1) by (4.12) there was a
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(5, 3, xa) critical path. Clearly this path passes through the vertexb. Thus byLemma 2.8, the

(5, 3, xa) critical path, does not exist after the color exchange (with respect to the coloringc2)

(It easy to see thatl1, l2 /∈ {x, a} since1 /∈ Fl1, Fl2 but1 ∈ Fx, Fa. ThereforeLemma 2.8can

be applied). Thus we have,

With respect to the coloringc2, there does not exists any(5, 3, xa) critical path. (4.15)

Now let

c3 = Recolor(c2, xa, 3)

By Claim 4.25, sxa = {2, 5, 6} with respect to the coloringc0 andsxa = {2, 5, 6} even

with respect to the coloringc2. Thus color 3 is candidate for edgexa since3 /∈ Sxa and

c2(x, b) = 5. Coloringc3 is also acyclic since if there is any bichromatic cycle containing edge

xa then it should also contain edgexb. But c3(x, b) = 5 andc3(x, a) = 3. Thus it has to be a

(3, 5) bichromatic cycle, implying that there exists a(5, 3, xa) critical path with respect to the

coloringc2, a contradiction (by(4.15)).

Note that by(4.14) there existed(2, 3, a, l1) maximal bichromatic path with respect to the

coloring c2. Since the color of edgexa is changed inc3 to color 3, it is easy to see that this

path gets extended to a(3, 2, x, l1) maximal bichromatic path which now starts at the vertexx

since2 /∈ Fx with respect to the coloringc3. Note that it still does not contain vertexy.

Now with respect to the coloringc3, F = {1, 3, 4, 5} andFx ∩Fy = {3}. Thus color 2 is a

candidate for the edgexy. Since(2, 3, x, l1) maximal bichromatic path contains vertexx and

does not contain vertexy, by Fact 2.1 there can not be(2, 3, xy) critical path. Thus byFact

4.1color 2 is valid for the edgexy.

¥

4.3 Comments

The following is obvious fromTheorem 4.9:

Corollary 4.29. LetG be a graph with maximum degree∆ ≤ 4. Thena′(G) ≤ 7.
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Proof: If ∆(G) ≤ 4, thenm ≤ 2n for each connected component. Ifm ≤ 2n−1, by Theorem

4.9a′(G) ≤ 6 for each connected component. Otherwise ifm = 2n, we can remove an edge

from each connected component and color the resulting graph with at most 6 colors. Now the

removed edges of each component could be colored using a new color. Thusa′(G) ≤ 7. ¤

Remark: There exist graphs with∆(G) ≤ 4 that require at least 5 colors to be acyclically

edge colored. For example, any graph with∆(G) = 4 andm = 2n − 1 requires 5 colors.

Also by using a simple counting argument we can show thatK2,2,2 (complete tripartite graph

with 2 vertices in each part) needs at least 6 colors to be acyclically edge colored (see [12]).

But we do not know whether there exist any graphs with∆(G) ≤ 4 that needs 7 colors to be

acyclically edge colored. Thus we feel that the bound ofCorollary 4.29andTheorem 4.9

can be improved.



Chapter 5

2-degenerate Graphs

In this chapter, we look at2-degenerate graphs.

Definition 5.1. A graphG is calledk-degenerate if any induced subgraph ofG, has a vertex

of degree at mostk. For example, planar graphs are 5-degenerate, forests are 1-degenerate.

5.1 Previous Results

The earliest result on acyclic edge coloring of 2-degenerate graphs was by Card and Roditty

[17], where they proved thata′(G) ≤ ∆ + k − 1, wherek is the maximum edge connectivity,

defined ask = maxu,v∈V (G) λ(u, v) , whereλ(u, v) is the edge- connectivity of the pair u,v.

Note that herek can be as high as∆. Muthu,Narayanan and Subramanian [34] proved that

a′(G) ≤ ∆ + 1 for outerplanar graphs which are a subclass of 2-degenerate graphs and posed

the problem of proving the conjecture for 2-degenerate graphs as an open problem. In fact

they have informed us that very recently they have also derived an upper bound of∆ + 1 for

series-parallel graphs [35], which is a slightly bigger subclass of 2-degenerate graphs. Con-

nected non-regular subcubic graphs are 2-degenerate graphs with∆ = 3. Recently Basavaraju

and Chandran [10] proved that connected non-regular subcubic graph can be acyclically edge

colored using∆ + 1 = 4 colors. Another two interesting subclasses of 2-degenerate graphs

areplanar graphs of girth 6andcircle graphs of girth 5[1]. As far as we know, nothing much

is known about the acyclic edge chromatic number of these graphs.

35
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5.2 The Theorem

Theorem 5.2.LetG be a 2-degenerate graph with maximum degree∆, thena′(G) ≤ ∆ + 1.

Proof: We prove the theorem by way of contradiction. LetG be a 2-degenerate graph withn

vertices andm edges which is a minimum counter example for the theorem statement. Then

the theorem is true for all 2-degenerate graphs with at mostm−1 edges. To prove the theorem

for G, we may assume thatG is connected. We may also assume that the minimum degree,

δ(G) ≥ 2, since otherwise if there is a vertexv, with degree(v) = 1, we can easily extend the

acyclic edge coloring ofG−e (where e is the edge incident onv) toG. Keeping the assumption

thatG is a minimum counter example in mind we will show that any partial coloringc of G

should satisfy certain properties which in turn will lead to a contradiction.

Selection of the Primary Pivot: Let W0 = {z ∈ V (G) | degreeG(z) = 2}. Since

G is 2-degenerateW0 6= ∅. We may assume thatV − W0 6= ∅ because otherwise,G is a

cycle and it is easy to see that it is∆ + 1 = 3 acyclically edge colorable. Thus∆(G) ≥ 3.

Let G′ = G[V − W0] andW1 = {z ∈ V (G′) | degreeG′(z) ≤ 2}. By the definition of

2-degeneracy there exists at least one vertex of degree at most 2 inG′ and thusW1 6= ∅.
Let V ′ = V (G′). If V ′ −W1 6= ∅, then there exists at least one vertex of degree at most

2 in G′[V ′ −W1]. Let G′′ = G[V ′ −W1] andW2 = {z ∈ V (G′′) | degreeG′′(z) ≤ 2}. Let

q ∈ W2. ClearlyNG(q)∩W1 6= ∅ and letx ∈ NG(q)∩W1. On the other hand ifV ′−W1 = ∅,
then letx ∈ W1. We callx thePrimary P ivot, sincex plays an important role in our proof.

Let N ′
G(x) = NG(x) ∩W0 andN ′′

G(x) = NG(x)−N ′
G(x) = NG′(x). Sincex ∈ W1, it is easy

to see that|N ′′
G(x)| ≤ 2 and|N ′

G(x)| ≥ 1.

Let N ′
G(x) = {y1, y2, . . . , yt}. Also ∀yi, let NG(yi) = {x, y′i} (Seefigure 5.1). ∀yi, let

Gi denote the graph obtained by removing the edge(x, yi) from the graphG. Let N ′
Gi

(x) =

N ′
G(x) − {yi} andN ′′

Gi
(x) = NGi

(x) − N ′
Gi

(x). By the minimum choice ofG, graphGi is

∆ + 1 acyclically edge colorable. Letci be a valid coloring ofGi and thus a partial coloring

of G. We denote the set of colors byC = {1, 2, . . . , ∆ + 1}.

Comment: Note that the figures given in this paper are only for providing visual aid for

the reader. They do not capture all possible configurations.
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Figure 5.1:Vertexx and its neighbors

5.2.1 Properties of any valid coloringci of Gi

Let Fx(ci) = {ci(x, z)|z ∈ NGi
(x)}. Let F ′

x(ci) = {ci(x, z)|z ∈ N ′
Gi

(x)} andF ′′
x (ci) =

{ci(x, z)|z ∈ N ′′
Gi

(x)}. Note thatFx(ci) is the disjoint union ofF ′
x(ci) andF ′′

x (ci) and also

|F ′′
x (ci)| ≤ 2.

Lemma 5.3.With respect to any valid coloringci of Gi, ci(yi, y
′
i) ∈ F ′′

x (ci).

Proof: It is easy to see thatci(yi, y
′
i) ∈ Fx(ci). Otherwise all the candidate colors are valid for

the edgexyi, since any cycle involving the edgexyi will contain the edgeyiy
′
i as well as an edge

incident onx in Gi and thus the cycle will have at least 3 colors. Supposeci(yi, y
′
i) ∈ F ′

x(ci).

Clearly we have|Fx(ci) ∪ {ci(yi, y
′
i)}| ≤ ∆ − 1. Thus there are at least twocandidate colors

for the edgexyi. Let yj ∈ N ′
Gi

(x) be the vertex such thatci(yi, y
′
i) = ci(x, yj). When we color

edgexyi there is a possibility of a bichromatic cycle only if we assignci(yj, y
′
j) to the edge

xyi sincedegreeGi
(yj) = 2. But since we have at least twocandidate colorsfor edgexyi, this

situation can easily be avoided. We infer thatci(yi, y
′
i) ∈ F ′′

x (ci). ¥

Lemma 5.4.With respect to any valid coloringci of Gi, |F ′′
x (ci)| = 2

Proof: Suppose not. Then|F ′′
x (ci)| ≤ 1. Since|Fy′i(ci)| ≤ ∆, we have at least onecandidate

color for the edgeyiy
′
i. Note that anycandidate color, is valid for the edgeyiy

′
i in Gi sinceyi

is a pendant vertex inGi. Let c′i be the valid coloring obtained by recoloring the edgeyiy
′
i with
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a candidate color. ByLemma 5.3, we haveci(yi, y
′
i) ∈ F ′′

x (ci). Clearly since|F ′′
x (ci)| ≤ 1

andc′i(yi, y
′
i) 6= ci(yi, y

′
i), we can infer thatc′i(yi, y

′
i) /∈ F ′′

x (ci) = F ′′
x (c′i), a contradiction to

Lemma 5.3. ¥

An immediate consequence ofLemma 5.4 is that |N ′′
G(x)| = 2. Moreover by the way we

have selected vertexx at least one of them should belong toW1 ∪W2. We make the following

assumption:

Assumption 5.5. With respect to any valid coloringci of Gi, without loss of generality let

F ′′
x (ci) = {1, 2} andN ′′

G(x) = {q, q′}. Thus{ci(x, q), ci(x, q′)} = {1, 2}. Also without loss of

generality we assume thatq ∈ W2 ∪W1 (seefigure 5.1).

Lemma 5.6.With respect to any valid coloringci of Gi, colors1, 2 /∈ Syiy′i.

Proof: Since|Fy′i(ci)| ≤ ∆, we have at least onecandidate colorγ 6= ci(yi, y
′
i) for the edge

yiy
′
i. Note thatγ is valid for the edgeyiy

′
i in Gi sinceyi is a pendant vertex inGi. Let c′i

be the valid coloring obtained by recoloring the edgeyiy
′
i with γ. Now sinceci as well asc′i

are valid, byLemma 5.3, we have{ci(yi, y
′
i), c

′
i(yi, y

′
i)} = F ′′

x (ci) = {1, 2} (by Assumption

5.5). Sinceci(yi, y
′
i) /∈ Syiy′i andc′i(yi, y

′
i) /∈ Syiy′i, we have1, 2 /∈ Syiy′i. ¥

Let C ′ = C − {1, 2}. For each colorγ ∈ C ′, we define a graphGi,γ as below:

Gi,γ =

{
Gi if γ ∈ C ′ − F ′

x(ci)

Gi − xya, where ci(x, ya) = γ if γ ∈ F ′
x(ci)

Also let ci,γ be the valid coloring ofGi,γ derived fromci of Gi, that is by discarding the color

of the edgexya, whereya is the vertex such thatci(x, ya) = γ. Also if ci,γ is a valid coloring

of Gi,γ, thenci,γ is said to be derivable fromc1 if we can extend the coloringci,γ of Gi,γ to

the coloringc1 of G1. Also note that even though we define these graphsGi,γ, we always have

the original graph in mind when using definitions like critical paths, which are defined with

respect to an edge in the graph.

Lemma 5.7. Let ci be any valid coloring ofGi. With respect to coloringci,γ of Gi,γ, ∀γ ∈
C ′ − F ′

x(ci), ∃(µ, γ, xyi) critical path, whereµ = ci(yi, y
′
i).

Proof: Recall that whenγ ∈ C ′ − F ′
x(ci), we haveGi,γ = Gi and henceci,γ = ci. Suppose if
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there is no(µ, γ, xyi) critical path, whereγ ∈ C ′ − F ′
x(ci), then byFact 2.5 color γ is valid

for the edgexyi. Thus we get a valid coloring ofG, a contradiction. ¥

Lemma 5.8. Let ci be any valid coloring ofGi. With respect to coloringci,γ of Gi,γ, ∀γ ∈
C ′ − F ′

x(ci), ∃(ν, γ, x, y′i) maximal bichromatic path, where{ν} = {1, 2} − {ci(yi, y
′
i)}.

Proof: Recall that whenγ ∈ C ′ − F ′
x(ci), we haveGi,γ = Gi and henceci,γ = ci. Suppose

there is no(ν, γ, x, y′i) maximal bichromatic path, whereγ ∈ C ′ − F ′
x(ci). By Lemma 5.6,

color ν is a candidate for the edgeyiy
′
i. Now recolor the edgeyiy

′
i with color ν to get a valid

coloring c′i of Gi. Since by our assumption that there is no(ν, γ, x, y′i) maximal bichromatic

path with respect toci,γ = ci, there cannot be any(ν, γ, xyi) critical path with respect to the

coloringc′i, a contradiction toLemma 5.7(Note that the colorµ discussed in Lemma5.7and

assumption is same asν = c′i(yi, y
′
i) in c′i). ¥

Assumption 5.9. Since|Fx(ci)| ≤ ∆ − 1, we have|C − Fx(ci)| ≥ 2. SinceC − Fx(ci) =

C ′ − F ′
x(ci), we have|C ′ − F ′

x(ci)| ≥ 2. ThusdegreeGi
(y′i) ≥ 3 and hencedegreeG(y′i) ≥ 3.

Letα, β ∈ C ′ − F ′
x(ci).

Lemma 5.10. Let ci be any valid coloring ofGi. With respect to coloringci,γ of Gi,γ, ∀γ ∈
F ′

x(ci), ∃(µ, γ, xyi) critical path, whereµ = ci(yi, y
′
i).

Proof: Let ci(x, yj) = γ, whereγ ∈ F ′
x(ci). Suppose if there is no(µ, γ, xyi) critical path,

then byFact 2.5 color γ is valid for the edgexyi with respect to the coloringci,γ. Color the

edgexyi with colorγ to get a valid coloringd of G− {xyj}.
Now we will show that we can extend the coloringd of G − {xyj} to a valid coloring of the

graphG by giving a valid color for the edgexyj, leading to a contradiction of our assumption

thatG was a minimum counter example. We claim the following:

Claim 5.11.With respect to the coloringd, either colorα or β is valid for the edgexyj (Recall

thatα, β ∈ C ′ − F ′
x(ci) byAssumption5.9)

Proof: Without loss of generality, letd(yj, y
′
j) = η. Note thatη 6= γ = ci(x, yj). Now if,

1. η /∈ Fx(ci). In view of Assumption5.9, α, β /∈ Fx(ci). Noting thatη cannot be equal

to bothα andβ, without loss of generality, letη 6= α. Then color the edge(x, yj) with

color α to get a proper coloringd′. If a bichromatic cycle gets formed, then it should
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contain the edgexyj and also involve both the colorsη andα sincedegreeG(yj) = 2.

But sinceη /∈ Fx(ci), such a bichromatic cycle is not possible. Thus the coloringd′ is

valid.

2. η ∈ {1, 2} = {µ, ν} = F ′′
x (ci). Recolor the edgexyj with color α to get a coloringd′.

We claim that the coloringd′ is valid. This is because if it is not valid, then there has

to be a(α, η) bichromatic cycle containing the edgexyj with respect tod′. This implies

that there has to be a(η, α, xyj) critical path with respect to the coloringd and hence

with respect to the coloringci,γ (Note that the coloringd is obtained fromci,γ just by

giving the colorγ to the edgexyi andη, γ 6= α, β).

If η = µ, this means that there was a(η = µ, α, xyj) critical path with respect toci,γ.

But this is not possible byFact 2.1since there is already a(µ, α, xyi) critical path with

respect toci,γ (by Lemma 5.7) andyi 6= yj.

Thusη = ν. This means that there has to be a(η = ν, α, xyj) critical path with respect

to ci,γ. But this is not possible byFact 2.1since there is already a(ν, α, x, y′i) maximal

bichromatic path with respect toci,γ (by Lemma 5.8) andy′i 6= yj ( y′i 6= yj since by

Assumption 5.9, degreeGi
(y′i) ≥ 3. But degreeGi

(yj) = 2). Thus there cannot be any

bichromatic cycles with respect to the coloringd′. Thus the coloringd′ is valid.

3. η ∈ F ′
x(ci). Let yk ∈ N ′

G(x) be such thatd(x, yk) = η. With respect to colors{α, β},
without loss of generality letd(yk, y

′
k) 6= β. Recall thatd(yj, y

′
j) = η. Now recolor the

edgexyj with colorβ to get a coloringd′. Now if a bichromatic cycle gets formed, then

it should contain the edgexyj and also involve both the colorsη andβ. Thus the bichro-

matic cycle should contain the edgexyk. SincedegreeG(yk) = 2, the bichromatic cycle

should contain the edgeyky
′
k. But by our assumption,ci(yk, y

′
k) 6= β, a contradiction.

Thus the coloringd′ is valid.

Hence either colorα or β is valid for the edgexyj.

¤

Thus we have a valid coloring (i.e,d′) for the graphG, a contradiction. ¥

Lemma 5.12. Let ci be any valid coloring ofGi. With respect to coloringci,γ of Gi,γ, ∀γ ∈
F ′

x(ci), ∃(ν, γ, x, y′i) maximal bichromatic path, where{ν} = {1, 2} − {ci(yi, y
′
i)}.
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Proof: Suppose if there is no(ν, γ, x, y′i) maximal bichromatic path, whereγ ∈ F ′
x(ci), then

by Lemma 5.6, colorν is a candidate for the edgeyiy
′
i. Now recolor the edgeyiy

′
i with colorν

to get a valid coloringc′i,γ of Gi. Since by our assumption that there is no(ν, γ, x, y′i) maximal

bichromatic path with respect toci,γ, there cannot be any(ν, γ, xyi) critical path with respect

to the coloringc′i,γ, a contradiction toLemma 5.10(Note that the colorµ discussed in Lemma

5.10and assumption is same asν = c′i,γ(yi, y
′
i) in c′i,γ).

¥

Critical Path Property: In the rest of the paper we will have to repeatedly use the properties

(namely the presence of(µ, γ, xyi) critical path inGi,γ, whereµ = ci,γ(yi, y
′
i)) described by

Lemma 5.7 andLemma 5.10. Therefore we will name these properties as theCritical Path

Propertyof the graphGi,γ.

If ci is any valid coloring ofGi, then inGi,γ, ∀γ ∈ C ′, by Critical Path Property (i.e.,

Lemma 5.7 or Lemma 5.10) there exists a(µ, γ, xyi) critical path and byLemma 5.8 and

Lemma 5.12 there exists a(ν, γ, x, y′i) maximal bichromatic path, whereµ = ci(yi, y
′
i) and

{ν} = F ′′
x (ci)−{µ}. Recall that|Sab| ≤ ∆−1 for anyab ∈ E. As an immediate consequence

we have,

Sxq = Sxq′ = Syiy′i = C − {1, 2} = C ′. (5.1)

In view of (5.1), we have

|Sxq| = |Sxq′ | = |Syiy′i| = |C ′| = ∆− 1. (5.2)

Lemma 5.13. Let ci be any valid coloring ofGi. Let µ = ci(yi, y
′
i) ∈ {1, 2}. Also let

yj ∈ N ′
G(x) − {yi}. Then∀γ ∈ C ′, the(µ, γ, xyi) critical path in Gi,γ does not contain the

vertexyj.

Proof: Suppose there exists a(µ, γ, xyi) critical path that contains the vertexyj, thenyj can-

not be an end vertex asyi 6= yj. Thusyj is an internal vertex. Now sincedegreeG(yj) = 2,

the (µ, γ, xyi) critical path should contain the edgexyj as well. But the(µ, γ, xyi) criti-

cal path ends at vertexx with color µ which impliesci(x, yj) = µ, a contradiction since
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ci(x, yj) /∈ {1, 2} = {µ, ν}. ¥

Lemma 5.14. Let ci be any valid coloring ofGi and letu ∈ {q, q′} . Let µ = ci(yi, y
′
i) =

ci(x, u) ∈ {1, 2} andν = {1, 2}− {µ}. Then∀γ ∈ C ′, the(µ, γ, xyi) critical path inGi,γ has

length at least five.

Proof: Suppose not. Then the(µ, γ, xyi) critical path has length three which implies that

the vertices in the critical path arex, u, y′i, yi in that order. Thusµ ∈ Fu(ci) andFu(ci) =

Sxu ∪ {µ}. Now change the color of the edgey′iyi to ν. It is proper since by5.1, we have

{1, 2} = {µ, ν} /∈ Syiy′i. It is valid sinceyi is a pendant vertex inGi,γ. Now in view of

Critical Path Property (i.e.,Lemma 5.7or Lemma 5.10) there has to be a(ν, γ, xyi) criti-

cal path that passes through the vertexy′i with respect to this new coloring. Sinceci,γ(u, y′i) =

γ, this(ν, γ, xyi) critical path should contain vertexu as an internal vertex, which implies that

colorν ∈ Fu(ci). Recalling thatFu(ci) = Sxu∪{µ}, we haveν ∈ Sxu, a contradiction in view

of (5.1). Thus the(µ, γ, xyi) critical path has length at least five with respect to the coloring

ci,γ of Gi,γ. ¥

5.2.2 The structure of the minimum counter example in the vicinity of

the primary pivot, x

Lemma 5.15.The minimum counter exampleG satisfies the following properties,

(a) ∀u, v ∈ NG(x), (u, v) /∈ E(G).

(b) ∀yi ∈ N ′
G(x) and∀v ∈ NG(x)− {yi}, we have(v, y′i) /∈ E(G).

Proof: To prove(a) we consider the following cases:

case 1.1:u, v ∈ N ′
G(x)

Let u = yk andv = yj. Now if u ∈ NG(v), thenu = y′j. Recalling that∆(G) ≥ 3, in view

of (5.2), we havedegreeG(u) = degreeG(y′j) ≥ 3. But degreeG(u) = degreeG(yk) = 2, a

contradiction.

case 1.2:u, v ∈ N ′′
G(x)

Then we need to show thatq′ /∈ NG(q). To see this consider the coloringci of graphGi. We
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know that{ci(x, q), ci(x, q′)} = {µ, ν}. Without loss of generality letci(x, q) = ci(yi, y
′
i) = µ.

Note that by(5.2), we haveSxq = C ′. If q′ ∈ NG(q), thenci(q, q
′) ∈ C ′. Let ci(q, q

′) = γ /∈
{µ, ν}. Now in Gi,γ, the(µ, γ) maximal bichromatic path that starts at vertexx contains only

edgesxq andqq′ sinceµ /∈ Fq′(ci) (by (5.2)). Thus byFact 2.1, there cannot be a(µ, γ, xyi)

critical path inGi,γ, a contradiction toCritical Path Property (i.e.,Lemma 5.7or Lemma

5.10). Thusq′ /∈ NG(q).

case 1.3:u ∈ N ′′
G(x) andv ∈ N ′

G(x)

Let v = yi. Then we have to show thaty′i /∈ N ′′
G(x) = {q, q′}. To see this consider the col-

oring ci of graphGi. Recall that{ci(x, q), ci(x, q′)} = {µ, ν}. Without loss of generality let

ci(x, q) = ci(yi, y
′
i) = µ. Now if y′i = q, then we havec(q, yi) = ci(y

′
i, yi) = µ, a contradiction

sincec(x, q) = µ. On the other hand ify′i = q′, thenc(q′, yi) = ci(y
′
i, yi) = µ. This means that

µ ∈ Sxq′, a contradiction in view of(5.1). Thusy′i 6= q, q′.

Thus∀u, v ∈ NG(x), we have(u, v) /∈ E(G)

To prove(b) we consider the following cases:

case 2.1:v ∈ N ′
Gi

(x)

Let v = yj ∈ N ′
G(x). If (v, y′i) = (yj, y

′
i) ∈ E(G), theny′i = y′j. Consider the coloringcj

of graphGj. Let cj(yj, y
′
j) = µ. Recall that by(5.2), we haveSyjy′j = C ′. If y′i = y′j, then

cj(y
′
j, yi) ∈ C ′. Let cj(y

′
j, yi) = γ. Now in Gj,γ, the (µ, γ) maximal bichromatic path that

starts at vertexyj contains only edgesyjy
′
j, y′jyi and thus ends at vertexyi sinceµ /∈ Fyi

(cj).

This is becauseNGj,γ
(yi) = {y′j, x} and we havecj(y

′
j, yi) = γ andcj(x, yi) 6= µ( since by

Assumption 5.5, µ ∈ cj(x, q), cj(x, q′)} ). Thus byFact 2.1, there cannot be a(µ, γ, xyj)

critical path inGj,γ, a contradiction toCritical Path Property (i.e.,Lemma 5.7or Lemma

5.10). Thusy′j 6= y′i.

case 2.2:v ∈ N ′′
G(x) = {q, q′}

Then we have to show thaty′i /∈ NG(q) ∪ NG(q′). To see this consider the coloringci of

graphGi. Recall that{ci(x, q), ci(x, q′)} = {µ, ν}. Without loss of generality letci(x, q) =

ci(yi, y
′
i) = µ. Supposey′i ∈ NG(q), then we havec(y′i, q) ∈ Sxq. Thus by(5.1), we have

ci(y
′
i, q) 6= ν. Now there exists a(µ, ci(y

′
i, q) 6= ν, xyi) critical path of length 3, a contradiction

to Lemma 5.14. Now if y′i ∈ NG(q′), then we recolor the edgeyiy
′
i with colorν to get a valid

coloring c′i. Now there exists a(ν, ci(y
′
i, q

′), xyi) critical path of length 3, a contradiction to
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Lemma 5.14. Thusy′i /∈ NG(q) ∪NG(q′).

Thus∀yi ∈ N ′
G(x) and∀v ∈ NG(x)− {yi}, we have(v, y′i) /∈ E(G).

¥

5.2.3 Modification of valid coloring c1 of G1 to get valid coloring cj of Gj

Assumption 5.16.Letc1 be a valid coloring ofG1 and without loss of generality letc1(x, q) =

1, c1(x, q′) = 2 andc1(y1, y
′
1) = µ = 1.

Remark: In view of Assumption 5.16, the Critical Path Property with respect to the

coloringc1 of G1 reads as follows: With respect to the coloringc1,γ, there exists a(1, γ, xy1)

critical path, for allγ ∈ C ′ .

Let f1 be the coloring ofG1 obtained fromc1 by exchanging the colors of the edgesxq

andxq′. Also for γ ∈ C ′, we define the coloringf1,γ as the coloring obtained fromc1,γ by

exchanging the colors with respect to the edgesxq andxq′. Note thatf1,γ can be obtained from

f1 just by discarding theγ colored edge incident on vertexx for γ ∈ F ′
x(f1).

Claim 5.17. The coloringf1 is proper but is not valid.

Proof: The coloringf1 is proper since in view of(5.1), 2 /∈ Sxq and1 /∈ Sxq′. Suppose the

coloringf1 is valid. Letγ be a candidate color for the edgexy1. Clearlyγ ∈ C−Fx(f1). Now

sincef1 is proper, takingu = x, i = q, j = q′, ab = xy1, λ = 1 andξ = γ, Lemma 2.8can

be applied. There existed a(1, γ, xy1) critical path with respect to coloringc1. By Lemma

2.8, we infer that there cannot be any(1, γ, xy1) critical path with respect to the coloringf1.

Thus by Fact2.5, candidate colorγ is valid for the edgexy1. Thus we have obtained a valid

coloring for the minimum counter exampleG, a contradiction. ¤

By Claim 5.17, there exist bichromatic cycles with respect to the coloringf1. It is clear

that each bichromatic cycle with respect tof1 has to contain either the edgexq or xq′ since

we have changed only the colors of the edgesxq andxq′ to get the coloringf1 from c1. Thus

each such bichromatic cycle should be either a(1, γ) bichromatic cycle or a(2, γ) bichromatic
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cycle. Note that each of these bichromatic cycles should pass through the vertexx. Moreover

observe that there cannot be any(1, 2) bichromatic cycle since color1 /∈ Sxq with respect

to f1 in view of (5.1). Thusγ ∈ F ′
x(f1). From this we infer that|F ′

x(f1)| ≥ 1. Recalling

Assumption 5.9, we have|C − Fx(f1)| ≥ 2. It follows that|C ′| ≥ 3. Thus we have,

∆(G) ≥ degreeG1(q) ≥ |Sxq|+ 1 ≥ |C ′|+ 1 ≥ 4. (5.3)

Let

C1 = C1(f1) = {γ ∈ F ′
x(c1)| ∃(1, γ) bichromatic cycle with respect to coloringf1}.

C2 = C2(f1) = {γ ∈ F ′
x(c1)| ∃(2, γ) bichromatic cycle with respect to coloringf1}.

Note that from the discussion above, any bichromatic cycle with respect to the coloringf1

contains a vertexyi ∈ N ′
G1

(x). But degreeG1(yi) = 2 and therefore|Sxyi
| = 1. ThusSxyi

contains exactly one of the color 1 or 2. Thus with a fixed colorγ ∈ C1 ∪ C2 there exists

exactly one of(1, γ) or (2, γ) bichromatic cycle, which implies that the setsC1 andC2 cannot

have any element in common (Seefigure 5.2). Thus we have,

C1 ∩ C2 = ∅. (5.4)

2

1
xy′

1

q

C1

yij

γij

y1

C2

q′

γi0

γik−1

yik−1

yi0

Figure 5.2:Bichromatic cycles ofC1 andC2
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Recall that in view ofCritical Path Property (i.e.,Lemma 5.7 or Lemma 5.10), for a

coloringc1,γ of G1,γ, ∀γ ∈ C ′, there exists a(1, γ, xy1) critical path. With respect to the new

coloringf1,γ, since the colors of only edgesxq andxq′ are changed, this path starts fromy1 and

reaches the vertexq. But since color 1 is not present at vertexq with respect to the coloringf1,γ,

the bichromatic path ends at vertexq. Thus the(1, γ, xy1) critical path with respect to coloring

c1,γ gets curtailed to a(γ, 1, q, y1) maximal bichromatic path with respect tof1,γ. Also note

that in view ofLemma 5.14the length of this(γ, 1, q, y1) maximal bichromatic path is at least

four. This is true for the coloringf1 also i.e., there exists a(γ, 1, q, y1) maximal bichromatic

path with respect tof1. To see this observe thatf1 is obtained fromf1,γ by putting back the

edgexya, wherec1(x, ya) = γ. This cannot alter the(γ, 1, q, y1) maximal bichromatic path

sincex does not belong to this path and alsoya 6= y1. Also in view of Lemma5.13, none of the

above maximal bichromatic paths contain vertexyj, ∀yj ∈ N ′
G(x) − {y1}. Thus the coloring

f1 satisfies the following property which we name asProperty A:

Property A : A partial coloring ofG is said to satisfyProperty A iff ∀γ ∈ C − {1, 2}, there

exists a(γ, 1, q, y1) maximal bichromatic path of length at least four. Moreover none of the

above maximal bichromatic paths contain vertexx or vertexyi, whereyi ∈ N ′
G(x)− {y1}.

Claim 5.18.There exists a proper coloringf ′1 obtained fromf1 such that∀i ∈ {1, 2}, |Ci| ≤ 1,

whereCi = Ci(f
′
1). Moreoverf ′1 satisfiesProperty A.

Proof: If |C1| ≤ 1 and |C2| ≤ 1, then letf ′1 = f1. If |C1| ≤ 1, then letf ′′1 = f1. Other-

wise if |C1| ≥ 2, then letC1 = {γi0 , γi1 , . . . , γik−1
} and also letyij be the vertex such that

f1(x, yij) = γij , ∀j ∈ {0, 1, 2, . . . k− 1} (seeFigure 5.2). Now let the coloringf ′′1 be defined

asf ′′1 (x, yij) = γil, wherel = j + 1(mod k), ∀j ∈ {0, 1, 2, . . . k − 1} andf ′′1 (e) = f1(e) for

all other edges. (Note that we have only shifted the colors of the edgesxyi0 , xyi1 , . . . , xyik−1

circularly. We call this procedurederanging of colors.)

Note that we are changing only the colors of the edgesxyij for j = 0, 1, 2, . . . , k− 1. Also

we are using only the colorsγij ∈ C1 for recoloring. Since with respect to the coloringf1,

a (1, γij) bichromatic cycle passed throughyij anddegreeG1(yij) = 2, we haveSxyij
= {1}.

Thus the coloringf ′′1 is proper.

Since for allyij , 0 ≤ j ≤ k − 1 we haveSxyij
= {1} with respect to the coloringf ′′1 , it is

clear that anynew bichromatic cycle created (in the process of gettingf ′′1 from f ′1 ) has to be

a (1, γ) bichromatic cycle, whereγ ∈ C1.

We claim that the coloringf ′′1 does not have any(1, γ) bichromatic cycle forγ ∈ C1. To
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see this consider aγ ∈ C1, sayγi1. There existed a(1, γi1) bichromatic cycle with respect

to f1. It contained the edgexyi1. Now with respect tof ′′1 edgexyi1 is colored with colorγi2.

Thus the(1, γi1) maximal bichromatic path which contains the vertexx has one end at vertex

yi1 since colorγi1 is not present at the vertexyi1 with respect tof ′′1 . Thus(1, γi1) bichromatic

cycle cannot exist with respect to the coloringf ′′1 . This argument works for allγ ∈ C1 and

thus for any colorγ ∈ C1, there is no(1, γ) bichromatic cycle with respect tof ′′1 .

If |C2| ≤ 1, thenf ′1 = f ′′1 . Otherwise if|C2| ≥ 2, by performing similar recoloring (now

starting withf ′′1 ) as we did to get rid of the(1, γ) bichromatic cycles, we can get a coloring

f ′′′1 without any(2, γ) bichromatic cycle. Now letf ′1 = f ′′′1 . Thus we get a coloringf ′1 from f1

which has|C1| ≤ 1 and|C2| ≤ 1.

Note that we are changing only the colors of the edgesxyi, for yi ∈ N ′
G1

(x). But the col-

oring f1 satisfiedProperty A and hence none of the(γ, 1, q, y1) maximal bichromatic paths

, ∀γ ∈ C − {1, 2}, contained the vertexyi or x. Thus these bichromatic paths have not been

altered (i.e., neitherbroken norextended) by the recoloring to getf ′1 from f1. Thus the color-

ing f ′1 satisfiesProperty A. ¤

Observation 5.19. Note that the color of the edgey1y
′
1 is unaltered inf ′1, i.e., f ′1(y1, y

′
1) =

f1(y1, y
′
1) = c1(y1, y

′
1) = 1. Also only the colors of certain edges incident on the vertexyi,

whereyi ∈ N ′
G(x)−{y1} are modified when we obtainedf ′1 starting fromc1. (This information

is required later in the proof).

It is easy to see thatf ′1 is proper but not valid. It is not valid because, if it is valid then since

f ′1 satisfiesProperty A, there are(γ, 1, q, y1) maximal bichromatic paths ,∀γ ∈ C − {1, 2}.
Thus byFact 2.1, for anyθ ∈ C − Fx(f

′
1), there cannot be a(1, θ, xy1) critical path. Thus by

Fact 2.5, color θ is valid for the edgexy1. Thus we have a valid coloring for the graph G, a

contradiction. Thusf ′1 is not valid. It implies that at least one ofC1 or C2 is nonempty. In the

next lemma we further refine the proper coloringf ′1.

Lemma 5.20. There exists a proper coloringh1 of G1 obtained fromf ′1 such that there is at

most one bichromatic cycle. Moreoverh1 satisfiesProperty A.

Proof: By Claim 5.18, we have|C1| ≤ 1 and|C2| ≤ 1. If exactly one ofC1, C2 is singleton,

then leth1 = f ′1. Otherwise we have|C1| = 1 and|C2| = 1.

Assumption 5.21.Without loss of generality letC1 = {γ} andC2 = {θ}. Letf ′1(x, yj) = γ

andf ′1(x, yk) = θ. Thusf ′1(yj, y
′
j) = 1 andf ′1(yk, y

′
k) = 2, since there are(1, γ) and (2, θ)
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bichromatic cycles passing through the vertexx.

Claim 5.22. Color 2 /∈ Syjy′j

Proof: Suppose not, then2 ∈ Syjy′j . Since there is a(1, γ) bichromatic cycle passing through

y′j, the colors 1 andγ are present aty′j. It follows that there existsη ∈ C − {1, 2, γ} missing

at y′j. Now recolor edgeyjy
′
j with color η to get a coloringf ′′1 . If the color η is valid for

the edgeyjy
′
j, then leth1 = f ′′1 and we are done as the situation reduces to having only one

bichromatic cycle (i.e.,|C2| = 1 and|C1| = 0 ). If the colorη is not valid for the edgeyjy
′
j,

then there has to be a(γ, η) bichromatic cycle that passes through vertexx. Let f ′′1 (x, yl) = η.

SincedegreeG(yl) = 2, we haveSxyl
= {f ′′1 (yl, y

′
l)} = {γ}. Recall that byAssumption 5.9,

α ∈ C ′ − F ′
x(c1) and thusα ∈ C ′ − F ′

x(f
′′
1 ). Clearly α 6= η. Recolor the edgexyj with

color α to get a coloringf ′′′1 . Note that the colorα is valid for the edgexyj because if there

is a (α, η) bichromatic cycle, then it implies thatSxyl
= {α}. But we know thatSxyl

= {γ},
a contradiction. Thus leth1 = f ′′′1 and the situation reduces to having only one bichromatic

cycle (i.e.,|C2| = 1 and|C1| = 0) ¤

In view of Claim 5.22, color 2 is a candidate for the edgeyjy
′
j. Recolor edgeyjy

′
j with

color 2 to get a coloringf ′′1 . If the color2 is valid for the edgeyjy
′
j, then leth1 = f ′′1 and the

situation reduces to having only one bichromatic cycle (i.e.,|C2| = 1 and|C1| = 0 ). If the

color2 is not valid for the edgeyjy
′
j, then there has to be a(γ, 2) bichromatic cycle created due

to the recoloring, thereby reducing the situation to|C2| = 2 and|C1| = 0. Now we can recolor

the graph using the procedure similar to that in the proof ofClaim 5.18(i.e., derangement of

colors inC2) to get a valid coloringh1 without any bichromatic cycles.

The coloringf ′1 satisfiedProperty A and hence none of the(γ, 1, q, y1) maximal bichro-

matic paths ,∀γ ∈ C − {1, 2}, contained the vertexyj. Thus none of the(γ, 1, q, y1) maximal

bichromatic paths will bebroken or curtailed in the process of gettingh1 from f ′1. This is

because we are changing only the colors of the edges incident on the vertexyj or yk and if

a (γ, 1, q, y1) maximal bichromatic path getsbroken or curtailed, it means that the vertexyj

or yk was contained in those maximal bichromatic path, a contradiction toProperty A of f ′1
sinceyj ∈ N ′

G(x) − {y1}. On the other hand, if any of these paths gets extended, then vertex

y′j ∈ {y1, q}. But in view ofLemma 5.15(part(a)) this is not possible. Thus the(γ, 1, q, y1)

maximal bichromatic paths have not been extended. Thus these bichromatic paths have not

been altered by the recolorings to geth1 from f ′1. Thus the coloringh1 satisfiesProperty A.



5.2. The Theorem 49

¥

Observation 5.23. Note that the color of the edgey1y
′
1 is unaltered inh1, i.e., h1(y1, y

′
1) =

f ′1(y1, y
′
1) = 1 ( by Observation 5.19). Also only the colors of certain edges incident on the

vertexyi, whereyi ∈ N ′
G(x)− {y1} are modified.

It is easy to see thath1 is proper but not valid. It is not valid because, if it is valid then since

h1 satisfiesProperty A, there are(γ, 1, q, y1) maximal bichromatic paths ,∀γ ∈ C − {1, 2}.
Thus byFact 2.1, for anyθ ∈ C − Fx(h1), there cannot be a(1, θ, xy1) critical path. Thus

by Fact 2.5, colorθ is valid for the edgexy1. Thus we have a valid coloring for the graph G,

a contradiction. Thush1 is not valid. Then in view ofLemma 5.20, we make the following

assumption:

Assumption 5.24.Without loss of generality let the only bichromatic cycle in the coloringh1

of G1 pass through the vertexyj, j 6= 1. Also leth1(x, yj) = ρ.

We get a coloringcj of Gj from h1 of G1 by:

1. Removing the edgexyj.

2. Adding the edgexy1 and coloring it with the colorh1(x, yj) = ρ.

Note that the coloringcj is proper sinceρ 6= cj(y1, y
′
1) = h1(y1, y

′
1) = 1 (by Observation

5.23) and ρ /∈ Sy1x(cj) (by the definition ofcj). Note that by removing the edgexyj we

have broken the only bichromatic cycle that existed with respect toh1. The coloringcj is

valid because if there is a bichromatic cycle inGj with respect tocj then it should contain

the edgexy1 and thus it should be a(1, ρ) bichromatic cycle sincecj(x, y1) = h1(x, yj) = ρ

and cj(y1, y
′
1) = 1. The (ρ, 1, q, y1) maximal bichromatic path with respect toh1 is still a

bichromatic path with respect tocj. And since no edge incident toq is recolored, there is a

(ρ, 1) maximal bichromatic path that starts atq and contains vertexy1. This clearly implies that

there cannot be a(ρ, 1) bichromatic cycle containing vertexy1. It follows that the coloringcj

of Gj is acyclic. Therefore all the Lemmas in previous sections are applicable to the coloring

cj also.
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Now we may assume thatcj(yj, y
′
j) = 2 because ifcj(yj, y

′
j) = 1, then we can change the

color of the edgeyjy
′
j to 2 without altering the validity of the coloring sinceyj is a pendant

vertex inGj. Thus we make the following assumption:

Assumption 5.25.Without loss of generality letcj(yj, y
′
j) = 2. Also recall thatcj(x, q) = 2

andcj(x, q′) = 1.

Remark: In view of Assumption 5.25, the Critical Path Property with respect to the

coloringcj of Gj reads as follows: With respect to the coloringcj,γ, there exists a(2, γ, xyj)

critical path, for allγ ∈ C ′. The reader may contrast theCritical Path Property of cj with

that ofc1 (See remark afterAssumption 5.16). This correspondence is very important for the

proof.

Observation 5.26. Note thatcj(x, q) = 2, cj(x, q′) = 1, cj(y1, y
′
1) = 1, cj(yj, y

′
j) = 2 and

cj(x, y1) = ρ /∈ {1, 2}. Also if e is an edge such that none of its end points isx or yi, where

yi ∈ N ′
G(x), we havecj(e) = c1(e).

Lemma 5.27.Coloring cj,γ of Gj,γ satisfiesProperty A.

Proof: We consider the following cases:

case 1:γ ∈ C ′ − {ρ}
Recall that the coloringh1 satisfiedProperty A. In gettingcj from h1, we have only colored

the edgexy1 with color ρ and have discarded the edgexyj. Thus∀γ ∈ C ′ − {ρ}, there exists

a (γ, 1, q, y1) maximal bichromatic path incj also. Noting that byProperty A, the maximal

bichromatic path does not contain vertexx or yi, where∀yi ∈ N ′
G(x) − {y1}, we infer that

even inGj,γ the(γ, 1, q, y1) maximal bichromatic path is unaltered.

case 2:γ = ρ

ThenGj,ρ is the graph obtained by removing the edgexy1 from Gj sincecj(x, y1) = ρ. Recall

that with respect to the coloringh1 we have a(ρ, 1, q, y1) maximal bichromatic path. Removal

of edgexyj from G1 cannot alter this path sinceh1 satisfiesProperty A and thus edgexyj

is not in the path. Now the graph obtained is nothing but the graphGj,ρ with respect to the

coloringcj,ρ. ThusGj,ρ satisfiesProperty A. ¥

Property B: Let c1,η be a partial coloring ofG1,η, for η ∈ C − {1, 2}. Thenc1,η is said to
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satisfyProperty B iff ∀γ ∈ C −{1, 2}, there exists a(γ, 2) maximal bichromatic path which

starts at vertexq and involves the vertexy′j. Also the length of the segment of this bichromatic

path between the verticesq andy′j is at least three. Moreover in none of the above maximal

bichromatic paths the segment between the verticesq andy′j contains vertexx or vertexyi,

whereyi ∈ N ′
G(x).

Lemma 5.28.Coloring c1,η of G1,η satisfiesProperty B, for η ∈ C − {1, 2}.
Proof: By Critical Path Property (i.e., Lemma 5.7 or Lemma 5.10) andLemma 5.14,

∀γ ∈ C ′, there exists a(2, γ, x, yj) critical path of length at least five inGj,γ. Also byLemma

5.13, these critical paths do not contain vertexyi, ∀yi ∈ N ′
G(x)−{yj}. Recall that we obtained

cj from c1 by a series of recolorings. How will the above mentioned critical paths change if

we undo all these recolorings and get backc1? Note that in the process of obtaining coloring

cj from c1, we have only changed the colors incident on the verticesyi, whereyi ∈ N ′
G(x) and

have exchanged the colors of the edgesxq andxq′ (by Observation 5.26). Thus only the col-

ors of edgexq and possibly edgeyjy
′
j of these critical paths will get modified when we undo

the recolorings. The reader may recall that the first step in gettingcj from c1 was to exchange

the colors of edgesxq andxq′. It follows that with respect to a coloringc1,η, there exists a

(γ, 2) maximal bichromatic path whichstarts at vertexq and involves the vertexy′j. It also

follows that the length of the segment of the bichromatic path between the verticesq andy′j
is at least three. Moreover it is easy to see that none of the above maximal bichromatic paths

the segment between the verticesq andy′j contains vertexx or vertexyi, whereyi ∈ N ′
G(x). ¥

5.2.4 Selection of secondary pivotp and properties of c1 and cj in the

vicinity of p

Let N ′
G(q) = NG(q) ∩ (W1 ∪ W0) andN ′′

G(q) = NG(q) − N ′
G(q). Sinceq ∈ W2 ∪ W1

(seeAssumption 5.5) it is easy to see that|N ′′
G(q)| ≤ 2. Now recall that in view of(5.2)

degreeG(q) = ∆ and by(5.3), ∆ ≥ 4. Thus we have|N ′
G(q)| ≥ 2.

Let p ∈ N ′
G(q) be such thatp 6= x. In the rest of the proof, this vertexp will play a central

role. Therefore we name it as theSecondary P ivot. Let c1(q, p) = η. Note thatη ∈ C ′ by

(5.1). Thus byCritical Path Property (i.e., Lemma 5.7 or Lemma 5.10), there exists a
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(1, η, xy1) critical path with respect to the coloringc1,η that passes through the vertexp and

clearly qp is the second edge of this critical path. Recalling that this critical path has length

at least five (byLemma 5.14), we can infer thatp 6= y1 anddegreeG1(p) ≥ 2. Now since

p ∈ W1 ∪ W0, there is at most one neighbor ofp other thanq which is not inW0. If such a

vertex exists let it bep′. Otherwise clearly (NG(p) ∩W0) 6= ∅ and letp′ ∈ NG(p) ∩W0. Thus

NG(p)− {q, p′} ⊆ W0. If NG(p)− {q, p′} 6= ∅, let NG(p) − {q, p′} = {z1, z2, . . . , zk}. Also

∀zi, let NG(zi) = {p, z′i} (Seefigure 5.3) (At this point the reader may note that the primary

pivot x and secondary pivotp are somewhat structurally similar).

q

q′

y1

yj

p
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z1

zk

x

y′
1

y′j

z′k

z′
1

yt

y′t

∈ W0

N ′′(q)

∈ W0

∈ W0 ∪ W1

Figure 5.3:Vertexp and its neighbors

Lemma 5.29.x, yi /∈ {p, p′, z1, . . . , zk, z
′
1, . . . , z

′
k}, for yi ∈ N ′

G(x).

Proof: First note thatx 6= p, by the definition ofp. It is easy to see thatx /∈ {p′, z1, . . . , zk},
by part (a) of Lemma 5.15. Now x /∈ {z′1, . . . , z′k} because otherwisezi will be someyi

and hencep = y′i, But now there is an edge betweenq and p, a contradiction to part(b)

of Lemma 5.15. Similarly from part(a) of Lemma 5.15, yi 6= p and from part(b) of

Lemma 5.15, yi /∈ {p′, z1, . . . , zk}. Now if yi ∈ {z′1, . . . , z′k}, then sincex 6= zi, we have

y′i = zi, a contradiction sincedegreeG(y′i) = ∆ ≥ 4 (by (5.2)) anddegreeG(zi) = 2. Thus

x, yi /∈ {p, p′, z1, . . . , zk, z
′
1, . . . , z

′
k}, for yi ∈ N ′

G(x). ¥

Lemma 5.30.cj(q, p) = c1(q, p) = η.

Proof: Recall that byObservation 5.26, only the edges incident on verticesx or yi, where

yi ∈ N ′
G(x) are altered while obtaining coloringcj from c1. Now to show thatcj(q, p) =



5.2. The Theorem 53

c1(q, p) = η, its enough to verify thatq, p /∈ {x} ∪N ′
G(x). But this is obvious from part(a) of

Lemma 5.15.

¥

Lemma 5.31.{1, 2} ⊆ Sqp(c1,η).

Proof: By Lemma 5.14, we know that1 ∈ Sqp(c1,η) sinceqp is only the second edge of

the(1, η, xy1) critical path which is guaranteed to have length at least five with respect to the

coloringc1,η of G1,η. Now byLemma 5.28, with respect toc1,η there exists a(η, 2) maximal

bichromatic path which starts at vertexq and contains vertexy′j. Moreover the segment of

the bichromatic path between the verticesq andy′j is of length at least three with respect to

c1,η. Since this(η, 2) maximal bichromatic path starts with edgeqp coloredη, we infer that

2 ∈ Sqp(c1,η). Thus{1, 2} ⊆ Sqp(c1,η).

¥

Remark: In view of Lemma 5.31, degreeG ≥ 3. Thereforep /∈ W0. It follows thatp ∈ W1.

It is interesting to note thatp could have been selected as thePrimary P ivot instead ofx. The

reader may want to reread the procedure for selecting the primary pivot given at the beginning

of Section3. With respect to this procedure vertexp is symmetric to vertexx and thus is an

equally eligible candidate to be the primary pivot. It follows that the structure of the minimum

counter example at the vicinity ofp is symmetric to the structure at the vicinity ofx. More

specifically we have the following Lemma, corresponding toLemma 5.15:

Lemma 5.32.The minimum counter exampleG satisfies the following properties,

(a) ∀u, v ∈ NG(p), (u, v) /∈ E(G).

(b) ∀zi ∈ NG(p)− {q, p′} and∀v ∈ NG(p), we have(v, z′i) /∈ E(G).

This Lemma is not explicitly used in the proof, but we believe that this information will

help the reader to visualize the situation better.

In view of Lemma 5.31let e1 ande2 be the edges incident onp such thatc1,η(e1) = 1 and

c1,η(e2) = 2. Then we claim the following:

Lemma 5.33.cj,η(e1) = 1 andcj,η(e2) = 2.



54 Chapter 5. 2-degenerate Graphs

Proof: Recall that byObservation 5.26, only the edges incident on verticesx or yi, whereyi ∈
N ′

G(x) are altered while obtaining coloringcj from c1. Lete1 = (p, zi1) ande2 = (p, zi2). Now

to show thatcj,η(e1) = 1 andcj,η(e2) = 2, it is enough to verify thatp, zi1 , zi2 /∈ {x} ∪N ′
G(x).

But this true byLemma 5.29.

¥

Lemma 5.34.c1,η(p, p
′) ∈ {1, 2} (In other words, one of the edgee1 or e2 is pp′. ByLemma

5.33, this also implies thatcj,η(p, p
′) = c1,η(p, p

′) ∈ {1, 2}).
Proof: Suppose not. Thene1 6= pp′ and e2 6= pp′. Without loss of generality lete1 =

(p, z1) ande2 = (p, z2). Thusc1,η(p, z1) = 1 andc1,η(p, z2) = 2. By Lemma 5.14 there

exists a(1, η, xy1) critical path of length at least five with respect toc1,η. This implies that

c1,η(z1, z
′
1) = η. Now by Lemma 5.28, with respect toc1,η there exists a(η, 2) maximal

bichromatic path which starts at vertexq and contains vertexy′j. Moreover the segment of this

bichromatic path between the verticesq andy′j is of length at least three with respect toc1,η.

Sincepz1 is only the second edge of this path, we can infer thatc1,η(z2, z
′
2) = η.

Now with respect to the coloringc1,η, we exchange the colors of the edgespz1 andpz2 to

get a coloringc′1,η.

Claim 5.35. Coloring c′1,η is valid.

Proof: Note thatc′1,η is proper sincec1,η(z1, z
′
1) = η andc1,η(z2, z

′
2) = η. Now the coloring

c′1,η is valid because otherwise there has to be a(η, 1) or (η, 2) bichromatic cycle since only

the colors of the edgespz1 andpz2 are altered. Thus such a bichromatic cycle has to contain

the edgeqp sincec′1,η(q, p) = η. From (5.1), we can infer that color2 /∈ Fq(c
′
1,η). But if

there exists a bichromatic cycle with respect to the coloringc′1,η, it has to contain vertexq.

From this we can infer that it has to be a(η, 1) bichromatic cycle. This means that the cy-

cle has to contain the vertexx sincec′1,η(x, q) = 1. But we know by definition ofc1,η that

η /∈ Fx(c1,η) = Fx(c
′
1,η). Thus there does not exist a(η, 1) bichromatic cycle with respect to

the coloringc′1,η. We conclude that the coloringc′1,η of G1,η is valid. ¤

Claim 5.36.With respect to the partial coloringc′1,η, there does not exist any(1, η, xy1) critical

path.

Proof: Now sincec′1,η is proper, takingu = p, i = z1, j = z2, ab = xy1, λ = 1, ξ = η

and noting that{x, y1} ∩ {z1, z2} = ∅ (by Lemma 5.29), Lemma 2.8can be applied. There
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existed a(1, η, xy1) critical path containing vertexp in coloringc1,η. By Lemma 2.8, we infer

that there cannot be any(1, η, xy1) critical path in the coloringc′1,η. ¤

Claim 5.37. There exists a valid coloringc′1 of G1 such that the coloringc′1,η of G1,η is deriv-

able fromc′1.

Proof: It is enough to show that we can extend the coloringc′1,η of G1,η to a valid coloringc′1
of G1. If η ∈ C − Fx(c1), then by definitionG1,η = G1 and thusc′1 = c′1,η. Otherwise let

yk ∈ N ′
G(x) be the vertex such thatc1(x, yk) = η. Note thatk 6= 1. Recall thatc1,η is obtained

by discarding the color on the edgexyk. Thus it is enough to extend the coloringc′1,η to c′1 by

assigning an appropriate color to the edgexyk.

Note that there exists a(1, α, xy1) critical path with respect toc1,η, for α ∈ C − Fx(c1)

(by Lemma 5.7). Clearlyα 6= η. We claim that the(1, α, xy1) critical path exists even with

respect toc′1,η. To see this note that we have changed the colors of only edgespz1 andpz2 to get

c′1,η from c1,η. Note that by this exchange the(1, α, xy1) critical path cannot be extended since

p, z2 /∈ {x, y1} (by Lemma 5.29). Now if the(1, α, xy1) critical path gets altered it means that

this critical path contained the edgepz1 (recall thatc1,η(p, z1) = 1) and hencec1,η(z1, z
′
1) = α.

But we know thatc1,η(z1, z
′
1) = η, a contradiction. Thus we have,

With respect to the partial coloringc′1,η, there exists a(1, α, xy1) critical path, (5.5)

for α /∈ Fx(c
′
1,η) andα 6= η.

Now color the edgexyk with color η to get a coloringd1 of G1. If d1 is valid we are done

andc′1 = d1. If it is not valid, then there has to be a bichromatic cycle containing the colorη.

Note that the coloringd1 andc1 differ only due to the exchange of colors of edgespz1 andpz2.

Thus it has contain one of the edgespz1 or pz2. Therefore it has to be either a(η, 1) or (η, 2)

bichromatic cycle sinced1(p, z1) = 2, d1(p, z2) = 1. This also means that the bichromatic

cycle has to contain the vertexq, sinced(p, q) = η. Thus the bichromatic cycle has to be a

(η, 1) bichromatic cycle since2 /∈ Fq(d1). This means thatd1(yk, y
′
k) = 1. Now recolor the

edgexyk with colorα to get a coloringd′1 of G1. If d′1 is valid we are done andc′1 = d′1. If it is

not valid then there has to be a(α, 1) bichromatic cycle containing the vertexx, implying that

there existed a(1, α, xyk) critical path with respect to the coloringd1 and hence with respect

to the coloringc′1,η. But in view of (5.5), there already exists a(1, α, xy1) critical path and by

Fact 2.1, (1, α, xyk) critical path is not possible, a contradiction. Thus the coloringd′1 is valid
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and letc′1 = d′1.

Thus there exists a valid coloringc′1 of G1 such that the coloringc′1,η of G1,η is derivable

from c′1. ¤

Now in view of Claim 5.36andClaim 5.37there does not exist any(1, η, xy1) critical path

with respect to the coloringc′1,η of G1,η, a contradiction toCritical Path Property (i.e.,

Lemma 5.7or Lemma 5.10).

We conclude thatc1,η(p, p
′) ∈ {1, 2}.

¥

Assumption 5.38. In view ofLemma 5.31, Lemma 5.33 and Lemma 5.34, let z1 be the

vertex such that{c1,η(p, z1)} = {1, 2} − {c1,η(p, p
′)}. It follows that{cj,η(p, z1)} = {1, 2} −

{cj,η(p, p
′)} and{e1, e2} = {pp′, pz1}.

Observation 5.39.

(a) If c1,η(p, p
′) = cj,η(p, p

′) = 2, we have by Assumption5.38, thatc1,η(p, z1)=cj,η(p, z1) =

1. Thus with respect to the partial coloringc1,η, there exists a(1, η, xy1) critical path

of length at least five which contains the vertexz1. It follows thatc1,η(z1, z
′
1) = η since

z1z
′
1 is just the fourth edge of this(1, η, xy1) critical path.

(b) If c1,η(p, p
′) = cj,η(p, p

′) = 1, we have by Assumption5.38, thatc1,η(p, z1)=cj,η(p, z1) =

2. Thus with respect to the partial coloringcj,η, there exists a(2, η, xyj) critical path

of length at least five which contains the vertexz1. It follows thatcj,η(z1, z
′
1) = η since

z1z
′
1 is just the fourth edge of this(2, η, xyj) critical path.

Local Recolorings: If a partial coloringh of G is obtained from a partial coloringc of G

by recoloring only certain edges incident on the vertices belonging toNG(p) − {p′, q} =

{z1, z2, . . . , zk} and also possibly the edgepp′, thenh is said to be obtained fromc by local

recolorings.

The concept of local recolorings turns out to be crucial for the rest of the proof. The

following lemma provides the main tool in this respect.

Lemma 5.40.
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(a) Letc1,η(p, p
′) = cj,η(p, p

′) = 2. Also leth1,η be any valid coloring obtained fromc1,η by

recoloring only certain edges incident on the vertices belonging toNG(p) − {p′, q} =

{z1, z2, . . . , zk} and also possibly the edgepp′ (i.e., by only local recolorings). Then

there exists a valid coloringh1 of G1 such that the valid coloringh1,η ofG1,η is derivable

fromh1.

(b) Letc1,η(p, p
′) = cj,η(p, p

′) = 1. Also letfj,η be any valid coloring obtained fromcj,η by

recoloring only certain edges incident on the vertices belonging toNG(p) − {p′, q} =

{z1, z2, . . . , zk} and also possibly the edgepp′ (i.e., by only local recolorings). Then

there exists a valid coloringfj of Gj such that the valid coloringfj,η of Gj,η is derivable

fromfj.

Proof:

(a) Recall thatη 6= 1, 2. If η /∈ Fx(c1), thenc1,η = c1. In this case we takeh1 = c1.

Otherwise ifη ∈ F ′
x(c1), let xyk be the edge inG1 such thatc1(x, yk) = η. Note that

k 6= 1. It is enough to show that we can extend the valid coloringh1,η of G1,η to a valid

coloringh1 of G1 by assigning an appropriate color to the edgexyk (Reader may note

that neitherpp′ nor any edge incident on the vertices in{z1, z2, . . . , zk} can be the edge

xyk sincex /∈ {p, p′, z1, z2, . . . , zk, z
′
1, z

′
2, . . . , z

′
k} due toLemma 5.29). Now assign

color η to the edgexyk to get a coloringd. If the coloringd is valid we are done and

we haveh1 = d. If it is not valid then there has to be a bichromatic cycle created in

G1 with respect to the coloringd. The cycle has to be a(η, θ) bichromatic cycle, where

d(yk, y
′
k) = θ. Moreover we can infer thatθ ∈ Fx(d). If θ 6= d(p, p′) = 2, then let

d′ = d. Otherwise we haveθ = d(p, p′) = 2. Now there exists a colorω 6= 2, η that is a

candidate for the edgeyky
′
k. Recolor the edgeyky

′
k using colorω to get a coloringd′ of

G1. Now if d′ is a valid coloring, then we are done and we haveh1 = d′. If it is not valid,

thend′(yk, y
′
k) 6= 2. Let d′(yk, y

′
k) = β 6= 2. Moreover with respect to the coloringd′

there should be a(η, β) bichromatic cycle. Also letα ( 6= η) ∈ C−Fx(c1) = C−Fx(d
′).

Now if,

(1) β = 1.

Claim 5.41. None of the(1, γ, xy1) critical paths, whereγ (6= η) ∈ C − Fx(c1)

are altered in the process of getting the coloringh1,η from c1,η.

Proof: Recall that only the edges incident on verticeszi, wherezi ∈ NG(p) −
{p′, q} and edgepp′ are possibly recolored to get the coloringh1,η of G1,η from



58 Chapter 5. 2-degenerate Graphs

c1,η. Note that by these recolorings the(1, γ, xy1) critical path cannot be extended

sincex, y1 /∈ {p, p′, z1, z2, . . . , zk, z
′
1, z

′
2, . . . , z

′
k} due toLemma 5.29. Now if any

(1, γ, xy1) critical paths are altered then they have to contain the above mentioned

edges. Note that none of the vertices in{z1, z2, . . . , zk} or vertexp′ can be the end

verticesx or y1 and hence any critical path containing the vertexzi or p′ should

also contain the vertexp sincedegreeG1,η(zi) = 2. We can infer that with respect

to the coloringc1,η, the(1, γ, xy1) critical path passes through the vertexp. It fol-

lows that this critical path has to contain the edgepz1 sincec1,η(p, z1) = 1 (from

part(a) of Observation 5.39). Now sincez1 ∈ W0 (i.e.,degreeG1,η(z1) = 2), this

implies thatc1,η(z1, z
′
1) = γ, a contradiction since from part(a) of Observation

5.39, we know thatc1,η(z1, z
′
1) = η. Thus there cannot be any(1, γ, xy1) critical

path containing the edges incident on verticeszi, wherezi ∈ NG(p) − {p′, q} and

edgepp′. Thus none of the(1, γ, xy1) critical paths, whereγ ∈ C − Fx(c1), γ 6= η

are altered. ¤

Sinced′ is not valid there has to be a(η, 1) bichromatic cycle that passes through

the vertexx. Now recolor the edgexyk with color α to get a coloringd′′. Now

if still there is a bichromatic cycle, then it should contain the edgexyk and hence

the edgeyky
′
k. Therefore it is a(α, 1) bichromatic cycle. This implies byFact

2.5 that there existed a(1, α, xyk) critical path with respect to the coloringd′ and

hence with respect to the coloringh1,η. But in view ofClaim 5.41, there exists a

(1, α, xy1) critical path with respect to the coloringh1,η, a contradiction in view of

Fact 2.1. Thus the coloringd′′ is valid.

(2) β 6= 1. This implies thatβ (6= η) ∈ F ′
x(d

′). Let yt ∈ N ′
G(x) be such that

d′(x, yt) = β. Thusd′(yt, y
′
t) = η. Now recolor the edgexyk with color α ∈

C − Fx(d
′) to get a coloringd′′. Note thatα 6= η sinceη /∈ C − Fx(d

′). Now if

still there is a bichromatic cycle, then it should contain the edgexyk and hence the

edgeyky
′
k. Therefore it is a(α, β) bichromatic cycle. Thus the bichromatic cycle

should contain the edgexyt. SincedegreeG1(yt) = 2, the bichromatic cycle should

contain the edgeyty
′
t. But by our assumption,d′′(yt, y

′
t) = d′(yt, y

′
t) = η 6= α, a

contradiction. Thus the coloringd′′ is valid.

Now leth1 = d′′. Thus we get a valid coloring ofG1 from h1,η.
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(b) The proof of this is similar to that of part(a) with Gj, cj, yj taking the roles ofG1, c1,

y1 respectively and the colors1 and2 exchanging their roles.

¥

Lemma 5.42.

(a) If c1,η(p, p
′) = cj,η(p, p

′) = 2, then with respect to the coloringc1,η, 2 /∈ Sz1z′1. (Recall

that by Assumption5.38, {c1,η(p, z1)} = {cj,η(p, z1)} = {1, 2} − {c1,η(p, p
′)} = {1}.)

(b) If cj,η(p, p
′) = c1,η(p, p

′) = 1, then with respect to the coloringcj,η, 1 /∈ Sz1z′1. (Recall

that by Assumption5.38, {cj,η(p, z1)} = {c1,η(p, z1)} = {1, 2} − {cj,η(p, p
′)} = {2}.)

Proof:

(a) Suppose not. That is2 ∈ Sz1z′1. Note that by part(a) of Observation 5.39, we have

cj,η(p, z1) = 1 andcj,η(z1, z
′
1) = η. Therefore there exists someθ /∈ {1, 2, η} missing

in Sz1z′1. Now recolor edgez1z
′
1 with color θ to get a coloringc′1,η. If the coloring

c′1,η is valid, then letc′′1,η = c′1,η. Otherwise a bichromatic cycle gets formed by the

recoloring. Sincec′1,η(p, z1) = 1, it has to be a(1, θ) bichromatic cycle and it passes

through the vertexp. Thus there existszi ∈ NG(p)−{q, p′} such thatc′1,η(p, zi) = θ and

c′1,η(zi, z
′
i) = 1.

Now there exists a colorµ /∈ {1, θ, 2, η}missing atp. Recolor the edgepz1 with colorµ

to get a coloringc′′1,η. This clearly breaks the(1, θ) bichromatic cycle that existed with

respect toc′1,η. But if a new bichromatic cycle gets formed with respect toc′′1,η, then it

has to contain vertexz1 and therefore the edgez1z
′
1, implying that it has to be a(µ, θ)

bichromatic cycle sincec′′1,η(z1, z
′
1) = θ. This cycle passes through the vertexp and

hence passes through the vertexzi sincec′′1,η(p, zi) = θ, implying thatc′′1,η(zi, z
′
i) = µ, a

contradiction sincec′′1,η(zi, z
′
i) = 1. Thus the coloringc′′1,η is valid.

Note that we have possibly changed the colors of the edgespz1 andz1z
′
1 to getc′′1,η from

c1,η (i.e., only local recolorings are done). Therefore by part(a) of Lemma 5.40 we

infer that there exists a coloringc′′1 of G1 such thatc′′1,η is derivable fromc′′1. It follows

from Critical Path Property (i.e., Lemma 5.7 or Lemma 5.10) that there exists a

(1, η, xy1) critical path with respect to the coloringc′′1,η. On the other hand recall that

with respect toc1,η there existed a(1, η, xy1) critical path passing throughpz1 andz1z
′
1

(by part (a) of Observation 5.39). But while gettingc′′1,η from c1,η we have indeed
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changed the color of at least one of the edgespz1 or z1z
′
1 using a color other than1 and

η. It follows that the(1, η) maximal bichromatic path which contains the vertexx ends

at either vertexp or z1. Noting thatp, z1 6= y1, we infer byFact 2.1that there cannot be

a (1, η, xy1) critical path with respect to the coloringc′′1,η, a contradiction.

(b) The proof of this is similar to that of part(a) with Gj,η, cj,η, yj taking the roles ofG1,η,

c1,η andy1 respectively and the colors1 and2 exchanging their roles.

¥

5.2.5 Getting a valid coloring that contradicts the Critical Path Property

either from c1 or from cj

In this section we will get the final contradiction in the following way: Ifc1,η(p, p
′) = cj,η(p, p

′)

= 1, then we will show that we can get a coloringc′j from cj that contradicts the Critical Path

Property. Otherwise ifc1,η(p, p
′) = cj,η(p, p

′) = 2, then we will show that we can get a coloring

c′1 from c1 that contradicts theCritical Path Property.

The two coloringsc1 andcj are very similar and hence we will only describe the way we

get c′1 from c1. The same arguments can be imitated easily forcj by keeping the following

correspondences in mind.

1. Vertexy1 has same role as vertexyj.

2. Colors1 and2 exchange their roles.

3. (1, γ, xy1) critical path has the same role as(2, γ, xyj) critical path, forγ ∈ C ′. The

Critical Path Property of c1 corresponds to that ofcj (See Remarks afterAssumption

5.16andAssumption 5.25).

4. Part(a) of Lemma 5.40andLemma 5.42applies to coloringc1 while part(b) applies

to coloringcj in a corresponding way.

5. Lemma 5.28has the same role asLemma 5.27.

We make the following assumption:

Assumption 5.43.Let c1,η(p, p
′) = cj,η(p, p

′) = 2.
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Observation 5.44.In view ofAssumption 5.43andObservation 5.39, there exists(1, η, xy1)

critical path which contains the vertexz1 with respect to the partial coloringc1,η. Moreover

this path is of length at least five. It follows thatc1,η(p, z1) = 1 andc1,η(z1, z
′
1) = η. The first

five vertices of the path arex, q, p, z1, z′1. Then clearlyz′1 6= y1 and hence is not a pendant

vertex inG1,η. Thus we haveSz1z′1 6= ∅ and1 ∈ Sz1z′1.

Getting a valid coloring d1 of G1,η − {pz1} from c1,η by only local recolor-

ings

In view of Lemma 5.42and sincec1,η(p, z1) = 1, the color2 is a candidate for the edgez1z
′
1.

We get a valid coloringd1 of G1,η − {pz1} from c1,η by removing the edgepz1 and recoloring

the edgez1z
′
1 by the color2. Note thatd1 is valid sincez1 is a pendant vertex inG1,η − {pz1}.

Moreover we have broken the(1, η, xy1) critical path. Hence we have,

With respect to the partial coloringd1, there does not exists any (5.6)

(1, η, xy1) critical path.

Lemma 5.45.With respect to the partial coloringd1 of G1,η , ∀γ ∈ C − Fp(d1), there exists a

(2, γ, pz1) critical path. Since each of these critical paths has to contain the edgepp′, we can

infer thatC − Fp(d1) ⊆ Spp′.

Proof: Suppose not. Then there exists a colorγ ∈ C − Fp(d1) such that there is no(2, γ, pz1)

critical path. ByFact 2.5colorγ is valid for the edgepz1. Thus we get a valid coloringd′1 of

G1,η by coloring the edgepz1 with colorγ.

Note that we have possibly changed the colors of the edgespz1 andz1z
′
1 to getd′1 from

c1,η (i.e., only local recolorings are done). Therefore by part(a) of Lemma 5.40 we in-

fer that there exists a valid coloring ofG1 from which d′1 can be derived.It follows from

Critical Path Property (i.e., Lemma 5.7 or Lemma 5.10) that there exists a(1, η, xy1)

critical path with respect to the coloringd′1. On the other hand recall that with respect toc1,η

there existed a(1, η, xy1) critical path passing throughpz1 andz1z
′
1 (by Observation 5.44).

But while gettingd′1 from c1,η we have indeed changed the color of the edgesz1z
′
1 using the

color2 /∈ {1, η}. It follows that the(1, η) maximal bichromatic path which contains the vertex

x ends at either vertexp or z1. Noting thatp, z1 6= y1, we infer that there cannot be a(1, η, xy1)

critical path with respect to the coloringd′1, a contradiction.
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¥

Note that with respect toG1,η − {pz1}, |Fp(d1)| ≤ ∆− 1 and therefore|C − Fp(d1)| ≥ 2.

But we know that color1 /∈ Fp(d1). Since|C − Fp(d1)| ≥ 2, there exists a colorµ 6= 1 ∈
C − Fp(d1). Note thatµ 6= 2 also. The following observation is obvious in view ofClaim

5.45:

Observation 5.46. With respect to the partial coloringd1 of G1,η , 1, µ /∈ Fp(d1) and there

exist(2, 1, pz1) and(2, µ, pz1) critical paths.

Selection of a special colorθ: Since|Fp′(d1)| ≤ ∆, there exists a colorθ missing at vertexp′.

By Lemma 5.45, θ /∈ C − Fp(d1) ⊆ Fp′(d1). Thusθ ∈ Fp(d1). Clearlyθ 6= 2 since2 ∈ Fp′

andθ 6= 1, µ because1, µ /∈ Fp(d1) and hence byLemma 5.45 we have1, µ ∈ Spp′(d1).

Furtherθ 6= η. This is because byLemma 5.28, the (η, 2) maximal bichromatic path starts

at vertexq and contains the vertexy′j. Clearly the first three vertices of this path areq, p, p′.

Recall that the length of the segment of this path between verticesq andy′j is at least three.

Thereforeη ∈ Spp′(d1). Now without loss of generality letd1(p, z2) = θ(6= 1, η, µ, 2). Note

thatz2 is a vertex different fromz1.

Note that with respect to the coloringc1,η, the(1, η, xy1) critical path passes through the

vertexz1 (by (5.44)). This critical path cannot contain the vertexz2. This is because ifz2

is an internal vertex of this critical path, then the edgepz2 should be contained in the path,

a contradiction sincec1,η(p, z2) = θ 6= 1, η. On the other hand ifz2 is an end vertex then

it implies thatz2 ∈ {x, y1}, a contradiction in view ofLemma 5.29. Thus vertexz2 is not

contained in the(1, η, xy1) critical path. While getting the coloringd1 from c1,η, this path was

broken due to the recoloring ofz1z
′
1 andpz1. It follows that the(1, η) maximal bichromatic

path that starts at vertexy1 does not contain vertexz2. Thus we can infer that,

Observation 5.47.With respect to the coloringd1, there cannot exist a(1, η, y1, z2) maximal

bichromatic path.
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Getting a valid coloring d2 of G1,η − {pz2} from d1 of G1,η − {pz1} by only

local recolorings

We get a coloringd′′1 of G1,η − {pz1, pz2} from d1 by discarding the edgepz2. Note that the

partial coloringd′′1 of G1,η is valid.

Now recolor the edgepz1 with color thespecial color θ to get a coloringd2 of G1,η−{pz2}.
Note that the colorθ is a candidate for the edgepz1 with respect to the coloringd′′1 since

d′′1(z1, z
′
1) = 2 andθ /∈ Fp(d

′′
1) since we have removed the edgepz2 (Recall thatd′′1(p, z2) = θ).

We claim thatd2 is valid also. Clearly if there is any bichromatic cycle created, then it has

to be a(θ, 2) bichromatic cycle sinced2(z1, z
′
1) = 2. Now this bichromatic cycle has to pass

through vertexp′ sinced2(p, p
′) = 2. But by the definition of colorθ, it was not present at

vertexp′. Thus there cannot be a(θ, 2) bichromatic cycle. It follows that the partial coloring

d2 of G1,η − {pz2} is valid. Recall that by(5.6) that there exists no(1, η, xy1) critical path

with respect tod1. Note that to getd2 from d1, we just assignedθ(6= 1, 2, η, µ) to the edgepz1

and removed the edgepz2. Thus there is no chance of(1, η, xy1) critical path getting created

with respect tod2. Hence we have,

With respect to the partial coloringd2, there does not exists any (5.7)

(1, η, xy1) critical path.

Getting a valid coloring c′1,η of G1,η from d2 of G1,η − {pz2} by only local

recolorings

Now we will show that we can give a valid color for the edgepz2 to get a valid coloring for the

graphG1,η. We claim the following:

Lemma 5.48. With respect to the coloringd2 at least one of the colors1, µ is valid for the

edgepz2. (Recall that byObservation 5.46, 1, µ /∈ Fp(d1) and therefore1, µ /∈ Fp(d2))

Proof: Let d2(z2, z
′
2) = σ. Now if,

1. σ = 2. Recolor the edgepz2 using color 1 to get a coloringd3. The coloringd3 is

valid because if a bichromatic cycle gets formed it has to be(1, 2) bichromatic cycle

containing the vertexp implying that there was a(2, 1, pz2) critical path with respect

to d2. But by Observation5.46, there was a(2, 1, pz1) critical path with respect to the

coloringd1 and hence with respect to the coloringd2 (Note that to getd2 from d1, we
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just assignedd1(p, z2) = θ ( 6= 1, 2, η, µ) to edgepz1 and removed the edgepz2. Thus

the (2, 1, pz1) critical path is not altered during this recoloring ). Thus in view of Fact

2.1, there cannot be any(2, 1, pz2) critical path with respect tod2 sincez1 6= z2, a

contradiction. Thus the coloringd3 is valid.

2. σ ∈ {1, µ}. Recolor the edgepz2 using color{1, µ} − {σ} to get a coloringd3. The

coloringd3 will be valid because if a bichromatic cycle gets formed it has to be(1, µ)

bichromatic cycle containing the vertexp. But since colorσ ∈ {1, µ} is not present at

vertexp, such a bichromatic cycle is not possible.

3. σ /∈ {1, 2, µ}. Recolor the edgepz2 using color 1 to get a coloringd′2. If the coloring

d′2 is valid, then letd3 = d′2. Otherwise if the coloringd′2 is not valid, then there has to

be a(σ, 1) bichromatic cycle. Now letd′2(p, zj) = σ. Then the bichromatic cycle passes

through the vertexzj and henced′2(zj, z
′
j) = 1, sincedegreeG(zj) = 2. Now we recolor

edgepz2 with color µ to get a coloringd3. If there is a bichromatic cycle formed with

respect to the coloringd3, then it has to be a(µ, σ) bichromatic cycle and hence it passes

through the vertexzj. But colorµ is not present atzj sinced′2(zj, z
′
j) = 1. Thus there

cannot be any(µ, σ) bichromatic cycle. Hence the coloringd3 is valid.

Thus either color1 or µ is valid for the edgepz2.

¥

To get the coloringd3 from d2 we have only given a valid color for the edgepz2 and have

not altered the color of any other edge (i.e., only local recolorings are done). Recall thatd2

does not have any(1, η, xy1) critical path (by(5.7)). Note thatd3(x, q) = 1 andd3(q, p) = η.

If we give colorµ 6= 1, η to the edgepz2, there is no chance of a(1, η, xy1) critical path getting

formed ind3. On the other hand, by giving color 1 to the edgepz2 if a (1, η, xy1) critical

path gets formed, then it means that there exists a(1, η, y1, z2) maximal bichromatic path with

respect tod2 and hence with respect tod1. But byObservation 5.47such a bichromatic path

does not exist. Now letc′1,η = d3. Thus we have,

With respect to the valid coloringc′1,η of G1,η, there does not exists any (5.8)

(1, η, xy1) critical path.

In gettingc′1,η from c1,η we have done only local recolorings and thus byLemma 5.40c′1,η
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can be derived from some valid coloringc′1 of G1. Note that we have not changed the color of

the edgey1y
′
1 while gettingc′1,η from c1,η sincey1 /∈ {p, p′, z1, . . . , zk, z

′
1, . . . , z

′
k} (by Lemma

5.29). Thusc′1,η(y1, y
′
1) = 1. It follows that theCritical Path Property of c′1,η is the same as

Critical Path Property of c1,η. This implies that there exists a(1, η, xy1) critical path with

respect to the coloringc′1,η, a contradiction in view of(5.8).

This completes the proof. ¥

5.3 Remark

Our result is tight since there are 2-degenerate graphs which require∆ + 1 colors (e.g., cycle,

non-regular subcubic graphs, etc.) our proof is constructive and yields an efficient polynomial

time algorithm. It is easy to see that its complexity isO(∆n2). (We have presented the proof

in a non-algorithmic way. But it is easy to extract the underlying algorithm from it.)





Chapter 6

Planar Graphs-General case

In this chapter we look at acyclic edge coloring of planar graphs.

6.1 Previous Results and Definitions

The acyclic chromatic index of planar graphs has been studied previously. Fiedorowicz,

Hauszczak and Narayanan [24] gave an upper bound of2∆ + 29 for planar graphs. Indepen-

dently Hou, Wu, GuiZhen Liu and Bin Liu [29] gave an upper bound ofmax(2∆−2, ∆+22),

which is the best known result up to now for planar graphs. Note that for∆ ≥ 24, it is equal

to 2∆− 2.

Now we give some definitions that are used in the proof.

Definition 6.1. Multisets and Multiset Operations:A multiset is ageneralizedset where a

member can appear multiple times in the set. If an elementx appearst times in the multiset

S, then we say that multiplicity ofx in S is t. In notationmultS(x) = t. The cardinality of

a finite multisetS, denoted by‖ S ‖ is defined as‖ S ‖= ∑
x∈S multS(x).LetS1 andS2 be

two multisets. The reader may note that there are various possible ways to define union ofS1

andS2. For the purpose of this paper we will define one such union notion- which we call as

the join of S1 andS2, denoted asS1 ] S2. The multisetS1 ] S2 will have all the members

of S1 as well asS2. For a memberx ∈ S1 ] S2, multS1]S2(x) = multS1(x) + multS2(x).

Clearly‖ S1 ] S2 ‖=‖ S1 ‖ + ‖ S2 ‖. We also need a specially defined notion of the multiset

difference ofS1 andS2, denoted byS1 \ S2. It is the multiset of elements ofS1 which are not

in S2, i.e.,x ∈ S1 \ S2 iff x ∈ S1 butx /∈ S2 andmultS1\S2(x) = multS1(x).

67
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6.2 The Theorem

Theorem 6.2.If G is a planar graph, thena′(G) ≤ ∆ + 12.

Proof: A well-known strategy that is used in proving coloring theorems in the context of planar

graphs is to make use of induction combined with the fact that there are someunavoidablecon-

figurations in any planar graph. Typically the existence of theseunavoidableconfigurations

are proved using the so calledcharging and discharging argument(See [37], for a compre-

hensive exposition). Loosely speaking, for the purpose of this paper, aconfigurationis a set

{v} ∪ N(v), wherev is some vertex inG, along with some information regarding the de-

grees of the vertices in{v} ∪N(v). For example, the following lemma illustrates how certain

unavoidable configurations appear in a planar graph:

Lemma 6.3. [40] Let G be a simple planar graph withδ ≥ 2, whereδ is the minimum degree

of graphG. Then there exists a vertexv in G with exactlydeg(v) = k neighboursv1, v2, . . . , vk

with deg(v1) ≤ deg(v2) ≤ . . . ≤ deg(vk) such that at least one of the following is true:

(A1) k = 2,

(A2) k = 3 anddeg(v1) ≤ 11,

(A3) k = 4 anddeg(v1) ≤ 7, deg(v2) ≤ 11,

(A4) k = 5 anddeg(v1) ≤ 6, deg(v2) ≤ 7, deg(v3) ≤ 11.

Let graphG be a minimum counter example with respect to the number of edges for the

statement in Theorem6.2. FromLemma 6.3 we know that there exists a vertexv in G such

that it belongs to one of the configurationsA1-A4. We now delete the edgevv1 to get a graph

G′, wherev andv1 are as inLemma 6.3. SinceG was the minimum counter example,G′

has an acyclic edge coloring using∆(G′) + 12 colors. Letc′ be such a coloring. Now if

∆(G′) < ∆(G), then we have at least one extra color forG and we can assign that color to

edgevv1 to get a valid coloring ofG, a contradiction to the fact thatG is a counter example.

Thus we have∆(G′) = ∆(G) = ∆. To prove the theorem forG, we may assume thatG

is 2-connected since if there are cut vertices inG, the acyclic edge coloring of the blocks

B1, B2 . . . Bk of G can easily be extended toG. Thus we have,δ(G) ≥ 2. We present the

proof in two parts based on which configuration the vertexv belongs to - The first part deals

with the case when there exists a vertexv that belongs to configurationA2,A3 or A4 and the
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second part deals with the case when there does not exists any vertexv in G that belongs to

configurationA2,A3 or A4.

6.2.1 There exists a vertexv that belongs to configurationA2,A3 or A4

Claim 6.4. For any valid coloringc′ of G′, |Fv ∩ Fv1| ≥ 2.

Proof: Suppose not. The case|Fv ∩ Fv1| = 0 is trivial. The reader can verify from close

examination of configurationsA2-A4 that |Fv ∪ Fv1| will be maximum for configurationA2

and therefore|Fv ∪ Fv1| = |Fv| + |Fv1| ≤ 2 + 10 = 12. Thus there are∆ candidate colors

for the edgevv1 and byLemma 2.3 all the candidate colors are valid, a contradiction to the

assumption thatG is a counter example. Thus we have|Fv ∩ Fv1| = 1. In this case it is easy

to see that|Fv ∪ Fv1| = |Fv| + |Fv1| − |Fv ∩ Fv1| ≤ 11 and hence there are at least∆ + 1

candidate colors for the edgevv1. Let Fv ∩ Fv1 = {α} and letu ∈ N(v) be a vertex such that

c′(v, u) = α. Now if none of the∆+1 candidate colors are valid for the edgevv1, then byFact

2.5, for eachγ ∈ C − (Fv ∪ Fv1), there exists a(α, γ, vv1) critical path. Sincec′(v, u) = α,

we have all the critical paths passing through the vertexu and henceSvu ⊆ C − (Fv ∪ Fv1).

This implies that|Svu| ≥ |C − (Fv ∪ Fv1)| ≥ (∆ + 12) − 11 = ∆ + 1, a contradiction since

|Svu| ≤ ∆− 1. Thus we have a valid color for the edgevv1, a contradiction to the assumption

thatG is a counter example. Thus|Fv ∩ Fv1| ≥ 2. ¤

Let Sv be a multiset defined asSv = Svv2 ] Svv3 ] . . . ] Svvk
. In view of Claim 6.4 and

Lemma6.3, 2 ≤ |Fv ∩ Fv1| ≤ 4. We consider each case separately.

case 1:|Fv ∩ Fv1
| = 2

Let Fv ∩ Fv1 = {1, 2} and letv′, v′′ ∈ NG′(v) andu′, u′′ ∈ NG′(v1) be such thatc′(v, v′) =

c′(v1, u
′) = 1 andc′(v, v′′) = c′(v1, u

′′) = 2. It is easy to see that|Fv ∪ Fv1| ≤ 10. Thus there

are at least∆ + 2 candidate colors for the edgevv1. If any of the candidate colors are valid for

the edgevv1, we are done. Thus none of the candidate colors are valid for the edgevv1. This

implies that there exist either a(1, θ, vv1) or (2, θ, vv1) critical path for each candidate colorθ.

Claim 6.5. With respect to the coloringc′, the multisetSv contains at least|Fv1| − 1 colors

fromFv1.

Proof: Suppose not. Then there are at least two colors inFv1 which are not inSv. Let ν andµ
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be any two such colors. Now assign colorsν andµ to the edgesvv′ andvv′′ respectively to get

a coloringc′′. Now sinceν, µ /∈ Sv, we haveν /∈ Svv′ andµ /∈ Svv′′. Moreoverµ, ν /∈ {1, 2}.
Thus the recoloringc′′ is proper. Now we claim that the coloringc′′ is acyclic also. Suppose

not. Then there has to be a bichromatic cycle containing at least one of the colorsν andµ.

Clearly this cannot be a(ν, µ) bichromatic cycle sinceµ /∈ Svv′. Therefore it has to be a

(ν, λ) or (µ, λ) bichromatic cycle whereλ ∈ Fv(c
′′) − {ν, µ}. Let u be a vertex such that

c′′(v, u) = λ. This means that there was already a(λ, ν, vv′) or (λ, µ, vv′′) critical path with

respect to the coloringc′. This implies thatν ∈ Svu or µ ∈ Svu, implying thatν ∈ Sv or

µ ∈ Sv, a contradiction. Thus the coloringc′′ is acyclic. Letu1, u2 ∈ NG′(v1) be such that

c′′(v1, u1) = ν andc′′(v1, u2) = µ.

Note that|Fv ∪ Fv1| ≤ 10 (The maximum value of|Fv ∪ Fv1| is attained when the graph

has configurationA2). Therefore there are at least∆ + 2 candidate colors for the edgevv1.

If any of the candidate colors are valid for the edgevv1, then we are done as this is a contra-

diction to the assumption thatG is a counter example. Thus none of the candidate colors are

valid for the edgevv1 and therefore there exist either a(ν, θ, vv1) or (µ, θ, vv1) critical path

for each candidate colorθ. Let Cν andCµ respectively be the set of candidate colors which

are forming critical paths with colorsν andµ. Then clearlyCν ⊆ Sv1u1 andCµ ⊆ Sv1u2 since

c′′(v1, u1) = ν andc′′(v1, u2) = µ. Now weexchange the colorsof the edgesvv′ andvv′′ to

get a modified coloringc. Note thatc is proper sinceµ /∈ Svv′ andν /∈ Svv′′ . By Lemma

2.8, all (ν, β, vv1) critical paths whereβ ∈ Cν and all(µ, γ, vv1) critical paths whereγ ∈ Cµ

are broken. Now if none of the colors inCν are valid for edgevv1, then it means that for

eachβ ∈ Cν , there exists a(µ, β, vv1) critical path with respect to coloringc, implying that

Cν ⊆ Sv1u2. Since the recoloring involved no candidate colors, we still haveCµ ⊆ Sv1u2. Thus

we have(Cν ∪ Cµ) ⊆ Sv1u2. But |Cν ∪ Cµ| ≥ ∆ + 2 which implies that|Sv1u2| ≥ ∆ + 2, a

contradiction since|Sv1u2| ≤ ∆− 1. ¤

Claim 6.6. With respect to the coloringc′, there exists at least two colorsα andβ in C − Fv1

with multiplicity at most one inSv.

Proof: In view of Claim 6.5 we have
∑

x∈C−Fv
multSv(x) =‖ Sv ‖ −(|Fv| − 1). Thus if

‖ Sv ‖ −(|Fv1|−1) ≤ 2|(C−Fv1)|−3, then there exist at least two colorsα andβ in C−Fv1

with multiplicity at most one inSv. Thus it is enough to prove‖ Sv ‖≤ 2|C| − |Fv1| − 4 ≤
2∆+24−|Fv1−4 = 2∆+20−|Fv1|. Now we can easily verify that‖ Sv ‖ +|Fv1| ≤ 2∆+20

for configurationsA2− A4 as follows:
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• ForA2, ‖ Sv ‖ +|Fv1| ≤ (deg(v2)−1)+(deg(v3)−1)+|Fv1| = (∆−1)+(∆−1) +10 =

2∆ + 8.

• For A3, ‖ Sv ‖ +|Fv1| ≤ (deg(v2) − 1) + (deg(v3) − 1) + (deg(v4) − 1) + |Fv1| =

10 + (∆− 1) + (∆− 1) + 6 = 2∆ + 14.

• ForA4, ‖ Sv ‖ +|Fv1| ≤ (deg(v2)− 1) + (deg(v3)− 1) + (deg(v4)− 1) + (deg(v5)−
1) + |Fv1| = 6 + 10 + (∆− 1) + (∆− 1) + 5 = 2∆ + 19.

¤

The colorsα and β of Claim 6.6 are crucial to the proof. Now we make another claim

regardingα andβ:

Claim 6.7. With respect to the coloringc′, α andβ ∈ Fv.

Proof: Without loss of generality, letα /∈ Fv. Then recalling thatα /∈ Fv1, α is a candidate

for the edgevv1. If it is not valid, then there exists either a(1, α, vv1) or (2, α, vv1) critical

path with respect toc′. Since the multiplicity ofα in Sv is at most one, we have the colorα in

exactly one ofSvv′ or Svv′′ . Without loss of generality letα ∈ Svv′′ . Hence there exists either

a (2, α, vv1) critical path with respect toc′.

Now recolor the edgevv′ with color α to get a coloringc. It is obvious that the recol-

oring c is proper sinceα /∈ Fv(c
′) andα /∈ Svv′(c

′). It is also valid since if a bichromatic

cycle gets formed due to this recoloring, it has to be a(α, γ) bichromatic cycle for some

γ ∈ Fv(c) − c(v, v′). Let a ∈ NG′(v) be such thatc(v, a) = γ. Then the(α, γ) bichromatic

cycle should contain the edgeva and thereforeγ ∈ Sva with respect toc. But we know thatv′′

is the only vertex inNG′(v) such thatα ∈ Svv′′ . Thereforea = v′′. This implies thatγ = 2 and

there existed a(2, α, vv′) critical path with respect to the coloringc′. This is a contradiction to

the Fact2.1 since there already existed a(2, α, vv1) critical path with respect to the coloring

c′. Thus the recoloringc is valid. Now with respect to the coloringc, |Fv ∩ Fv1| = 1, a contra-

diction toClaim 6.4. ¤

Note thatα, β /∈ {1, 2} sinceα, β /∈ Fv1. In view ofClaim 6.7, we have{1, 2, α, β} ⊆ Fv

and thus|Fv| ≥ 4, which implies thatdeg(v) ≥ 5. Thus the vertexv belongs to configuration

A4. Thereforedeg(v) = 5 andFv = {1, 2, α, β}. There are at least∆+12−(5+4−2) = ∆+5
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candidate colors for the edgevv1. Also recall thatdeg(v2) ≤ 7, c′(v, v′) = c′(v1, u
′) = 1 and

c′(v, v′′) = c′(v1, u
′′) = 2.

Claim 6.8. With respect to the coloringc′, v2 /∈ {v′, v′′}.
Proof: Suppose not. Then without loss of generality letv2 = v′ andc′(v, v2) = 1. Now if none

of the∆ + 5 candidate colors are valid for the edgevv1, then they all form critical paths that

contain either the edgevv′ or the edgevv′′. Now |Svv′| + |Svv′′ | ≤ 6 + ∆− 1 = ∆ + 5. Since

each of the∆ + 5 candidate colors has to be present in either inSvv′ or Svv′′ , we infer that

Svv′′ ∪Svv′ is exactly the set of candidate colors, i.e.,|Svv′| + |Svv′′ | = ∆+5. This requires that

|Svv′| = 6, |Svv′′ | = ∆− 1 andSvv′′ ∩ Svv′ = ∅. Since for eachγ ∈ Svv′′ , we have(2, γ, vv1)

critical path containingu′′, we can infer thatSvv′′ ⊆ Sv1u′′ (Recall thatc′(v1, u
′′) = 2). But

since|Sv1u′′ | ≤ ∆− 1, we inferSvv′′ = Sv1u′′. Thus we haveSv1u′′ ∩ Svv′ = Svv′′ ∩ Svv′ = ∅.
Now we exchange the colors of the edgesvv′ andvv′′ to get a coloringc i.e., c(v, v′) = 2

andc(v, v′′) = 1. The coloringc is proper since2 /∈ Svv′(c
′) and1 /∈ Svv′′(c

′) (Recall that

Svv′(c
′) andSvv′′(c

′) contain only candidate colors). The coloring is also valid: If a bichro-

matic cycle gets formed it has to be a(1, η) or (2, η) bichromatic cycle whereη ∈ Fv. Clearly

it cannot be a(1, 2) bichromatic cycle since1 /∈ Svv′(c) and thereforeη = α or β (Recall

thatFv = {1, 2, α, β}). This implies that eitherα or β belongs toSvv′ ∪ Svv′′ . But we know

thatSvv′ ∪ Svv′′ is exactly the set of candidate colors for the edgevv1, a contradiction since

α, β ∈ Fv cannot be candidate colors for the edgevv1. Therefore the coloringc is acyclic. By

Lemma 2.8, all the existing critical paths are broken. Now consider a colorγ ∈ Svv′. If it is

still not valid then there has to be a(2, γ, vv1) critical path sincec(v, v′) = 2 andγ /∈ Svv′′(c).

This implies thatγ ∈ Sv1u′′(c), a contradiction sinceSv1u′′(c) ∩ Svv′(c) = ∅. Thus we have

a valid color for the edgevv1, a contradiction to the assumption thatG is a counter example.

Thusv2 /∈ {v′, v′′}. ¤

FromClaim 6.8, we infer thatc′(v, v2) /∈ Fv ∩Fv1 sinceFv ∩Fv1 = {c′(v, v′), c(v, v′′)} =

{1, 2}. Therefore we havec(v, v2) ∈ {α, β} sinceFv = {1, 2, α, β}. Without loss of generality

let c(v, v2) = α. We know that the colorβ can be in at most one ofSvv′ andSvv′′ by Claim6.6.

Now letv′ be such thatβ /∈ Svv′ . Note thatC− (Svv′ ∪Fv ∪Fv1) 6= ∅ since|Svv′ ∪Fv ∪Fv1| ≤
∆− 1 + 4 + 5− 2 = ∆ + 6. Assign a colorθ ∈ C − (Svv′ ∪ Fv ∪ Fv1) to the edgevv′ to get a

coloringc′′. If it is valid, then letc = c′′.

If the recoloring is not valid then there has to be a bichromatic cycle created due to the



6.2. The Theorem 73

recoloring. Now the bichromatic cycle should involve one of the colors2, α, β along with

θ. Since the bichromatic cycle contains a color fromSvv′ andβ /∈ Svv′ , it cannot be a(θ, β)

bichromatic cycle. Now with respect to the coloringc′, color θ was not valid for the edge

vv1 implying that there existed either a(1, θ, vv1) or a(2, θ, vv1) critical path. But(1, θ, vv1)

critical path was not possible sinceθ /∈ Svv′ by the choice ofθ. Thus there existed a(2, θ, vv1)

critical path with respect toc′. Thus by Fact2.1, there cannot be a(2, θ, vv′) critical path

with respect toc′ and hence there cannot be a(2, θ) bichromatic cycle inc′′ formed due to the

recoloring. Thus if there is a bichromatic cycle formed, then it has to be a(α, θ) bichromatic

cycle, which implies thatα ∈ Svv′ .

Now taking into account the fact thatα is in Svv′ as well asFv, we get|Svv′ ∪ Fv ∪ Fv1| ≤
∆ − 1 + 4 + 5 − 2 − 1 = ∆ + 5 and therefore|Svv′ ∪ Fv ∪ Fv1 ∪ Svv2| ≤ ∆ + 5 + 6 =

∆ + 11. ThusC − (Svv′ ∪ Fv ∪ Fv1 ∪ Svv2) 6= ∅. Now recolor the edgevv′ using a color

γ ∈ C − (Svv′ ∪ Fv ∪ Fv1 ∪ Svv2) to get a coloringc. Clearly the recoloring is proper. It

is also valid since if a bichromatic cycle gets formed it has to be a(α, γ) bichromatic cycle

(Note that the(2, γ) and(β, γ) bichromatic cycles are argued out as before). Butγ /∈ Svv2, a

contradiction. Thus the coloringc is acyclic.

With respect to the coloringc we have|Fv ∩ Fv1| = 1, a contradiction to Claim6.4.

case 2:|Fv ∩ Fv1
| = 3

Note that in this case|Fv| ≥ 3 and thereforedeg(v) ≥ 4. Thusv belongs to either configuration

A3 or A4. Let S ′v be a multiset defined byS ′v = Sv \ (Fv1 ∪ Fv). Let v′, v′′, v′′′ ∈ NG′(v) be

such that{c(v, v′), c(v, v′′), c(v, v′′′)} = Fv ∩ Fv1. Also let c(v, v′) = 1, c(v, v′′) = 2 and

c(v, v′′′) = 3.

Claim 6.9. With respect toc′, ‖ S ′v ‖≤ 2∆ + 11.

Proof: Whendeg(v) = 4, it is clear that‖ S ′v ‖≤ (deg(v2)−1)+(deg(v3)−1)+(deg(v4)−1) ≤
10 + ∆− 1 + ∆− 1 = 2∆ + 8. On the other hand whendeg(v) = 5, try to recolor one of the

edgesvv′, vv′′, vv′′′ using a color inC − (Fv ∪Fv1). There are∆ + 6 colors inC − (Fv ∪Fv1)

and if any of these colors is valid for one ofvv′, vv′′ or vv′′′, then the situation reduces to

case 1 i.e.,|Fv ∩ Fv1| = 2. Otherwise there has to be a bichromatic cycle formed during each

recoloring. Since such a bichromatic cycle has to be(γ1, γ2) bichromatic cycle whereγ1 is the

color used in the recoloring andγ2 ∈ Fv − {γ1}, we infer thatSvv′ , Svv′′ andSvv′′′ contain at

least one color fromFv. Thus we have‖ S ′v ‖≤‖ Sv ‖ −3 ≤ (deg(v2)− 1) + (deg(v3)− 1) +



74 Chapter 6. Planar Graphs-General case

(deg(v4)− 1) + (deg(v5)− 1)− 3 ≤ 6 + 10 + ∆− 1 + ∆− 1− 3 = 2∆ + 11. ¤

Claim 6.10. With respect toc′, there exists at least one colorα ∈ C − (Fv ∪ Fv1) with

multiplicity at most one inS ′v.

Proof: Sincev belongs to either configurationA3 or configurationA4, we have|Fv ∪ Fv1| ≤
9−3 = 6. Thus|C− (Fv ∪Fv1)| ≤ ∆+6. By Claim 6.9we have‖ S ′v ‖≤ 2∆+11 and from

this it is easy to see that there exists at least one colorα ∈ C − (Fv ∪ Fv1) with multiplicity at

most one inS ′v. ¤

Note thatα ∈ C − (Fv ∪ Fv1), whereα is the color fromClaim 6.10 is a candidate

color for the edgevv1. If it is not valid then there has to be a(θ, α, vv1) critical path, where

θ ∈ {1, 2, 3}. By Claim 6.10, α can be present in at most one ofSvv′, Svv′′ andSvv′′′. Without

loss of generality letα ∈ Svv′′. Thus there exists a(2, α, vv1) critical path with respect to the

coloringc′. Recolor the edgevv′ using the colorα to get a coloringc. Clearly the recoloring

is proper sinceα /∈ Svv′ andα /∈ Fv. The recoloring is valid since if a bichromatic cycle gets

formed then it has to contain the colorα as well as a colorγ ∈ Fv(c) − {α}. If γ = c(v, w),

thenα ∈ Svw, for the (α, γ) bichromatic cycle to get formed. Butv′′ is the only vertex in

NG′(v) such thatα ∈ Svv′′ . Thusw = v′′, γ = 2 and it has to be a(α, 2) bichromatic

cycle. This means that there existed a(2, α, vv′) critical path with respect to the coloringc′, a

contradiction byFact 2.1since there already existed a(2, α, vv1) critical path with respect to

the coloringc′. Thus the coloringc is acyclic. This reduces the situation to case 1.

case 3:|Fv ∩ Fv1
| = 4

Note that in this case|Fv| ≥ 4 and sincedeg(v) ≤ 5, we havedeg(v) = 5. In other words,v

belongs to configurationA4. Let S ′v be a multiset defined byS ′v = Sv \ (Fv1 ∪ Fv). Also let

c(v, v2) = 1, c(v, v3) = 2, c(v, v4) = 3 andc(v, v5) = 4.

Now try to recolor an edge incident onv with a candidate color fromC − (Fv ∪ Fv1).

If the recoloring is valid then the situation reduces to case 2. Otherwise there has to be a

bichromatic cycle created due to recoloring with one of the colors fromFv. This implies that

Fv ∩S ′v 6= ∅. Thus we have‖ S ′v ‖≤‖ Sv ‖ −1 ≤ (deg(v2)− 1) + (deg(v3)− 1) + (deg(v4)−
1) + (deg(v5) − 1) ≤ 6 + 10 + ∆ − 1 + ∆ − 1 − 1 = 2∆ + 13. Now since there are

|C− (Fv ∪Fv1)| ≥ ∆+12− (4+5− 4) = ∆+7 candidate colors and‖ S ′v ‖≤ 2∆+13, it is



6.2. The Theorem 75

easy to see that there exists at least one candidate colorα with multiplicity at most one inS ′v.

Note thatα ∈ C − (Fv ∪ Fv1) is a candidate color for the edgevv1. If it is not valid then

there has to be a(θ, α, vv1) critical path, whereθ ∈ {1, 2, 3, 4}. We know thatα can be present

in at most one ofSvv2, Svv3, Svv4 andSvv5. Without loss of generality letα ∈ Svv3. Thus there

exists a(2, α, vv1) critical path with respect to the coloringc′. Recolor the edgevv2 using the

color α to get a coloringc. Clearly the recoloring is proper sinceα /∈ Svv2 andα /∈ Fv. The

recoloring is valid since if a bichromatic cycle gets formed then it has to contain the colorα

as well as a colorγ ∈ Fv(c) − {α}. If γ = c(v, w), thenα ∈ Svw, for the(α, γ) bichromatic

cycle to get formed. Butv3 is the only vertex inNG′(v) such thatα ∈ Svv3. Thusw = v3,

γ = 2 and it has to be a(α, 2) bichromatic cycle. This means that there existed a(2, α, vv2)

critical path with respect to the coloringc′, a contradiction byFact 2.1 since there already

existed a(2, α, vv1) critical path with respect to the coloringc′. Thus the coloringc is acyclic.

This reduces the situation to case 2.

6.2.2 There exists no vertexv that belongs to configurationA2,A3 or A4

Then clearly byLemma 6.3, we can assume that there is a vertexv that belongs to config-

urationA1, i.e., deg(v) = 2. Now delete all the degree2 vertices fromG to get a graph

H. Now since the graphH is also planar, there exists a vertexv′ in H such thatv′ be-

longs to one of the configurationsA1 − A4, sayA′. The vertexv′ was not already in con-

figuration A′ in G. This means that the degree of at least one of the vertices of the con-

figuration A′ i.e., {v′} ∪ NH(v′), got decreased by the removal of 2-degree vertices. Let

P = {x ∈ {v′} ∪NH(v′) : dH(x) < dG(x)}. Let u be the minimum degree vertex inP in the

graphH. Now it is easy to see thatdH(u) ≤ 11 sincev′ did not belong toA′ in G.

Let N ′(u) = {x|x ∈ NG(u) anddG(u) = 2}. Let N ′′(u) = NG(u)−N ′(u). It is obvious

thatN ′′(u) = NH(u).

Sinceu ∈ P anddH(u) ≤ 11, we have|N ′(u)| ≥ 1 andN ′′(u) ≤ 11. In G let u′ ∈ N ′(u)

be a two degree neighbour ofu such thatN(u′) = {u, u′′}. Now by inductionG − {uu′} is

acyclically edge colorable using∆ + 12 colors. Letc′ be such a coloring. With respect to

a partial coloringc′ let F ′
u(c

′) = {c′(u, x)|x ∈ N ′(u)} andF ′′
u (c′) = {c′(u, x)|x ∈ N ′′(u)}.

Now if c(u′, u′′) /∈ Fu we are done since|Fu∪Fu′| ≤ ∆ and thus there are at least12 candidate

colors which are also valid byLemma 2.3.

We know that|F ′′
v | ≤ 11. If c′(u′, u′′) ∈ F ′

v, then letc = c′. Else if c′(u′, u′′) ∈ F ′′
v ,

then recolor edgeu′u′′ using a color fromC − (Su′u′′ ∪ F ′′
v ) to get a coloringc (Note that
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|C − (Su′u′′ ∪ F ′′
v )| ≥ ∆ + 12 − (∆ − 1 + 11) = 2 and sinceu′ is a pendant vertex in

G− {uu′} the recoloring is valid). Now ifc(u′, u′′) /∈ Fu the proof is already discussed. Thus

c(u′, u′′) ∈ F ′
u.

With respect to coloringc, let a ∈ N ′(v) be such thatc(v, a) = c(u′, u′′) = 1. Now if

none of the candidate colors inC − (Fu ∪ Fu′) are valid for the edgeuu′, then byFact 2.5,

for eachγ ∈ C − (Fu ∪ Fu′), there exists a(1, γ, uu′) critical path. Sincec′(v, a) = 1, we

have all the critical paths passing through the vertexa and henceSva ⊆ C − (Fu ∪ Fu′). This

implies that|Sva| ≥ |C − (Fu ∪Fu′)| ≥ ∆ + 12− (1 + ∆− 1− 1) = 13, a contradiction since

|Sva| = 1. Thus we have a valid color for the edgeuu′, a contradiction to the assumption that

G is a counter example.

¥



Chapter 7

Triangle Free Planar Graphs

In this chapter we look at acyclic edge coloring of triangle free planar graphs.

7.1 Previous Results

The acyclic chromatic index of special classes of planar graphs characterized by some lower

bounds on girth or the absence of short cycles have also been studied. In [29] an upper bound

of ∆ + 2 for planar graphs of girth at least5 has been proved. Fiedorowicz and Borowiecki

[23] proved an upper bound of∆ + 1 for planar graphs of girth at least6 and an upper bound

of ∆ + 15 for planar graphs without cycles of length4. In [24], an upper bound of∆ + 6 for

triangle free planar graphs has been proved. In this chapter we improve the bound to∆ + 3.

In fact we prove a more general theorem as described below:

Definition 7.1. Property A : Let G be a simple graph. If every induced subgraphH of G

satisfies the condition|E(H)| ≤ 2|V (H)| − 1, we say that the graphG satisfiesProperty A.

If G satisfiesProperty A, then every subgraph ofG also satisfiesProperty A.

Note that triangle free planar graphs, 2-degenerate graphs, 2-fold graphs (union of two

forests), etc. are some classes of graphs which satisfyProperty A. The earlier known bound

for these classes of graphs was∆ + 6 by [24].

The following is the main result of [11]. We will need this result for proving our theorem.

Lemma 7.2.[11] Let G be a connected graph onn vertices,m ≤ 2n− 1 edges and maximum

degree∆ ≤ 4, thena′(G) ≤ 6.

77
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7.2 The Theorem

Theorem 7.3.If a graphG satisfiesProperty A, thena′(G) ≤ ∆(G) + 3.

Proof: A well-known strategy that is used in proving coloring theorems in the context of sparse

graphs is to make use of induction combined with the fact that there are someunavoidablecon-

figurations in any such graphs. Typically the existence of theseunavoidableconfigurations are

proved using the so calledcharging and discharging argument(See [37], for a comprehensive

exposition).Lemma 7.4 will establish that one of the five configurationsB1, . . . , B5 is un-

avoidable in any graphG that satisfiesProperty A. Loosely speaking, for the purpose of this

paper, aconfigurationis a subsetQ of V , where one special vertexv ∈ Q is called thepivot

of the configuration andQ = {v} ∪ N(v). Besidesv, one more vertex inQ will be given a

special status: This vertex, called theco-pivotof the configuration, is selected such that it is

a vertex of smallest degree inN(v) and will be denoted byu. Moreover the vertices ofN(v)

will be partitioned into two sets namelyN ′(v) andN ′′(v). The members ofN ′(v) andN ′′(v)

are explicitly defined for each configuration.

Lemma 7.4.Let G be a simple graph such that|E(G)| ≤ 2|V (G)| − 1 with minimum degree

δ ≥ 2. Then there exists a vertexv in G with k = deg(v) neighbours such that at least one of

the following is true:

(B1) k = 2,

(B2) k = 3 with N(v) = {u, v1, a} such thatdeg(u), deg(v1) ≤ 4. N ′(v) = {u, v1} and

N ′′(v) = {a},

(B3) k = 5 with N(v) = {u, v1, v2, a, b} such thatdeg(u), deg(v1), deg(v2) ≤ 3. N ′(v) =

{u, v1, v2} andN ′′(v) = {a, b},

(B4) k = 6 with N(v) = {u, v1, v2, v3, v4, a} such thatdeg(u), deg(v1), deg(v2), deg(v3),

deg(v4) ≤ 3. N ′(v) = {u, v1, v2, v3, v4} andN ′′(v) = {a},

(B5) k ≥ 7 with N(v) = {u, v1, v2, . . . , vk−1} such thatdeg(u), deg(v1), deg(v2), deg(v3),

. . ., deg(vk−1) ≤ 3. N ′(v) = {u, v1, v2, . . . , vk−1}.

Proof: We use the discharging method to prove the lemma. LetG = (V, E), δ ≥ 2, |V | = n

and|E| = m ≤ 2n− 1. We define a mappingφ : V 7−→ R using the ruleφ(v) = deg(v)− 4

for eachv ∈ V . The valueφ(v) is called the charge on the vertexv. Sincem ≤ 2n − 1, it is
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easy to see that
∑

v∈V φ(v) ≤ −2. Now we redistribute the charges on the vertices using the

following rule. (This procedure is usually known asdischarging: Note that the total charge

has to remain same after the discharging.)

• If vertex v has degree at least 5, then it gives a charge of1
2

to each of its 3-degree

neighbours.

After discharging, each vertexv has a new chargeφ′(v). Now since the total charge is

conserved, we have
∑

v∈V φ(v) =
∑

v∈V φ′(v) ≤ −2. Now suppose the graphG has none of

the configurationsB1, . . . , B5. Then we will show that for each vertexv of G, φ′(v) ≥ 0 and

therefore
∑

v∈V φ′(v) ≥ 0, a contradiction. SinceG does not have configurationB1, we have

δ ≥ 3. Now we calculate the charge on each vertexv of G as follows:

• If deg(v) = 3: SinceG does not have configurationB2, at least two of the neighbours

have degree at least 5. Thusv receives a charge of1
2

each from at least two of its

neighbours. Thusφ′(v) ≥ deg(v)− 4 + 2 · 1
2

= 0.

• If deg(v) = 4: A four degree vertex does not give or receive any charge. Thusφ′(v) =

φ(v) = deg(v)− 4 = 0.

• If deg(v) = 5: SinceG does not have configuration B3, at most two of the neighbours

have degree 3. Thusv gives a charge of1
2

each to at most two of its neighbours. Thus

φ′(v) ≥ deg(v)− 4− 2 · 1
2

= 0.

• If deg(v) = 6: SinceG does not have configuration B4, at most four of the neighbours

have degree 3. Thusv gives a charge of1
2

each to at most four of its neighbours. Thus

φ′(v) ≥ deg(v)− 4− 4 · 1
2

= 0.

• If deg(v) ≥ 7: SinceG does not have configuration B5, at mostdeg(v) − 1 of the

neighbours have degree 3. Thusv gives a charge of1
2

each to at mostdeg(v) − 1 of its

neighbours. Thusφ′(v) ≥ deg(v)− 4− (deg(v)− 1) · 1
2

= 1
2
(deg(v)− 7) ≥ 0.

Thus we have established thatφ′(v) ≥ 0, ∀v ∈ V and therefore
∑

v∈V φ′(v) ≥ 0, a

contradiction.

¥
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We prove the theorem by way of contradiction. LetG be a minimum counter example

(with respect to the number of edges) for the theorem statement among the graphs satisfying

Property A. ClearlyG is 2-connected since if there are cut vertices inG, the acyclic edge

coloring of the blocksG1, G2, . . . , Gk of G can easily be extended toG (Note that each block

satisfies theProperty A since they are subgraphs ofG). Thus we have,δ(G) ≥ 2. Also from

Lemma 7.2, we know thata′(G) ≤ ∆+3, when∆ ≤ 4. Therefore we can assume that∆ ≥ 5.

Thus we have,

Assumption 7.5.For the minimum counter exampleG, δ(G) ≥ 2 and∆(G) ≥ 5.

By Lemma 7.4, graphG has a vertexv, such that it is the pivot of one of the configurations

B1, . . . , B5. We present the proof in two parts based on the configuration thatv belongs to.

The first part deals with the case whenG has a vertexv that belongs to configurationB2, B3,

B4 or B5 and the second part deals with the case whenG does not have a vertexv that belongs

to configurationB2, B3, B4 or B5.

7.2.1 There exists a vertexv that belongs to configurationB2, B3, B4 or

B5

Let v be a vertex such that it is the pivot of one of the configurationsB2, . . . , B5 and letu be

the co-pivot. SinceG is a minimum counter example, the graphG− {vu} is acyclically edge

colorable using∆+3 colors. Letc′ be a valid coloring ofG−{vu} and hence a partial coloring

of G. We now try to extendc′ to a valid coloring ofG. With respect to the partial coloringc′

let F ′
v(c

′) = {c′(v, x)|x ∈ N ′(v)} andF ′′
v (c′) = {c′(v, x)|x ∈ N ′′(v)} i.e.,F ′′

v = Fv − F ′
v.

Claim 7.6. With respect to any valid coloringc′ of G− {uv}, |Fu ∩ Fv| ≥ 1

Proof: Suppose not. ThenSvu ∩ Suv = ∅ and byLemma 2.3, all the candidate colors are

valid for the edgevu. It is easy to verify that irrespective of which configurationv belongs to,

|Fu ∪Fv| ≤ ∆− 1 + 2 = ∆ + 1. Therefore there are at least two candidate colors for the edge

vu which are also valid, a contradiction to the assumption thatG is a counter example. ¤

Claim 7.7. ∀x ∈ N(v), we havedeg(x) ≥ 3.

Proof: Suppose not. Then byAssumption 7.5, it is clear that the degree of the co-pivot,
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deg(u) = 2. Let N(u) = {v, v′}. It is easy to verify from the description of configurations

B2 − B5 and the fact thatdeg(u) = 2 that there can be at most two vertices inN(v) whose

degrees are greater than 3. By Claim7.6, we know thatc′(u, v′) ∈ Fv. Let Dv = Dv(c
′) =

{c′(v, x)|degG(x) ≤ 3}. Clearly have|Dv| ≤ 2.

If c′(u, v′) ∈ Fv −Dv, then letc = c′. Else ifc′(u, v′) ∈ Dv, then recolor edgeuv′ using a

color fromC−(Suv′∪Dv) to get a coloringc (Note that|C−(Suv′∪Dv)| ≥ ∆+3−(∆−1+2) =

2 and sinceu′ is a pendant vertex inG− {uu′} the recoloring is valid). Now ifc(u, v′) /∈ Fv,

then it a contradiction to Claim7.6. Thusc(u, v′) ∈ Fv −Dv.

With respect to coloringc, let c(u, v′) = c(v, v1). Now there are at least four candidate

colors for the edgeuv since|Fu ∪ Fv| ≤ ∆ − 1. If none of them are valid then they all have

to be actively present inSvv1, implying that|Svv1| ≥ 4, a contradiction since|Svv1| ≤ 3. Thus

there exists a color valid for the edgeuv, a contradiction to the assumption thatG is a counter

example. ¤

Claim 7.8. deg(v) > 3. Thereforev does not belong toConfiguration B2.

Proof: Supposev belongs toConfiguration B2. LetN(v) = {u, v1, a} such thatdeg(u) ≤ 4

anddeg(v1) ≤ 4. We also know fromClaim 7.7 thatdeg(u) ≥ 3. Let N(u) = {x, y, v}, if

deg(u) = 3 and letN(u) = {x, y, z, v}, if deg(u) = 4. Now the following cases occur:

• |Fu ∩ Fv| = 2.

Let Fu ∩ Fv = {1, 2}. Also let c(u, x) = c(v, a) = 1 and c(u, y) = c(v, v1) = 2.

Since|Fv ∪ Fu| ≤ 3, there are at least∆ candidate colors for the edgevu. If none of

them are valid then all those colors are actively present either inSvv1 or Sva. Recalling

that |Sva| ≤ ∆ − 1 we can infer that there is at least one colorα ∈ C − (Fv ∪ Fu)

that does not belong toSva. Note that|Svv1 ∪ Fv ∪ Fu| ≤ 6 since |Svv1| ≤ 3 and

|Fv ∪ Fu| ≤ 3. Since∆ ≥ 5, we haveC − (Svv1 ∪ Fv ∪ Fu) 6= ∅. Recolor the edge

vv1 with the a colorβ from C − (Svv1 ∪ Fv ∪ Fu) to get a coloringc. The coloringc

is valid because if a bichromatic cycle gets created due to recoloring then it has to be

a (β, 1) bichromatic cycle sincec(v, a) = 1, implying that there existed a(1, β, vv1)

critical path with respect to coloringc′. Recall that colorβ was not valid for the edge

vu. Sinceβ /∈ Svv1, it implies that colorβ was actively present inSva. This implies that

there existed a(1, β, vu) critical path with respect to coloringc′. Therefore byFact 2.1,

there cannot exists a(1, β, vv1) critical path with respect toc′, a contradiction. Thus the

coloringc is valid. Now inc we haveFv ∩ Fu = {1} andα /∈ Sva. Thus colorα is valid
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for the edgevu, a contradiction to the assumption thatG is a counter example.

• |Fu ∩ Fv| = 1.

Let Fu ∩ Fv = {1}. Now if c′(v, v1) ∈ Fu ∩ Fv, then letc′′ = c′. Otherwise let

c(u, x) = c(v, a) = 1 andc′(v, v1) = 4. If deg(u) ≤ 3, then|Fv ∪ Fu| = 3. Now there

are at least∆ candidate colors for the edgevu. If none of them are valid then all the

candidate colors are actively present inSva, a contradiction since|Sva| ≤ ∆ − 1. Thus

there exists a valid color for the edgevu. Thusdeg(u) = 4 and |Fv ∪ Fu| = 4. Let

c(u, y) = 2 andc(u, z) = 3. There are at least∆−1 candidate colors for the edgevu. If

none of them are valid then all the candidate colors are actively present inSva andSux,

implying thatSva = Sux = C − {1, 2, 3, 4}. Now recolor edgeux using color4 to get a

coloringc′′. It is valid byLemma 2.3sinceSux ∩ Sxu = ∅ (Note thatSxu(c
′) = {2, 3}).

In both cases we have{c′′(v, v1)} = Fu ∩ Fv. If none of the colors are valid for the

edgevu, then all the candidate colors are actively present inSvv′, implying thatSvv1 =

C − {1, 2, 3, 4}. Since∆ ≥ 5, we have|C − {1, 2, 3, 4}| ≥ 8− 4 = 4. But |Svv1| ≤ 3,

a contradiction. Thus there exists a color valid for the edgevu, a contradiction to the

assumption thatG is a counter example.

¤

In view of Claim 7.8we havedeg(v) > 3. Thereforev belongs to configurationsB3,

B4 or B5. Now in view ofClaim 7.7, we have the following observation:

Observation 7.9.deg(u) = 3. LetN(u) = {v, w, z}.

In view of Claim 7.6, we have the following two cases:

case 1:|Fv ∩ Fu| = 2

Note that in this caseFu ⊆ Fv. Let Fu = Fu ∩ Fv = {1, 2}. Let c′(u, z) = 1 andc′(u,w) = 2.

Claim 7.10.Fu * F ′
v. ThereforeF ′′

v ∩ Fu 6= ∅.
Proof: Suppose not. Then letc′(v, v1) = c′(u, z) = 1 andc′(v, v2) = c′(u,w) = 2 (See the

statement ofLemma 7.4for the naming convention of the neighbours ofv). Since|Fu∪Fv| ≤
∆− 1, there are at least four candidate colors for the edgevu. If none of the candidate colors
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are valid for the edgevu, then we should haveSvv1 ⊂ C−(Fu∪Fv) andSvv2 ⊂ C−(Fu∪Fv)

since|Svv1| = 2 and|Svv2| = 2. Also Svv1 ∩ Svv2 = ∅. Note thatC − (Svv1 ∪ Fv ∪ Fu) 6= ∅
since|Fu ∪Fv| ≤ ∆− 1 and|Svv1| = 2. Now assign a color fromC − (Svv1 ∪Fu ∪Fv) to the

edgevv1 to get a coloringc. Recall thatSvv1 ⊂ C − (Fu ∪ Fv) and thereforeSvv1 ∩ Sv1v = ∅.
Thus byLemma 2.3, the coloringc is valid. With respect to the coloringc, Fu ∩ Fv = {2}
and therefore if a candidate color is not valid for the edgevu, it has to be actively present in

Svv2. Let α ∈ Svv1. Clearlyα ∈ C − (Fu ∪ Fv) is a candidate color for the edgevu. Now

sinceα /∈ Svv2 (recall thatSvv1 ∩Svv2 = ∅), colorα is valid for the edgevu, a contradiction to

the assumption thatG is a counter example. ¤

In view of Claim 7.10, F ′′
v ∩ Fu 6= ∅ and thereforeF ′′

v 6= ∅. It follows that vertexv does

not belong to configurationB5. RecallingClaim 7.8, we infer that the vertexv belongs to

either configurationB3 or B4. We take care of these two configurations separately below:

subcase 1.1:v belongs to configurationB3.

Sincedeg(v) = 5, we have|Fv| = 4. Let Fv = {1, 2, 3, 4}. Recall that by Claim7.10, we

haveF ′′
v ∩ Fu 6= ∅. Without loss of generality letc′(u, z) = c′(v, a) = 1 andc′(u,w) = 2.

Now there are∆− 1 candidate colors for the edgevu. If none of them are valid then all these

candidate colors are actively present in at least one ofSuz andSuw. Let Y = C − {1, 2, 3, 4}.
We make the following claim:

Claim 7.11. With respect to any valid coloringc′ of G− {uv}, Y = Suz andY = Suw.

Proof: We use contradiction to prove the claim. Firstly we make the following subclaim:

subclaim7.11.1: With respect to any valid coloringc′ of G− {uv}, one ofSuz or Suw is Y .

Proof: Suppose not. ThenY 6= Suz andY 6= Suw. Note that|Y | = ∆−1 while |Suz| ≤ ∆−1

and|Suw| ≤ ∆ − 1. Therefore there exist colorsα, β ∈ Y such thatα /∈ Suz andβ /∈ Suw.

Note thatα 6= β since otherwise colorα = β will be valid for the edgevu as there cannot exist

a (1, α, vu) or (2, α, vu) critical path with respect toc′. It follows thatα is actively present in

Suw andβ is actively present inSuz. Hence there exist(2, α, vu) and(1, β, vu) critical paths.

Now recolor edgeuz using colorα to get a coloringc′′. The recoloring is valid since if there

is a bichromatic cycle then it has to be a(α, 2) bichromatic cycle, implying that there existed
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a (2, α, uz) critical path inc′, a contradiction in view of Fact2.1 as there already existed a

(2, α, vu) critical path. With respect to coloringc′′, Fv ∩Fu = {2} and therefore if a candidate

color is not valid for the edgevu, it has to be actively present inSuw. Now colorβ /∈ Suw and

hence colorβ is valid for the edgevu, a contradiction to the assumption thatG is a counter

example. ¤

With respect to any valid coloringc′ of G − {uv}, in view of subclaim 7.11.1, letu′ ∈
{w, z} be such thatSuu′ = Y . Let {u′′} = {w, z} − {u′}. Now for contradiction assume that

Suu′′ 6= Y . Then clearly there exists a colorα ∈ Y such thatα /∈ Suu′′ .

subclaim 7.11.2: With respect to any valid coloringc′ of G− {uv}, if exactly one ofSuw and

Suz is Y , saySuu′ = Y , then all the colors ofY are actively present inSuu′ andc′(u, u′) ∈ F ′′
v .

Proof: Recolor the edgeuu′′ with the colorα to get a coloringc′′. Sinceα /∈ Suu′′ andα is

not valid for the edgevu, color α is actively present inSuu′ i.e., with respect to coloringc′,

there exists a(γ, α, vu) critical path, whereγ = c′(u, u′). Thus byFact 2.1, there cannot exist

a (γ, α, uu′′) critical path and hence the coloringc′′ is valid for the edgeuu′′. With respect to

coloringc′′, Fv ∩ Fu = {2}. Now all the∆ − 2 colors fromY − {α} are candidates for the

edgevu. If any one of them is valid we are done. Thus none of them are valid and hence they

all have to be actively present inSuu′. Recalling that the colorα was actively present inSuu′

we infer that all the colors ofY are in fact actively present inSuu′.

Now these colors will also be actively present inSvv′, wherev′ ∈ N(v) is such that

c′(v, v′) = c′(u, u′). This implies that|Svv′| = |Y | = ∆ − 1. Thereforev′ cannot bev1

or v2 since|Svv1| = 2 and |Svv2| = 2 while ∆ − 1 ≥ 4. Thusv′ ∈ N ′′(v) implying that

c′(u, u′) ∈ F ′′
v . ¤

Recalling that for configurationB3, |F ′′
v | = 2 and since1 ∈ F ′′

v , at least one of3, 4 belongs

to F ′
v. Without loss of generality let3 ∈ F ′

v. Now recolor edgeuu′ using color3 to get a color-

ing d from c′. The coloringd is valid byLemma 2.3since{d(u, u′′)} ∩ Suu′ = {2} ∩ Y = ∅.
With respect to the coloringd we haveSuu′ = Y andSuu′′ 6= Y . Thus bysubclaim 7.11.2,

d(u, u′) ∈ F ′′
v , a contradiction sinced(u, u′) = 3 /∈ F ′′

v . Thus we haveY = Suz andY = Suw.

¤

SinceY = Suz andY = Suw, we can recolor edgeuz anduw using color fromF ′
v (Recall
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that with respect to configurationB3, |F ′
v| = 2) to get a new valid coloringc. The coloringc is

valid byLemma 2.3sinceF ′
v ∩ Suz = F ′

v ∩ Y = ∅ andF ′
v ∩ Suw = F ′

v ∩ Y = ∅. This reduces

the situation toFu ⊆ F ′
v, a contradiction toClaim 7.10.

subcase 1.2:v belongs to configurationB4.

We havedeg(v) = 6 andF ′′
v = {c′(v, a)}. Therefore in view of Claim7.10, c′(v, a) has to

belong toFu. Let Fv = {1, 2, 3, 4, 5}. Without loss of generality letc′(u,w) = c′(v, v1) = 2

andc′(u, z) = c′(v, a) = 1. Now there are∆ − 2 candidate colors for the edgevu. If none

of them are valid then all these candidate colors are actively present in at least one ofSuz and

Suw. Let X = C − {1, 2, 3, 4, 5}.

Claim 7.12.X ⊆ Suz.

Proof: Suppose not. Then letα be a color such thatα ∈ X − Suz. This implies thatα is

actively present inSuw. Hence there exists a(2, α, vu) critical path sincec′(u,w) = 2. Now

recolor edgeuz using colorα to get a coloringc′′. The recoloring is valid since if there is

a bichromatic cycle then it has to be a(α, 2) bichromatic cycle, implying that there existed

a (2, α, uz) critical path inc′, a contradiction in view of Fact2.1 as there already existed a

(2, α, vu) critical path. Now with respect to coloringc′′, Fv ∩ Fu = {2} and therefore if none

of the colors inX − {α} is valid for the edgevu, they all should be actively present inSuw.

Recalling that colorα was actively present inSuw we have all the colors ofX actively present

in Suw and hence inSvv1 implying that |Svv1| ≥ |X| = ∆ − 2 ≥ 3, a contradiction since

|Svv1| = 2. Thus there exists a color valid for the edgevu, a contradiction to the assumption

thatG is a counter example. ¤

Claim 7.13.X ⊆ Suw.

Proof: Suppose not. Then letX * Suw and letα be a color such thatα ∈ X − Suw. Recolor

the edgeuw using the colorα. It is easy to see (by a similar argument used in the proof of

Claim7.12) thatc′′ is valid and all the colors ofX are actively present inSuz and hence inSva.

Since|X| = ∆ − 2 and |Sva| ≤ ∆ − 1, we have|Sva − X| ≤ 1. If Sva 6= X, then

the singleton setSva − X has to be a subset of{2, 3, 4, 5} since1 /∈ Sva. Without loss of

generality letSva − X = {2} (Reader may note that{2, 3, 4, 5} = F ′
v and these four colors

play symmetric roles inc′′ and therefore we need to argue with respect to only one of them).
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Recall thatc′′(v, v1) = c′(v, v1) = 2 and |Svv1| = 2. Of the colors3, 4 and5 let 3 /∈ Svv1.

Also let c′′(v, v2) = 3. Now delete the color on the edgevv2 and recolor the edgeva using

color3 to get a coloringd. We claim that the coloringd is valid: If Sva = X, then clearly it is

valid byLemma 2.3sinceSva ∩ Sav = ∅. Otherwise we haveSva −X = {2} and if there is a

bichromatic cycle with respect to the coloringd, it has to be a(2, 3) bichromatic cycle. Since

d(v, v1) = 2, it means that3 ∈ Svv1, a contradiction to our assumption. Thus the coloringd is

valid.

Now with respect to coloringd, we haved(u, z) = 1, d(u,w) = α, d(v, a) = 3, d(v, v1) =

2, d(v, v3) = 4 andd(v, v4) = 5. Edgesvu andvv2 are uncolored. Now letX ′ = C −
{2, 3, 4, 5}. Note that|X ′| ≥ 5 since∆ ≥ 6. We show below that there exists a color inX ′

that is valid for the edgevv2:

• Svv2 ⊂ X ′. Now any color inX ′ − Svv2 is valid for the edgevv2 by Lemma 2.3.

• |Svv2 ∩X ′| = 1. In this case exactly one color, sayθ ∈ {2, 4, 5} is present inSvv2 since

3 /∈ Svv2 (This is becausec′(v, v2) = 3). Now there are at least four candidate colors for

the edgevv2 since|Fv∪Fu| ≤ 4+2−1 = 5 and there are at least∆+3 ≥ deg(v)+3 =

6 + 3 = 9 colors inC. If none of the candidate colors are valid then a(θ, γ) bichromatic

cycle should form for eachγ ∈ X ′ − Svv2. Sinceθ ∈ {2, 4, 5}, we haveθ = d(v, vj)

for j = 1, 3 or 4. It means that each of the(θ, γ) bichromatic cycle should contain the

edgevvj and thusX ′ − Svv2 ⊆ Svvj
. But |X ′ − Svv2| ≥ 5− 2 + 1 ≥ 4 and|Svvj

| = 2, a

contradiction. Thus at least one color will be valid for the edgevv2.

• Svv2 ∩X ′ = ∅. Now all the colors inX ′ are candidates for the edgevv2. If none of them

are valid then all these candidate colors have to form bichromatic cycles with at least

one of the colors inSvv2 ∩ Fv. Now sincec′′(v, v2) = 3, color3 /∈ Svv2(d) and therefore

3 is not involved in any of these bichromatic cycles. Also since|Svv2| = 2, exactly two

of the colors from{2, 4, 5} and hence exactly two of the edges from{vv1, vv3, vv4} are

involved in these bichromatic cycles. But we know that|Svv1| = |Svv3| = |Svv4| = 2.

It follows that at most four bichromatic cycles can be formed. But|X ′| ≥ 5 and thus at

least one color will be valid for the edgevv2.

Let β ∈ X ′ be a valid color forvv2. Color the edgevv2 usingβ to get a new coloringd′. Now:

• If β ∈ C − {1, 2, 3, 4, 5, α}, thenFv ∩ Fu = ∅ with respect tod′, a contradiction to

Claim 7.6.
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• If β ∈ {1, α}, then there are at least three candidate colors for the edgevu since∆ ≥ 6.

Moreover we haveFv ∩ Fu = {β}. If none of these three candidate colors are valid for

the edgevu, then all of them have to be actively present inSvv2, implying that|Svv2| ≥ 3,

a contradiction since|Svv2| = 2. Therefore at least one of the three candidate colors is

valid for the edgevu.

Thus we have a valid color for edgevu, a contradiction to the assumption thatG is a

counter example. ¤

In view of Claim 7.12, Claim 7.13and from|Suz| , |Suw| ≤ ∆ − 1 and|X| = ∆ − 2,

it is easy to see that|(Suz ∪ Suw) − X| ≤ 2. Thus recalling that3, 4, 5 /∈ X, we infer that

{3, 4, 5}−(Suz∪Suw) 6= ∅. Now recolor the edgeuz using a colorµ ∈ {3, 4, 5}−(Suz∪Suw).

Clearlyµ is a candidate for the edgeuz sinced′(u,w) = 2 andµ /∈ Suz. Moreoverµ is valid

for uz since if otherwise a(2, µ) bichromatic cycle has to be formed containinguw, implying

thatµ ∈ Suw, a contradiction. This reduces the situation toFu ⊆ F ′
v, a contradiction toClaim

7.10.

case 2:|Fv ∩ Fu| = 1

Recall that byClaim 7.8 and Claim 7.7, v belongs to configurationsB3, B4 or B5 and

deg(u) = 3. As beforeN(u) = {v, w, z}. Also letFv ∩ Fu = {1}.

Claim 7.14. With respect to any valid coloring ofG − {vu}, Fu ∩ F ′
v = ∅. This implies that

Fv ∩ Fu ⊆ F ′′
v .

Proof: Suppose not. Then without loss of generality letc′(v, v1) = c′(u, z) = 1. Recalling

deg(u) = 3, |Fu| ≤ 2 and thus|Fu ∪ Fv| ≤ (∆ − 1) + 2 − 1 = ∆. It follows that there are

at least three candidate colors for the edgevu. If none of the candidate colors are valid for

the edgevu, then all these candidate colors have to be actively present inSvv1, implying that

|Svv1| ≥ 3, a contradiction since|Svv1| = 2. It follows that at least one of the three candidate

colors is valid for the edgevu, a contradiction to the assumption thatG is a counter example.¤

In view of Claim 7.14, F ′′(v) 6= ∅ and therefore the vertexv cannot belong to configuration

B5. We infer thatv has to belong to either configurationB3 or B4. We take care of these two
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subcases separately below:

subcase 2.1:v belongs to configurationB3.

Sincedeg(v) = 5, we have|Fv| = 4. LetFv∪Fu = {1, 2, 3, 4, 5}. By Claim7.14, we have

Fv ∩ Fu = {1} ⊆ F ′′
v = {c′(v, a), c′(v, b)}. Without loss of generality letc′(u, z) = c′(v, a) =

1. Also let c′(u,w) = 2, c′(v, b) = 3, c′(v, v1) = 4 andc′(v, v2) = 5. Since|Fv ∪ Fu| = 5,

there are∆− 2 candidate colors for the edgevu. If none of them are valid then there exists a

(1, α, vu) critical path for eachα ∈ C − (Fv ∪ Fu) = C − {1, 2, 3, 4, 5}. Thus we have the

following observation:

Observation 7.15.With respect to the coloringc′, each color inC − {1, 2, 3, 4, 5} is actively

present inSuz as well asSva.

Claim 7.16.Suz = C − {1, 3, 4, 5} and1, 4, 5 ∈ Suw.

Proof: SinceC − {1, 2, 3, 4, 5} ⊆ Suz and |Suz − (C − {1, 2, 3, 4, 5})| ≤ 1 we infer that

at most one of4, 5 can be present inSuz. Suppose one of4, 5 ∈ Suz. Without loss of

generality let4 ∈ Suz. Now recolor edgeuz using color5. It is valid by Lemma 2.3 since

Suz∩Szu = Suz∩{2} = ∅. Thus we have reduced the situation toFu∩F ′
v 6= ∅, a contradiction

to Claim 7.14. Thus we have4, 5 /∈ Suz. Recolor edgeuz using color4 or 5. If any one of

them is valid then we will haveFu∩F ′
v 6= ∅with respect to this new coloring, a contradiction to

Claim 7.14. It follows that none of them are valid. That is, bichromatic cycles get formed due

to the recoloring. Clearly the bichromatic cycles have to be(2, 4) and(2, 5) bichromatic cycles

sincec′(u,w) = 2. Thus2 ∈ Suz and4, 5 ∈ Suw. Recalling thatC − {1, 2, 3, 4, 5} ⊆ Suz and

|Suz| ≤ ∆− 1 we can infer thatSuz = C − {1, 3, 4, 5}.
Now if 1 /∈ Suw, then assign color1 to edgeuw and the color4 to edgeuz. Clearly this

recoloring is valid byLemma 2.3sinceSzu ∩ Suz = {1} ∩C − {1, 3, 4, 5} = ∅. With respect

to the new coloring,Fu ∩ Fv = {1, 4} which reduces the situation tocase 1. Thus we infer

that1 ∈ Suw. Therefore we have1, 4, 5 ∈ Suw. ¤

Claim 7.17. |(C − {1, 2, 3, 4, 5})− Suw| ≥ 2.

Proof: Since|Suw| ≤ ∆ − 1 there are at least four colors missing fromSuw. Thus even if

colors2 and3 are missing fromSuw there should be at least two colors inC − {1, 2, 3, 4, 5}
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that are absent inSuw since1, 4, 5 ∈ Suw by Claim 7.16. ¤

Now discard the color on the edgeuw to obtain a partial coloringd of G from c′.

Claim 7.18. With respect to coloringd, ∀α ∈ C − {1, 3, 4, 5}, there exists a(1, α, vu) critical

path.

Proof: With respect to the coloringc′, there existed(1, α, vu) critical path for allα ∈ C−(Fv∪
Fu) = C−{1, 2, 3, 4, 5} by Observation 7.15. These critical paths remain unaltered when we

getd from c′. Thus these critical paths are present ind also. Thus it is enough to prove that there

exists(1, 2, vu) critical path with respect to the coloringd. Let θ ∈ (C−{1, 2, 3, 4, 5})−Suw.

Note thatθ exists byClaim 7.17. Now colorθ is a candidate for the edgeuw sinceθ /∈ Suw

andd(u, z) = 1. Recolor the edgeuw using colorθ to get a coloringd′. The coloringd′ is

valid since otherwise a(1, θ) bichromatic cycle has to be created due to the recoloring. This

means that there existed a(1, θ, uw) critical path with respect to coloringc′, a contradiction

by Fact 2.1as there already existed a(1, θ, vu) critical path with respect to the coloringc′ by

Observation 7.15. Thus the coloringd′ is valid.

Now color 2 is a candidate for the edgevu. If it is valid we get a valid coloring forG.

Thus it is not valid. This means that there exists a(1, 2, vu) critical path with respect to the

coloring d′ sinceFv ∩ Fu = {1} with respect to the coloringd′. Now it is easy to see that

this (1, 2, vu) critical path will also exist with respect to coloringd. Thus with respect to the

coloringd, ∀α ∈ C − {1, 3, 4, 5}, there exists a(1, α, vu) critical path. ¤

Observation 7.19.Let Q = (C − {1, 3, 4, 5}) − Suw. From Claim7.17, we know that|(C −
{1, 2, 3, 4, 5}) − Suw| ≥ 2. Sincec′(u,w) = 2 we have2 /∈ Suw. From this we can infer that

2 ∈ Q. Thus|Q| ≥ 3.

Claim 7.20. There exists a colorγ ∈ Q such thatγ is valid for the edgevv1 or vv2.

Proof:

Recall that|Svv1| = 2, |Svv2| = 2 and byObservation 7.15, |Q| ≥ 3.

• If Svv1 ⊂ Q or Svv2 ⊂ Q. Without loss of generality letSvv1 ⊂ Q. Let γ be a color in

Q − Svv1. Recolor edgevv1 using colorγ to get a coloringd′. The coloringd′ is valid

by Lemma 2.3asSvv1 ∩ Sv1v = ∅ sinceQ ∩ Fv = ∅.
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• If Svv1 * Q andSvv2 * Q. In this case, at most one color inQ can be inSvv1 and the

same holds true forSvv2. Thus all the colors ofQ except for one are candidates for edge

vv1 and all the colors ofQ except for one are candidates for edgevv2. Since|Q| ≥ 3,

we can infer that there exists a colorγ ∈ Q which is a candidate for bothvv1 andvv2.

subclaim Color γ is valid either for the edgevv1 or for the edgevv2.

Proof: Recolorvv1 using colorγ. If γ is valid, we are done. If it is not valid, then

there has to be a(γ, θ) bichromatic cycle getting formed, whereθ ∈ Fv − {d(v, v1)} =

Fv − {4} = {1, 3, 5}. But this cannot be a(γ, 5) bichromatic cycle sinceγ /∈ Svv2

(recall thatd(v, v2) = c′(v, v2) = 5). Also this cannot be a(γ, 1) bichromatic cycle

since otherwise it implies that there exists a(1, γ, vv1) critical path with respect to the

coloringd, a contradiction in view ofFact 2.1as there already exists a(1, γ, vu) critical

path byClaim 7.18. Thus it has to be a(3, γ) bichromatic cycle, implying that there

existed a(3, γ, vv1) critical path with respect to the coloringd.

If γ is not valid for the edgevv1 we recolor edgevv2 instead, using colorγ to get a

coloringd′ form d. We claim that the coloringd′ is valid. This is because there cannot

be a(γ, 4) bichromatic cycle sinceγ /∈ Svv1 (recall thatd(v, v1) = c′(v, v1) = 4). Also

there cannot be a(γ, 1) bichromatic cycle since otherwise it implies that there exists a

(1, γ, vv2) critical path with respect to the coloringd, a contradiction in view ofFact 2.1

as there already exists a(1, γ, vu) critical path byClaim 7.18. Finally there cannot be a

(3, γ) bichromatic cycle because this implies that there existed a(3, γ, vv2) critical path

with respect to the coloringd, a contradiction byFact 2.1since there already existed a

(3, γ, vv1) critical path with respect to the coloringd. Thus the coloringd′ is valid. ¤

¤

In view of Claim7.20, without loss of generality letγ ∈ Q be valid for the edgevv1. Now

we recolor the edgevv1 using colorγ to get a coloringd′.

We claim that none of the colors inSuw were altered in this recoloring. This is because if

they are altered thenvv1 has to be an edge incident onw and thus one of the end points ofvv1

has to bew. Sincev cannot bew, eitherv1 should bew. But we know thatdeg(v1) = 3. Recall

that1, 4, 5 ∈ Suw and thusdeg(w) ≥ 4. Thusv1 cannot bew. Thus none of the colors ofSuw
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are modified while gettingd′ from d. We infer thatγ /∈ Suw sinceQ ∩ Suw = ∅. Thereforeγ

is a candidate for the edgeuw sinced′(u, z) = 1. Now color the edgeuw using the colorγ to

get a coloringd′′. If the coloringd′′ is valid, then we haveFu ∩ Fv = {1, γ}. This reduces the

situation tocase 1.

On the other hand if the coloringd′′ is not valid then there has to be a bichromatic cycle

formed due to the recoloring of edgeuw. Sinced′′(u, z) = 1, it has to be a(1, γ) bichromatic

cycle. Recall that there existed a(1, γ, vu) critical path with respect to the coloringd. Note

that to getd′′ from d we have only recolored two edges namelyvv1 anduw, both with color

γ. Clearly these recolorings cannot break the(1, γ, vu) critical path that existed ind, but only

can extend it. Thus we can infer that ind′′ the (1, γ) bichromatic cycle passes throughv and

hence through the edgesva andvv1. Now recolor edgeva using color4 to get a coloringc.

Recall thatSva = C − {1, 3, 4, 5} by Claim 7.18 andSav = Fv − {c′′(v, a)} = {3, 5, γ}.
Therefore color4 is indeed a candidate for edgeva. Note that by recoloringva using color

4, we have broken the(1, γ) bichromatic cycle that existed ind′′. Now we claim that the

coloring c is valid. Note thatSva ∩ Sav = Sva ∩ {3, 5, γ} = {γ}. If a bichromatic cycle

gets formed due to this recoloring then it has to be(4, γ) bichromatic cycle, implying that

4 ∈ Svv1. But Svv1(c) = Svv1(d
′′) = Svv1(d) and4 /∈ Svv1(d) sinced(v, v1) = 4. Thus

4 /∈ Svv1(c), a contradiction. Thus the coloringc is valid. With respect to the coloringc, we

haveFv ∩ Fu = {γ} ⊂ F ′
v, a contradiction toClaim 7.14.

subcase 2.2:v belongs to configurationB4.

We havedeg(v) = 6 and therefore|Fv| = 5. Moreover|F ′′
v | = 1 and|F ′

v| = 4. By Claim

7.14, Fv ∩ Fu = {1} ⊆ F ′′
v . Without loss of generality letc′(u, z) = c′(v, a) = 1. Also

let c(u,w) = 2, F ′
v = {3, 4, 5, 6} andZ = {3, 4, 5, 6}. There are∆ − 3 candidate colors

for the edgevu. If none of them are valid then there exist(1, α, vu) critical path for each

α ∈ C − (Fv ∪ Fu) = C − {1, 2, 3, 4, 5, 6}. Thus we have the following observation:

Observation 7.21.With respect to the coloringc′, each color inC−{1, 2, 3, 4, 5, 6} is actively

present inSuz as well asSva.

Claim 7.22. Suz ⊇ C − {1, 3, 4, 5, 6} and1 ∈ Suw. Also at least three of the colors fromZ

are present inSuw.

Proof: As we have seen aboveC − {1, 2, 3, 4, 5, 6} ⊆ Suz. Suppose2 /∈ Suz. Note that every
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color in C − (Suz ∪ Szu) is a candidate foruz. Now Szu = {c′(u,w)} = {2}. Moreover

|Suz| ≤ ∆ − 1 and thusSuz can have at most two more colors other than those inC −
{1, 2, 3, 4, 5, 6}. From this we can infer that at least two of the colors inZ are candidates for

the edgeuz. They are also valid byLemma 2.3sinceSuz ∩ Szu = Suz ∩ {2} = ∅. Thus we

can reduce the situation toFu ∩ F ′
v 6= ∅, by assigning one of the valid colors fromZ to uz,

thereby getting a contradiction toClaim 7.14. Thus we infer that2 ∈ Suz. Therefore we get

Suz ⊇ C − {1, 3, 4, 5, 6}. Since|Suz| ≤ ∆− 1 and|C − {1, 3, 4, 5, 6}| = ∆− 2 we can infer

that|Z ∩ Suz| ≤ 1.

If any one of the colors inZ −Suz is valid for the edgeuz, then it will reduce the situation

to Fu∩F ′
v 6= ∅, a contradiction toClaim 7.14. Thus none of these colors are valid for the edge

uz. Therefore there should be bichromatic cycles getting formed when we try to recolor edge

uz using any of these colors. These bichromatic cycles have to be(2, µ) bichromatic cycles

for each colorµ ∈ Z − Suz sincec′(u, w) = 2. Thus we can infer that at least three of the

colors fromZ are present inSuw since|Z − Suz| ≥ 4− 1 = 3.

Now if 1 /∈ Suw, then assign color1 to edgeuw and a colorµ ∈ Z − Suz to edgeuz.

Clearly this recoloring is valid byLemma 2.3sinceSzu∩Suz = {1}∩Suz = ∅ (1 /∈ Suz since

c′(u, z) = 1). With respect to the new coloring,Fu ∩ Fv = {1, µ} which reduces the situation

to case 1. Thus we infer that1 ∈ Suw. ¤

Claim 7.23. |(C − {1, 2, 3, 4, 5, 6})− Suw| ≥ 2.

Proof: Since|Suw| ≤ ∆− 1, we have|C − Suw| ≥ 4. Now since|Z ∩ Suw| ≥ 3 and1 ∈ Suw,

|{1, 2, 3, 4, 5, 6} ∩ Suw| ≥ 4. It follows that|(C − Suw) ∩ {1, 2, 3, 4, 5, 6}| ≤ 2 and the Claim

follows. ¤

Now discard the color on the edgeuw to obtain a partial coloringd of G from c′.

Claim 7.24. With respect to coloringd, ∀α ∈ C − {1, 3, 4, 5, 6}, there exists a(1, α, vu)

critical path and thusC − {1, 3, 4, 5, 6} ⊆ Sva.

Proof: With respect to the coloringc′, there existed a(1, α, vu) critical path for eachα ∈
C − (Fv ∪ Fu) = C − {1, 2, 3, 4, 5, 6} by Observation 7.21. These critical paths remain

unaltered when we getd from c′. Thus these critical paths are present ind also. Thus it is

enough to prove that there exists a(1, 2, vu) critical path with respect to the coloringd. Let

θ ∈ (C−{1, 2, 3, 4, 5, 6})−Suw. Note thatθ exists byClaim 7.23. Now colorθ is a candidate
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for the edgeuw sinceθ /∈ Suw andd(u, z) = 1. Recolor the edgeuw using colorθ to get a

coloringd′. The coloringd′ is valid since otherwise a(1, θ) bichromatic cycle has to be created

due to the recoloring. This means that there existed a(1, θ, uw) critical path with respect to

coloringc′, a contradiction byFact 2.1 as there already existed a(1, θ, vu) critical path with

respect to the coloringc′ by Observation 7.21. Thus the coloringd′ is valid.

Now color 2 is a candidate for the edgevu. If it is valid we get a valid coloring forG.

Thus it is not valid. This means that there exists a(1, 2, vu) critical path with respect to the

coloring d′ sinceFv ∩ Fu = {1} with respect to the coloringd′. Now it is easy to see that

this (1, 2, vu) critical path will also exist with respect to coloringd. Thus with respect to the

coloringd, ∀α ∈ C − {1, 3, 4, 5, 6}, there exists a(1, α, vu) critical path. ¤

Observation 7.25. Let Q = (C − {1, 3, 4, 5, 6}) − Suw. From Claim7.23, we know that

|(C − {1, 2, 3, 4, 5, 6}) − Suw| ≥ 2. Sincec′(u,w) = 2 we have2 /∈ Suw. From this we can

infer that2 ∈ Q. Thus|Q| ≥ 3.

Recall that|Svvi
| = 2, for i ∈ {1, 2, 3, 4} and byObservation 7.25, |Q| ≥ 3. We know that

Sva ⊇ C−{1, 3, 4, 5, 6} by Claim 7.24. Since|C−{1, 3, 4, 5, 6}| = ∆−2 and|Sva| ≤ ∆−1

we have|Z ∩ Sva| = |{3, 4, 5, 6} ∩ Sva| ≤ 1. We make the following assumption:

Assumption 7.26. If Z ∩ Sva 6= ∅, let {α} = Z ∩ Sva and letd(v, vt) = α, wheret ∈
{1, 2, 3, 4}. Letβ ∈ (Z − {α})− Svvt . If Z ∩ Sva = ∅, then letβ be any color inZ.

We now plan to recolor one of the edges in{vv1, vv2, vv3, vv4} using a specially selected

colorγ ∈ Q. After this we will also use the same colorγ to recolor edgeuw, with the intention

of reducing the situation tocase 1. Below we give the recoloring procedure for the rest of the

proof starting from the current coloringd in 3 steps. The final coloringc of G− {vu} that we

obtain at the end ofStep3 will give the required contradiction.

Step1: With respect to the coloringd,

(i) If one of the edgesvvi, for i ∈ {1, 2, 3, 4} is such thatSvvi
⊂ Q, then recolor that

edge with any colorγ ∈ Q − Svvi
. We call the edge that we chose to recolor as

(v, vt′).

(ii) If ∀i ∈ {1, 2, 3, 4}, Svvi
* Q, then we select an edgevvt′, where t′ ∈ {1, 2, 3, 4} such
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that d(v, vt′) = β (SeeAssumption 7.26). Now recolor the edgevvt′ with a suitably

selected (see the proof ofClaim 7.27) color in Q− Svvt′ .

The resulting coloring after performing Step1 is namedd′.

Claim 7.27.There exists a colorγ ∈ Q such that the coloringd′ obtained afterStep1 is valid.

Proof: At the beginning ofStep1, we had the following possible cases:

(i) One of the edgesvvi, for i ∈ {1, 2, 3, 4} is such thatSvvi
⊂ Q:

Let γ be a color inQ − Svvi
. Recolor edgevvi using colorγ to get a coloringd′. The

coloringd′ is valid byLemma 2.3asSvvi
∩ Sviv = ∅ sinceQ ∩ Fv = ∅.

(ii) Svvi
* Q, for each i ∈ {1, 2, 3, 4}:

Let t′ be as defined inStep1. Clearly all the colors inQ − Svvt′ are candidates for

vvt′ sinceQ ∩ Fv = ∅. Note that sinceSvvi
* Q we have|Q ∩ Svvt′ | ≤ 1 and therefore

|Q−Svvt′ | ≥ 2. If any one of the candidate colors is valid for the edgevvt′, the statement

of the Claim is obviously true. On the other hand if none of them are valid, then there has

to be a(γ, θ) bichromatic cycle getting formed, for someθ ∈ Fv−{d(v, vt′)} = Fv−{β}
when we try to recolor edgevvt′ using colorγ, for eachγ ∈ Q− Svvt′ . Note thatθ 6= 1

because if a(γ, 1) bichromatic cycle gets formed, then there has to be a(1, γ, vvt′)

critical path with respect to the coloringd, a contradiction in view ofFact 2.1as there

already exists a(1, γ, vu) critical path byClaim 7.24. Thusθ ∈ F ′
v − {d(v, vt′)} since

F ′′
v = {1}. Therefore we have|(F ′

v − {d(v, vt′)}) ∩ Svvt′ | ≥ 1. We have the following

cases:

– |(F ′
v − {d(v, vt′)}) ∩ Svvt′ | = 1: Let Svvt′ ∩ (F ′

v − {d(v, vt′)}) = d(v, v′), for

v′ ∈ {v1, v2, v3, v4} − {vt′}. Thus all the candidate colors ofvvt′, namely all the

colors ofQ − Svvt′ should form bichromatic cycles passing through the edgevv′,

implying that Q − Svvt′ ⊂ Svv′. But |Q − Svvt′ | ≥ 2 and |Svv′| = 2. Thus

Svv′ = Q− Svvt′ ⊆ Q, a contradiction.

– |(F ′
v −{d(v, vt′)})∩ Svvt′ | = 2: This means thatSvvt′ ⊆ F ′

v and therefore we have

Q∩Svvt′ = ∅. Thus|Q−Svvt′ | = |Q| ≥ 3. Therefore there are at least three candi-

date colors for the edgevvt′. LetSvvt′∩(F ′
v−{d(v, vt′)}) = {d(v, v′), d(v, v′′)}, for

v′, v′′ ∈ {v1, v2, v3, v4} − {vt′}. Since for each candidate color we have a bichro-

matic cycle, we can infer that there are at least three bichromatic cycles, each of
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them passing through eithervv′ or vv′′. Thus at least two bichromatic cycles have

to pass through one ofvv′ andvv′′. But since|Svv′| = 2 and|Svv′′ | = 2, we can

infer that eitherSvv′ ⊆ Q or Svv′′ ⊆ Q, a contradiction.

¤

Step2: Let γ be the color which was used to recolor the edgevvt′ in Step1. Now recolor

edgeuw with color γ to get a coloringd′′.

Claim 7.28. The coloringd′′ is proper.

Proof: We claim that none of the colors inSuw were altered inStep1. This is because if they

are altered then the edgevvt′ should be incident onw and thus one of the end points ofvvt′ ,

wheret′ ∈ {1, 2, 3, 4}, has to bew. Sincev cannot bew, vt′ should bew. But we know

thatdeg(vi) = 3. Recall that|Z ∩ Suw| ≥ 3 by Claim 7.22and thus|Suw| ≥ 3. Therefore

deg(w) ≥ 4. Thusvt′ cannot bew. Thus none of the colors ofSuw are modified while getting

d′ from d. Recall thatQ = (C − {1, 3, 4, 5, 6}) − Suw and thusγ /∈ Suw. Thereforeγ is a

candidate for the edgeuw sinced(u, z) = 1. Thus the coloringd′′ is proper. ¤

If the coloringd′′ is valid, then we haveFu∩Fv = {1, γ} for a valid coloring ofG−{vu}.
This reduces the situation tocase 1. Thus coloringd′′ is not valid. Since the coloringd′′ is

not valid, there has to be a bichromatic cycle formed due to the recoloring of edgeuw. Since

d′′(u, z) = 1, it has to be a(1, γ) bichromatic cycle. Recall that there existed a(1, γ, vu)

critical path with respect to the coloringd by Claim 7.24. Note that to getd′′ from d we have

only recolored two edges namelyvvt′ anduw, both with colorγ. Clearly these recolorings

cannot break the(1, γ, vu) critical path that existed ind, but can only extend it. Thus we can

infer that ind′′ the(1, γ) bichromatic cycle passes throughv and hence through the edgesva

andvvt′. Also note that this can happen only when we have1 ∈ Svvt′ . ThusSvvt′ * Q. It

means that substep(ii) of Step1 was executed; and the color onvvt′ with respect to coloring

d wasβ (from Assumption 7.26). We break the(1, γ) bichromatic cycle as follows:

Step3: Recolor the edgeva with color β (see inAssumption 7.26) to get a coloringc.
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Claim 7.29. The coloringc is valid.

Proof: Recall byAssumption 7.26thatβ /∈ Sva. Also clearlyβ /∈ Fv(d
′′) since we recolored

vvt′ by a colorγ ∈ Q to get d′′ form d (β 6= γ sinceβ ∈ Fv(d) and Fv(d) ∩ Q = ∅).
Therefore colorβ is a candidate for edgeva. Note that by recoloringva using colorβ, we

have broken the(1, γ) bichromatic cycle that existed ind′′. We claim that the coloringc is

valid. Otherwise there has to be a bichromatic cycle involvingβ and a color inSva ∩ Sav. But

Sav = (Z−{β})∪{γ} = ({3, 4, 5, 6}−{β})∪{γ}. Since with respect tod′′ there was a(1, γ)

bichromatic cycle passing through the edgesva andd′′(v, a) = 1, we haveγ ∈ Sva ∩ Sav. But

there cannot be a(β, γ) bichromatic cycle getting formed inc since such a cycle should contain

edgevvt′ and thusβ ∈ Svvt′ . But Svvt′ (c) = Svvt′ (d
′′) = Svvt′ (d) andβ /∈ Svvt′ (d) since

d(v, vt′) = β. Thusβ /∈ Svv1(c), a contradiction. Thus there cannot be a(β, γ) bichromatic

cycle.

Thus if the coloringc is not valid then there has to be a bichromatic cycle involvingβ

and one of the colors inZ − {β} ∩ Sva. We know byAssumption 7.26thatZ ∩ Sva = α.

Thus it has to be a(β, α) bichromatic cycle. Sincec(v, vt) = d(v, vt) = α, this bichromatic

cycle contains the edgevvt and henceβ ∈ Svvt , a contradiction to the wayβ was selected in

Assumption 7.26. Thus there cannot be a(β, α) bichromatic cycle. Thus the coloringc is

valid. ¤

With respect to the coloringc, we haveFv ∩ Fu = {γ} ⊂ F ′
v, a contradiction toClaim 7.14.

7.2.2 There exists no vertexv that belongs to one of the configurations

B2, B3, B4 or B5

This means that there exists a vertexv that belongs to configurationB1, i.e.,deg(v) = 2. Let

Q = {u ∈ V : deg(u) = 2}. First we claim thatQ is an independent set inG. Otherwise let

u′, u ∈ Q be such that(u, u′) ∈ E(G). Now sinceG is a minimum counter example,G−{uu′}
is acyclically edge colorable using∆ + 3 colors. Letc′ be a valid coloring ofG−{uu′}. Now

if Fu ∩ Fu′ = ∅, then there are∆ + 3 − 2 = ∆ + 1, candidate colors for the edgeuu′. Since

Suu′ ∩ Su′u = ∅, by Lemma 2.3, all the candidate colors are valid for the edgeuu′. On the

other hand if|Fu ∩ Fu′| = 1, then there are∆ + 3− 1 = ∆ + 2 candidate colors for the edge

uu′. Let N(u) = {u′, u′′}. If none of them are valid then all those candidate colors have to be
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actively present inSuu′′ , implying that|Suu′′ | ≥ ∆ + 2, a contradiction since|Suu′′ | ≤ ∆− 1.

Thus there exists a valid coloring ofG, a contradiction to the assumption thatG is a counter

example. We infer thatQ is an independent set inG.

Now delete all the vertices inQ from G to get a graphG′. Clearly the graphG′ has at

most2|V (G′)| − 1 edges sinceQ is an independent set. It follows byLemma 7.4 that there

should be a vertexv′ in G′ such thatv′ is the pivot of one of the configurationsB1 − B5,

sayB′ = {v′} ∪ NG′(v
′). But with respect to graphG, {v′} ∪ NG′(v

′) did not form any

of the configurationsB1 − B5. This means that the degree of at least one of the vertices in

{v′} ∪ NG′(v
′) should have got decreased by the removal ofQ from G. Let P be the set of

vertices in{v′} ∪ NG′(v
′) whose degrees got reduced due to the removal ofQ from G, i.e.,

P = {z ∈ {v′} ∪NG′(v
′) : degG′(z) < degG(z)}.

For a vertexx ∈ V (G), let M ′′
G(x) = {u ∈ NG(x) : degG(u) > 3} and M ′

G(x) =

NG(x) −M ′′
G(x). Note that in all the configurations defined inLemma 7.4, the main criteria

which characterizes each configuration is the degree of the pivotv′ and the degrees of the

vertices inN ′(v′). We make the following claim:

Claim 7.30. There exists a vertexx in P such that|M ′′
G(x)| ≤ 3.

Proof: It is easy to see thatM ′′
G(x) ⊆ NG′(x). If there exists a vertex inP , whose degree is at

most3, sayx, then we have|M ′′
G(x)| ≤ 3. Thus we can assume that the degree of any vertex

in P is at least4.

Now suppose the pivot vertexv′ is in P . Then letx = v′. It is clear thatv′ has to be in

one of the configurationB3 − B5. In any of these configurations there can be at most two

neighbours with degree greater than3. Note that in this case all the degree 3 neighbours of

x = v′ in G′ are of degree3 in G also since otherwiseP will contain a vertex of degree at most

3, a contradiction. Thus we have|M ′′
G(x)| ≤ 2.

The only remaining case is whenv′ /∈ P . Since the degree ofv′ has not changed and

{v′} ∪NG(v′) was not in any configuration inG, it means that one of the vertex inN ′(v′) has

had its degree decreased. We call that vertex asx. Since the degree of any vertex inP is at

least4, degG′(x) ≥ 4. Since we can have degree≥ 4 vertex inN ′(v′) only if {v′} ∪ NG(v′)

forms a configurationB2, we infer thatdegG′(x) = 4. MoreoverdegG′(v
′) = degG(v′) = 3.

Thus we have|M ′′
G(x)| ≤ |NG′(x)− {v′}| ≤ 4− 1 = 3.

Thus we have|M ′′
G(x)| ≤ 3.

¤
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In G, let y be a two degree neighbour of vertexx - selected inClaim 7.30 - such that

N(y) = {x, y′}. Now by inductionG−{xy} is acyclically edge colorable using∆+3 colors.

Let c′ be a valid coloring ofG−{xy}. With respect to the coloringc′ let F ′
x(c

′) = {c′(x, z)|z ∈
M ′(x)} andF ′′

x (c′) = {c′(x, z)|z ∈ M ′′(x)} i.e.,F ′′
x = Fx − F ′

x.

Now if c′(y, y′) /∈ Fx we are done as there are at least three candidate colors which are

also valid byLemma 2.3. We know byClaim 7.30that |F ′′
x | ≤ 3. If c′(y, y′) ∈ F ′

x, then let

c = c′. Else if c′(y, y′) ∈ F ′′
x , then recolor edgeyy′ using a color fromC − (Syy′ ∪ F ′′

x ) to

get a coloringc (Note that|C − (Syy′ ∪ F ′′
x )| ≥ ∆ + 3 − (∆ − 1 + 3) = 1 and sincey is a

pendant vertex inG− {xy} the recoloring is valid). Now ifc(y, y′) /∈ Fx the proof is already

discussed. Thusc(y, y′) ∈ F ′
x.

With respect to coloringc, let a ∈ M ′(x) be such thatc(x, a) = c(y, y′) = 1. Now

if none of the candidate colors inC − (Fx ∪ Fy) are valid for the edgexy, then all those

candidate colors have to be actively present inSxa, implying that|Sxa| ≥ |C − (Fx ∪ Fy)| ≥
∆ + 3 − (∆ − 1 + 1 − 1) = 4, a contradiction since|Sxa| ≤ 2 (Recall thata ∈ M ′(x) and

deg(a) ≤ 3). Thus we have a valid color for the edgexy, a contradiction to the assumption

thatG is a counter example.

¥



Chapter 8

Lower Bounds and Dense Graphs

In this chapter lets look at the lower bounds fora′(G). We also give exact bound forKp,p.

8.1 Previous Results

By Vizing’s theorem, we have∆ ≤ χ′(G) ≤ ∆+1(see [18] for proof). Since any acyclic edge

coloring is also proper, we havea′(G) ≥ χ′(G) ≥ ∆. There are graphs which require∆ + 1

colors to be properly colored. A natural questions that comes to mind is to ask if this bound

(∆ + 1) the best possible lower bound for acyclic edge chromatic number also. We will soon

see that the bound could be slightly improved. We start with the following claim:

Claim 8.1. If G is ad-regular graph, thena′(G) ≥ d + 1.

Proof: The proof is by contradiction. SupposeG can be acyclically colored using onlyd col-

ors. Choose any two colors, sayα andβ. Now start from a vertex with an edge coloredα

and trace the(α, β) bichromatic path. Now since both the colorsα andβ are available at each

vertex and the graph is finite, the bichromatic path should return to the starting vertex thus

completing a bichromatic cycle. This is a contradiction to the fact thatG was acyclically edge

colored usingd colors. ¤

By Claim8.1, we get infinite classes of graphs which require at least∆+1 colors. Can we

better this? The following claim does that:

Claim 8.2. a′(K2n) ≥ 2n + 1 = ∆ + 2.

99
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Proof: The proof is by contradiction. SupposeK2n can be acyclically colored using only2n

colors. We know that any colors can cover onlyn edges (perfect matching). There cannot be

two color classes withn edges each since they would induce a bichromatic cycle. Thus any

other color class than the first one can have onlyn − 1 edges. Now if we cunt the number of

edges covered, it will ben+(2n− 1)(n− 1) = n(2n− 1)− (n− 1). But the number of edges

in K2n = n(2n− 1). Thus there are at least(n− 1) edges which does not belong to any color

class, a contradiction. ¤

If we observe the proof carefully, we will see that even the last color class has(n − 1)

edges. This means that even if we delete any(n− 2) edges fromK2n, it would require2n + 1

colors to be acyclically edge colored.

Alon, Sudakov and Zaks [7] conjectured that complete graphs of even order are the only

regular graphs which require∆+2 colors to be acyclically edge colored. Nešeťril and Wormald

[36] supported the statement by showing that the acyclic edge chromatic number of a random

d-regular graph is asymptotically almost surely equal tod + 1 (whend ≥ 2). In this chapter

we show that this is not true in general.

8.2 Theorems on Dense Regular Graphs

Theorem 8.3.LetG be a d-regular graph with2n vertices andd > n, thena′(G) ≥ d + 2 =

∆(G) + 2.

Proof: Observe that two different color classes cannot haven edges each, since that will lead

to a bichromatic cycle. Therefore at most one color class can haven edges while all other color

classes can have at mostn−1 edges. Thus the number of edges in the union of∆(G)+1 = d+1

color classes is at mostn + d(n − 1) < dn, whend > n (Note that dn is the total number of

edges inG). ThusG needs at least one more color. Thusa′(G) ≥ d + 2 = ∆(G) + 2.

¥

Remark: It is clear from the proof that ifn + d(n− 1) + x < dn then even after removingx

edges from the given graph, the resulting graph still would required+2 colors to be acyclically

edge colored.
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Theorem 8.4. For anyd andn such thatdn is even andd ≥ 5, n ≥ 2d + 3, there exists a

connectedd-regular graphs that requiresd + 2 colors to be acyclically edge colored.

Proof: If d is odd, letG′ = Kd+1. Else if d is even letG′ be the complement of a perfect

matching ond + 2 vertices. LetH be anyd-regular graph onN = n − n′ vertices. Now

remove an edge(a, a′) from G′ and an edge(b, b′) from H. Now connecta to b anda′ to b′

to create ad-regular graphG. ClearlyG requiresd + 2 colors to be acyclically edge colored

since otherwise it would mean thatG′−{(a, a′)} is d + 1 colorable, a contradiction in view of

the Remark following Theorem 1, ford ≥ 5.

¥

8.3 Complete Bipartite Graphs

8.3.1 Lower Bound for Complete Bipartite Graphs

Complete bipartite graphs offer a interesting case since they haved = n. Observe that the

counting argument in Theorem8.3 fails. We deal with this case in this section. Before going

to the Theorem, let us look at a Lemma which helps us in the proof.

Lemma 8.5. If n is even, thenKn,n does not contain three disjoint perfect matchingsM1, M2,

M3 such thatMi ∪Mj forms a hamiltonian cycle fori, j ∈ {1, 2, 3} andi 6= j.

Proof: Observe that a perfect matching ofKn,n corresponds to a permutation of{1, 2, . . . , n}.
Let the perfect matchingMi correspond to permutationπi. Without loss of generality, we can

assume thatπ1 is the identity permutation by renumbering the vertices of one side ofKn,n.

SupposeKn,n contains three perfect matchingsM1, M2, M3 such thatMi ∪ Mj forms a

hamiltonian cycle fori, j ∈ {1, 2, 3} andi 6= j.

Now we study the permutationπ−1
i πj. SinceMi∪Mj induces a hamiltonian cycle inKn,n,

it is easy to see that the smallestt ≥ 1 such that(π−1
i πj)

t(1) = 1 equalsn. It follows that,

in the cycle structure ofπ−1
i πj, there exists exactly one cycle and this cycle is of lengthn.

The sign of a permutation is defined as:sign(π) = (−1)k , wherek is the number of even

cycles in the cycle structure of the permutationπ. Recalling thatn is even, we have observe
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the following:

Observation 8.6.sign(π−1
i πj) = −1 for i, j ∈ {1, 2, 3} andi 6= j.

Now with respect toπ−1
i πj, takingπi = π1 (the identity permutation) andπj = π2 (or π3),

we infer thatsign(π2) = −1 andsign(π3) = −1. Now sign(π−1
2 π3) = sign(π−1

2 )sign(π3) =

(-1)(-1) = 1, a contradiction in view ofObservation 8.6.

¥

Now we obtain the lower bound for complete bipartite graphs (Kn,n, whenn is odd) in the

following theorem:

Theorem 8.7.a′(Kn,n) ≥ n + 2 = ∆ + 2, when n is odd.

Proof: SinceKn,n is a regular graph,a′(Kn,n) ≥ ∆ + 1 = n + 1. Supposen + 1 colors are

sufficient. This can be achieved only in the following way: One color class containsn edges

and the remaining color classes containn − 1 edges each. Letα be the color class that has

n edges. Thus colorα is present at every vertex on each sideA andB. Any other color is

missing at exactly one vertex on each side.

Observation 8.8. Let θ 6= α be a color class. The subgraph induced by color classesθ and

α contains2n− 1 edges and since there are no bichromatic cycles, the subgraph induced is a

hamiltonian path. We call this an(α, θ) hamiltonian path.

Observation 8.9.Letθ1 andθ2 be color classes withn− 1 edges each. The subgraph induced

by color classesθ1 andθ2 contains2n − 2 edges. Since there are no bichromatic cycles, the

subgraph induced consists of exactly two paths.

Note that there is a unique color missing at each vertex on each side ofKn,n. Let m(u) be

the color missing at vertexu. Fora1 ∈ A andb1 ∈ B, let m(a1) = m(b1) = β. Let the color

of the edge(a1, b1) = γ. Clearlyγ 6= α since otherwise there cannot be a(α, β) hamiltonian

path, a contradiction toObservation 8.8. Fora2 ∈ A andb2 ∈ B, let m(a2) = m(b2) = γ. Its

clear thata1 6= a2 andb1 6= b2. Consider the subgraph induced by the colorsβ andγ. In view

of Observation 8.9 it consists of exactly two paths. One of them is the single edge(a1, b1).

The other path has length2n− 3 and hasa2 andb2 as end points.

Now we construct aKn+1,n+1 from the aboveKn,n by adding a new vertex,an+1 to sideA

and a new vertex,bn+1 to sideB. Now for u ∈ B color each edge(an+1, u) by the colorm(u)

and forv ∈ A color each edge(bn+1, v) by the colorm(v). Assign the colorα to the edge

(an+1, bn+1). Clearly the coloring thus obtained is a proper coloring.
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Now we know that there existed a(α, β) hamiltonian path inKn,n with a1 andb1 as end

points. Recalling thatm(a1) = m(b1) = β, we havecolor(an+1, b1) = color(bn+1, a1) = β.

It is easy to see that inKn+1,n+1 this path along with the edges(a1, bn+1), (bn+1, an+1) and

(an+1, b1) forms a(α, β) hamiltonian cycle. In a similar way, for(α, γ) hamiltonian path that

existed inKn,n, we can see that inKn+1,n+1, we have a corresponding(α, γ) hamiltonian

cycle.

Recall that there was a(β, γ) bichromatic path starting froma2 and ending atb2 in Kn,n.

In the Kn+1,n+1 we created, we havec(a2, an+1) = γ , c(a1, bn+1) = β , c(an+1, b1) = β

andc(an+1, b2) = γ. Thus the above(β, γ) bichromatic path inKn,n along with the edges

(a2, bn+1), (bn+1, a1), (a1, b1), (b1, an+1), (an+1, b2) in that order forms a(β, γ) bichromatic

hamiltonian cycle. Thus we have 3 perfect matchings induced by the color classesα, β andγ

whose pairwise union gives rise to hamiltonian cycles inKn+1,n+1, a contradiction toLemma

8.5sincen + 1 is even.

¥

8.3.2 Exact Bound forKp,p

Theorem 8.10. a′(Kp,p) ≤ p + 2 = ∆ + 2, whenp is an odd prime. By Theorem8.7, this

implies thata′(Kp,p) = p + 2 = ∆ + 2.

Proof: Let A = {0, 1, . . . , p − 1} andB = {0, 1, . . . , p − 1}. Let π0, π1, . . . , πp−1 be the

permutation defined byπi : a 7−→ (a + i) (mod p). Let Mi be the perfect matching corre-

sponding to the permutationπi. It is easy to verify that ifi 6= j, thenMi ∩Mj = ∅. Now we

claim the following:

Claim 8.11. If i 6= j, thenMi ∪Mj forms a Hamiltonian cycle (i.e.,M0,M1, . . . Mp−1 form

perfect 1-factorization).

Proof: First note that the union of any two perfect matchings forms a collection of disjoint cy-

cles. Suppose two matchingsMi andMj, (i > j) are such that a cycle of length2k < 2p gets

formed by the edges ofMi∪Mj (Recall that all cycles are of even length inKp,p). Without loss

of generality let this cycle contain the vertexa ∈ A. It is easy to see that(π−1
j πi)

k(a) = a. Not-

ing that(π−1
j πi)(a) = a+ i− j (mod p), we have(π−1

j πi)
k(a) = a+ki−kj = a+k(i− j)

(mod p) = a (mod p), which implies thatk(i − j) = 0 (mod p). Sincei − j 6= 0
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(mod p) , we havek = 0 (mod p), a contradiction sincek < p. ThusMi∪Mj forms a cycle

of length2p (a Hamiltonian cycle) wheni andj are distinct. ¤

Now consider the multiplicative groupZ∗
p , and letx be a generator of this group. Define

a permutationπ of {1, 2, . . . , p − 1} by π : a 7−→ ax (mod p). Let M be the matching

corresponding to the permutationπ.

Claim 8.12. |M ∩ Mi| = 1 , for eachMi, 1 ≤ i ≤ p − 1 andM0 ∩ M = ∅ (i.e., for each

Mi, 1 ≤ i ≤ p − 1, The matchingsM andMi exactly have one edge in common. Also the

matchingsM andM0 do not have any edge in common).

Proof: By the definition ofM , we infer thatM0∩M = ∅. Now leta = i(x−1)−1 (mod p).

Note that sincei 6= 0, a 6= 0. We haveπi(a) = a+i = i(x−1)−1+i = i(x−1)−1(1+x−1) =

i(x − 1)−1(x) = ax (mod p) = π(a). Thus it follows that the edge(a, ax) ∈ M ∩Mi for

a = i(x − 1)−1 (mod p). Therefore|M ∩Mi| ≥ 1 for 1 ≤ i ≤ p − 1. Since|M | = p − 1,

we can also infer that|M ∩Mi| = 1. ¤

Now color the edges ofKp,p as follows to get a coloringf with p + 2 colors:

1. if e ∈ Mi \M (where0 ≤ i ≤ p− 1), then it is colored with colorci.

2. if e ∈ M − (1, x), then it is colored with colorcp.

3. edgee = (1, x) is colored with colorcp+1.

Claim 8.13. The coloringf is acyclic.

Proof: Obviouslyf is a proper coloring. Letci andcj be two colors. We consider different

values fori andj with i > j and show that(ci, cj) bichromatic cycle cannot exist.

case 1:i = p + 1

Since there is only one edge coloredcp+1, there cannot be any bichromatic cycle involving the

color cp+1.

case 2:i, j < p

Note thatMi ∪ Mj forms a Hamiltonian cycle byClaim 8.11. Now at least one edge of

Mi belongs toM (By Claim 8.12) and is coloredcp or cp+1 with respect to the coloring

f , breaking the possible(ci, cj) bichromatic cycle. Therefore there cannot be any(ci, cj)

bichromatic cycle wheni, j < p.
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case 3:i = p

SupposeMj is a matching such that a cycle of length2k < 2p (no cycles of length2p can

be formed as there are onlyp − 2 edges of colorcp) gets formed by the edges ofM ∪ Mj

(Recall that all cycles are of even length inKp,p). Thus(π−1
j π)k(a) = a (mod p). Noting

that(π−1
j π)(a) = ax− j (mod p), we have(π−1

j π)2(a) = (ax− j)x− j = ax2 − j(x + 1)

(mod p). Similarly (π−1
j π)k(a) = axk−j(xk−1 + .....+x+1) = axk−j(xk−1)(x−1)−1 = a

(mod p). We havea(xk−1)− j(xk−1)(x−1)−1 = 0 (mod p) and thus(xk−1)(a− j(x−
1)−1) = 0 (mod p). If (a − j(x − 1)−1) = 0 (mod p), thena = j(x − 1)−1 (mod p).

But according toClaim 8.12, edge(a, ax) ∈ M ∩Mj. Therefore this edge and thus vertexa

cannot be in the cycle formed byM ∪Mj, a contradiction. Thus we infer that(xk − 1) = 0

(mod p). This implies thatxk = 1 (mod p) and hencek = p − 1, sincex is a generator.

Thus there are2(p − 1) edges in the cycle, out of whichp − 1 are coloredcp, a contradiction

since onlyp− 2 edges are coloredcp. ¤

This completes the proof.

¥

Notice that the last color was used for only one edge in the above coloring ofKp,p. Thus

we get the following Theorem:

Theorem 8.14.For a primep > 2, if G is a graph obtained by removing just one edge from

Kp,p, thena′(G) = ∆ + 1 = p + 1 ( The above statement is true even if we delete any number

of edges between1 andp− 2).

Proof: It is easy to infer from the proof of Theorem8.10 that a′(G) ≤ p + 1. The lower

bound comes from a simple counting argument: At most one color class can havep edges,

since otherwise there will be bichromatic cycles. Thus ifa′(G) ≤ p, then there can be at most

p + (p− 1)2 < p2 − 1 edges inG, a contradiction.

¥
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8.4 Remarks

1. It is interesting to compare the statement of Theorem 1 to the result of [36], namely that

almost alld-regular graphs for a fixedd, require onlyd + 1 colors to be acyclically edge

colored. From the introduction of [36], it appears that the authors expect their result for

randomd-regular graphs would extend to all d-regular graphs except forKn, n even.

From Theorem8.3and Theorem8.4 it is clear that this is not true: There exists a large

number ofd-regular graphs which required + 2 colors to be acyclically edge colored,

even whend is fixed.

2. The complete bipartite graph,Kn+2,n+2 is said to have a perfect 1-factorization if the

edges ofKn+2,n+2 can be decomposed inton+2 disjoint perfect matchings such that the

union of any two perfect matchings forms a hamiltonian cycle. It is obvious from Lemma

8.5 thatKn+2,n+2 does not have perfect 1-factorization whenn is even. Whenn is odd,

some families have been proved to have perfect 1-factorization (see [15] for further

details). It is easy to see that ifKn+2,n+2 has a perfect 1-factorization thenKn+2,n+1

and thereforeKn+1,n+1 has a acyclic edge coloring usingn + 2 colors. Therefore the

statement of Theorem8.7cannot be extended to the case whenn is even in general.

3. Clearly ifKn+2,n+2 has a perfect 1-factorization, thena′(Kn,n) = n+2. It is known that

(see [15]), if n + 2 ∈ {p, 2p− 1, p2}, wherep is an odd prime or whenn + 2 < 50 and

odd, thenKn+2,n+2 has a perfect 1-factorization. Thus the lower bound in Theorem8.7

is tight for the above mentioned values ofn + 2. As of now, these are the only values of

n for which we know the exact value fora′(Kn,n). Note that we cannot apply the simple

argument mentioned here whenn = p. Alon, McDiarmid and Reed [6] observed that

a′(Kp−1,p−1) = p.

4. To get an upper bound fora′(Kn,n), the best method we can think of is to look for the

smallest prime numberp such thatp ≥ n + 2. Thena′(Kn,n) ≤ p. A weakening of

the result of Iwaniec and Pintz [30] gives that for every sufficiently large integerx, there

exists a prime number in the range[x, x + x0.6].
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Conclusion

9.1 Open Problems

9.1.1 Acyclic Edge Coloring Conjecture

The conjecture is still open. The conjecture has been proved for some special classes of graphs.

This indicates that the conjecture might be true. One can attempt the conjecture. Till now the

best bound of16∆ uses probabilistic methods to obtain the bound. Such methods may not

work to get the conjectured bound of∆ + 2. Constructive methods need to be developed. But

till now such methods have only been used for sparse graphs. The global nature of the problem

has to be investigated throughly to come up with concepts which would lead to closer upper

bounds towards the conjectured bound.

Another direction is to try to disprove the conjecture by constructing counter examples.

Our results on regular graphs which require∆ + 2 colors are the first steps towards such an

approach. The results on lower bounds use counting arguments. But such techniques might

not work in the attempt to disprove the conjecture. Clever techniques other than counting are

needed to be explored to find better lower bounds.

Planar Graphs

The best known bound for planar graphs as of now is∆+12. We feel that this bound could be

improved. It would be interesting to prove the conjecture for planar graphs. Even for triangle

free planar graphs, the conjecture is still open. Another question is to investigate examples of

planar graph other thanK4 which requires greater than∆ + 1 colors.

107
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9.1.2 Complete Graphs

Is it true thata′(K2n+1) = 2n + 1, ∀n ≥ 1? This problem of determining the acyclic chro-

matic index for complete graphs takes importance due to its equivalence with the perfect 1-

factorization conjecture.

9.1.3 Algorithmic Questions

The research till now has mostly concentrated towards finding better bounds on acyclic chro-

matic index. Since most of the results on special classes of graphs use constructive methods,

there exists an underlying polynomial time algorithm. But very few results look at time com-

plexity in a serious manner. Thus various algorithmic questions are open to be explored.
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