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Abstract

A properedge coloringof G = (V, E)isa mapc : E — C (whereC' is the set of available
colors ) with c(e) # ¢(f) for any adjacent edgesf. The minimum number of colors needed
to properly color the edges df, is called the chromatic index ¢f and is denoted by'(G).

A proper edge coloring c is called acyclic if there are no bichromatic cycles in the graph.
In other words an edge coloring is acyclic if the union of any two color classes induces a
set of paths (i.e., linear forest) {d. Theacyclic edge chromatic numbéalso calledacyclic
chromatic inde) denoted by:/(G), is the minimum number of colors required to acyclically
edge cololG.

The primary motivation for this thesis is the following conjecture by Alon, Sudakov and
Zaks [7] (and independently by Fiamci2p)]):
Acyclic Edge Coloring Conjecture: For any graphtz, ¢’ (G) < A(G) + 2.

The following are the main results of the thesis:

1. From a result of BurnsteiriLf], it follows that any subcubic graph can be acyclically
edge colored using at most 5 colors. SkulrattankulcB8j fave a polynomial time
algorithm to color a subcubic graph usidg+ 2 = 5 colors. We proved that any non-
regular subcubic graph can be acyclically colored using only 4 colors. This result is
tight. This also implies that the fifth color, when needed is required only for one edge.

2. Let G be a connected graph aenvertices,m < 2n — 1 edges and maximum degree
A < 4, thend'(G) < 6. This implies that graph of maximum degree 4 are acyclically
edge colorable using at most 7 colors.

3. The earliest result on acyclic edge coloring of 2-degenerate graphs was by Caro and
Roditty [17], where they proved that'(G) < A + k£ — 1, wherek is the maximum
edge connectivity, defined &s= max, ,cv(c) AM(u, v) , wherel(u, v) is the edge- con-
nectivity of the pair u,v. Note that hefecan be as high ad. Muthu,Narayanan and
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Subramaniard4] proved that’(G) < A+1 for outerplanar graphs which are a subclass

of 2-degenerate graphs and posed the problem of proving the conjecture for 2-degenerate
graphs as an open problem. In fact they have also derived an upper boangd offor
series-parallel graph85], which is a slightly bigger subclass of 2-degenerate graphs.
We proved that 2-degenerate graphsare 1 colorable.

. Fiedorowicz, Hauszczak and Narayari2dj pave an upper bound @A + 29 for planar

graphs. Independently Hou, Wu, GuiZhen Liu and Bin 128][gave an upper bound of
max(2A —2, A+22). We improve this upper bound th+ 12, which is the best known
bound at present.

. Fiedorowicz, Hauszczak and Narayanra4j pave an upper bound & + 6 for triangle

free planar graphs. We improve the boundXe- 3, which is the best known bound at
present.

. We have also worked on lower bounds. Alon et. &, glong with the acyclic edge

coloring conjecture, also made an auxiliary conjecture stating that Complete graphs of
2n vertices are the only class of regular graphs which reqi¥€ colors. We disproved

this conjecture by showing infinite classes of regular graphs other than Complete Graphs
which requireA + 2 colors.

Apart from the above mentioned results, this thesis also contributes to the acyclic edge col-

oring literature by introducing new techniques like Recoloring, Color Exchange (exchanging

colors of adjacent edges), circular shifting of colors on adjacent edges (derangement of col-

ors). These techniques turn out to be very useful in proving upper bounds on the acyclic edge

chromatic number.









Contents

Acknowledgements i

Abstract \Y}

1 Introduction 1
1.1 Basicsand Notations . . . . . . . . . . . . e e e 2
1.2 Motivation. . . . . . . . e e e e e e e 3
1.3 History and Literature Survey. . . . . . . . . . . . . o 5
1.4 ThesiISOVEIVIEW . . . . . . v o e e e e e e e e e e e e e e e s 6

2 Preliminaries 7

3 Subcubic Graphs 13
3.1 Previous Results on Subcubic Graphs. . . . . .. ... ... ....... 13
3.2 TheTheorem. . . . . . . . o i e e e e e e e e e e 13
3.3 COmMMENIS . . . . . o e e e e e 15

4 Graphs with maximum degree 4 17
4.1 Definitions and Preliminaries. . . . . . . . . . . . e 17
4.2 TheTheorem. . . . . . . . . . e e e e 19
4.3 ComMENIS . . . . . . . e, 33

5 2-degenerate Graphs 35
5.1 Previous Results. . . . . . . . . . e e e e e e 35
5.2 TheTheorem. . . . . . . . . . . . e, 36

5.2.1 Properties of any valid coloringof G . . . . . . .. .. ... ... 37
5.2.2 The structure of the minimum counter example in the vicinity of the
primary pivot,z|. . . . . . . . . . e e 42

5.2.3 Modification of valid coloring; of &, to get valid coloring:; of G; . 44
5.2.4 Selection of secondary pivetind properties of, andc; in the vicin-

Ity of p . . . e 51
5.2.5 Getting a valid coloring that contradicts the Critical Path Property ei-
ther fromc, orfrome; . . . . .o 60
53 Remark. . . . . . 65



X CONTENTS

6 Planar Graphs-General case 67
6.1 Previous Results and Definitions. . . . . . ... ... ... . .0 67
6.2 TheTheorem. . . . . . . . . . . . . e e e 68

6.2.1 There exists a vertexthat belongs to configuration2,A3 or A4 . . 69
6.2.2 There exists no vertexthat belongs to configuration2,A3 or A4 . 75

7 Triangle Free Planar Graphs 77
7.1 PreviousResults. . . . . . . . ... 77
7.2 TheTheorem. . . . . . . . . . e 78

7.2.1 There exists a vertexthat belongs to configuratiol2, B3, 54 or B5 80
7.2.2 There exists no vertexthat belongs to one of the configuratioRg,

B3, BA0OrB5 . . . . e e 96
8 Lower Bounds and Dense Graphs 99
8.1 PreviousResults. . . . . . . . . ... 99
8.2 TheoremsonDense RegularGraphs . . . . .. .. ... ......... 100
8.3 Complete Bipartite Graphs . . . . . . . . .. ... ... ... ... ..., 101
8.3.1 Lower Bound for Complete Bipartite Graphs. . . . ... ... .. 101
8.3.2 ExactBoundfof,, .. ........................ 103
8.4 Remarks . . . . . . . . 106
9 Conclusion 107
9.1 OpenProblems. . . . . . . . .. . . ... 107
9.1.1 Acyclic Edge Coloring Conjecture. . . . .. .. ... ... .... 107
9.1.2 CompleteGraphs. . . . . . . . . . . . . . 108
9.1.3 Algorithmic Questions . . . . . . . . . . . . ... ... ... .. 108

Bibliography 109









Chapter 1
Introduction

The origins of graph theory are humble, even frivolous. Whereas many branches of mathe-
matics were motivated by the fundamental problems of calculation, motion, and measurement,
the problems which led to the development of graph theory were often little more than puzzles,
designed to testify the ingenuity rather than to stimulate the imagination. But despite the ap-
parent triviality of such problems, they captured the interest of mathematicians, with the result
that graph theory has become a subject rich in theoretical results of a surprising variety and
depth[13].

Little did Francis Gutherie knew that his simple observation would catapult the evolution
of graph theory to what it is now and much little did he knew that his observation (conjecture)
would take mathematicians more than 100 years to prove! Yes, we are talking about the most
famous problem of graph theory- The Four Color Problem (now Theorem): Is it true that any
map drawn in the plane may have its regions colored with four colors, in such a way that any
two regions having a common border have different colors?

In terms of graphsFour Color Problem is equivalent to asking whether a planar graph
(i.e., agraph drawn on a plane such that none of its edges cross ) can be four colored such that
adjacent vertices get different colors.

Tait came up with an equivalent statement to the Four Color Problem in terms of edge
coloring (coloring of the edges of a graph such that adjacent edges get different colors) of a
cubic graph- Is every bridgeless (a bridge is a cut edge) cubic planar graph edge colorable using
three colors? Though he gave a proof, it was a wrong one. But this introduced edge coloring

1The termgraph as we use now was coined for the first time $ylvester in a paper published in 1878 in
Nature



2 Chapter 1. Introduction

as a problem. A coloring of vertices (edges) is called proper if adjacent vertices (edges) get
different colors. Now if we examine carefully even-cycles could be colored using 2 colors,
where as odd-cycles require 3 colors. And hence the presence of odd-cycles in a graph increase
the number of colors required to color the graph properly. Researchers thought what would
happen if we restrict all cycles (odd or even) to use at least three colors in addition of being
properly colored. This is how the concept of acyclic coloring originated. Acyclic coloring is a
proper coloring of the vertices (edges) such that there exists no bichromatic (2-colored) cycle
in the graph. The concept atyclic coloringof a graph was introduced by GBrbaum 27].
Theacyclic chromatic inde&nd its vertex analogue can be used to bound other parameters like
oriented chromatic numbeandstar chromatic numbeof a graph, both of which have many
practical applications, for example, in wavelength routing in optical networ&}, (31] ).

Now let us look at the acyclic edge coloring of graphs throughout this thesis.

1.1 Basics and Notations

A graph is a pairtG = (V, E) of sets satisfying’ C V' x V; thus, the elements of E are
2-element subsets &f. The elements of are thevertices (or nodes, or points) of the graph
G, the elements oF are itsedges (or lines). The usual way to picture a graph is by drawing
a dot for each vertex and joining two of these dots by a line if the corresponding two vertices
form an edge. How these dots and lines are drawn is considered irrelevant: all that matters is
the information, which pairs of vertices form an edge and which do not.

The vertex set of a grapfi is referred to ad/(G) and its edge set as(G). Two vertices
x,y € G areadjacent or neighbours if they have an edge between them, i.ec,y) €
E(G). Then the edgéxz,y) is said to beincident on verticesz andy. If all the vertices
of a graph are pairwise adjacent, then the graph is knowncas:glete graph. A complete
graph onn vertices is denoted byk,,. Thedegree of a vertexv in graphG is the number
of edges incident om and is denoted byiege(v). The numbel(G) = min{degs(v)|v €
V(G)} is theminimum degree of G and the numbeA(G) = maz{dege(v)lv € V(G)}
is its maximum degree. Ng(u) denotes all the neighbours of vertexn G. Whenever the
underlying grapl( is clear from the context, we omit the subscript anddisgu) and N (u)
to denote the degree and neighbours oéspectively.

A graph H is asubgraph of a graphG if V(H) C V(G) andE(H) C E(G). H is said
to be aninduced subgraph of graphG if it is a subgraph of7 and for every pair of vertices
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x,y € V(H), edge(z,y) € E(H) if and only if (z,y) € E(G). A matching is a set of
independent edges in the graph. A matching is calledfect if all the vertices are present in
the matching. A graph is calleflinite if the number of vertices and edges in the graph are
finite. A graph is calledimple if between each pair of vertices, there is at most one edge and
no loops. A graph idirected if the edges have direction. Here the edgey) is different from
edge(y, ). If the edges are not directed, then the graplvigirected. All graphs considered

in this thesis are finite, simple and undirected. S} for further notations and definitions.
Definition 1.1. A properedge coloringf G = (V, E) isa mapc : E — C (whereC'is the

set of availablerolors ) with c(e) # ¢(f) for any adjacent edges f. The minimum number

of colors needed to properly color the edgeg#fis called the chromatic index @ and is
denoted by/(G).

Definition 1.2. A proper edge coloring c is called acyclic if there are no bichromatic cycles
in the graph. In other words an edge coloring is acyclic if the union of any two color classes
induces a set of paths (i.e., linear forest) @ Theacyclic edge chromatic numbéalso
called acyclic chromatic inde)x denoted by’ (G), is the minimum number of colors required

to acyclically edge colo¢.

1.2 Motivation

The primary motivation for this thesis is the following conjecture:

Acyclic Edge Coloring Conjecture: For any graptG, ' (G) < A + 2.

The conjecture is due to FiamciR(] (Alon, Sudakov and Zaks/] also independently
conjectured the same). The conjecture is open and is proved true for only few special classes
of graphs.

The problem of finding/'(G) is intimately related to other well known conjectures in graph
theory. We briefly comment about them here.

1. Perfect 1-factorization Conjecture: For anyn > 2, K,,, can be decomposed inta—1
perfect matchings such that the union of any two matchings forms a hamiltonian cycle
of K5,
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Apart from proving that the conjecture holds for certain values of n, for instance, if n
is prime (see [13] for a summary of the known cases), this conjecture of Kotzig and
others is still open. Alon et. al. iri/] observed the equivalence of this conjecture to
determininga’(G) of the complete graph.

If such a decomposition dk5,, . » (called a perfect 1-factorization) exists, then by color-
ing every perfect matching using a different color and removing one vertex we obtain an
acyclic edge coloring oK,, 1 with 2n + 1 = A(K5,1 + 1 colors. Such a coloring is
best possible fok,, ., since it is2n-regular (It is easy to prove that any d-regular graph
requires at least + 1 colors. A proof is given in one of the later chapters in the thesis).

A decomposition ofi,,,,; into 2n + 1 matchings each having edges, such that the
union of any two matchings forms a Hamiltonian pathigf, , ; is called gperfect near-
1-factorization As shown above, if{,, ., has a perfect 1-factorization théf,, . ; has

a perfect near-1-factorization, which is turn implies th@f<,, ;) = 2n + 1. It is easy

to see that the converse is also trueki, ., has an acyclic edge coloring withh + 1
colors, then this coloring corresponds to a perfect near-1-factorizatiéf,of; which
implies thatK5,, . » has a perfect 1-factorization. Therefore the following statements are
equivalent:

e Ks,.5 has a perfect 1-factorization.
e K,,.1 has a perfect near-1-factorization.

o a/(Kapy1) =2n+ 1.

. The linear arboricity of a graph, denoted by G), is the minimum number of linear
forest into which the edges of the graph can be partitioned. It was shown by Akiyama,
Exoo and Harary3] thatla(G) = 2 when G is cubic, and they conjectured that for every
d-regular graph,

Linear Arboricity Conjecture: la(G) = [(d+1)/2].

This conjecture can be restated in terms of Maximum degyess follows: For any
graph[(A + 1)/2]. Akiyama, Exoo and Harary 3|, [4]) proved the conjecture for
complete graphs, complete bipartite graphs, trees and graphg\with3, 4. Alon [5]
proved that, for every > 0, la(G) < (% + €) A for every graphG with sufficiently large
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A; moreover, the conjecture for every gra@twith an even (or odd) maximum degree
A and with girthg > 50A (g > 100A). See ], [19], [28] for more details.

As we know any two color classes of an acyclic edge coloring induce a linear forest in
the graph and thus it is obvious thatG) < [a/(G)/2]. If we can show that for a given
class of graphsy (G) < A+ 1, then it would immediately follow that the conjecture for
linear arboricity is true for that class of graphs.

1.3 History and Literature Survey

The concept o&cyclic coloringof a graph was introduced by Grtbaum27]. He introduced
acyclic vertex coloring and conjectured that the vertices of every planar graph can be colored
acyclically using 5 colors. Later Borodii4] proved it.

Acyclic Edge Coloring was studied by FiamciR(] and he proposed the acyclic edge
coloring conjecture in 1978. He solved the conjecture for subcubic graphs. His papers were
not available in English till recently and hence was unknown. Alon, McDiarmid and F&ed [
introduced it independently and using probabilistic methods proveditt@j < 64A. They
also mentioned that the constaiit could be improved with more careful application of the
Lovasz Local Lemma. Later Molloy and Reed showed #iéd’) < 16A. This is the best
known bound currently for arbitrary graphs. Muthu, Narayanan and Subram&2jgrved
thata'(G) < 4.52A for graphs of girth at least 220Girth is the length of a shortest cycle in
a graph). All the above results use probabilistic methods. The best known constructive bound
is by SubramaniarB] who showed that'(G) < 5A(log A + 2).

Though the best known upper bound for general case is far from the conjecture?l
the conjecture has been shown to be true for some special classes of graphs. Alon, Sudakov
and Zaks'f] proved that there exists a constansuch that:/(G) < A + 2 for any graphGz
whose girth is at leagtA log A. They also proved that (G) < A+ 2 for almost allA-regular
graphs. This result was improved by $&il and Wormald B6] who showed that for a random
A-regular graph/(G) < A + 1. Muthu, Narayanan and Subramanian proved the conjecture
for grid-like graphs B3] and outer planar graph84]. In fact they gave a better bound of
A + 1 for those classes of graphs. From Burnsteit®] fesult it follows that the conjecture
is true for subcubic graphs. Skulrattankulctg][gave a polynomial time algorithm to color
a subcubic graph usingy + 2 = 5 colors.

Determiningd/(G) is a hard problem both from a theoretical and from an algorithmic point
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of view. Even for the simple and highly structured class of complete graphs, the value of
a'(G) is still not determined exactly. The difficulty in determiningG) for complete graphs
could be observed by its equivalence to ®exrfect 1-factorization Conjecturelt has also
been shown by Alon and Zak8][that determining whether' (G) < 3 is NP-complete for an
arbitrary graphG.

A generalization of the acyclic edge chromatic number has also been studiedadyadic
edge chromatic number.(G) is the minimum number of colors sufficient to color the edges
of the graphz such that every cyclé€’ of G has at least mifjC|,r} colors ( see25], [26]).

1.4 Thesis Overview

In Chapter 2, we develop the preliminaries which are extensively used in the proofs of our
theorems.

Chapters 3-7 deal with the upper bound for special classes of graphs. Chapter 3 gives a tight
bound for subcubic graphs, while Chapter 4 gives an upper bound for graphs with maximum
degree 4. Chapter 5 shows that 2-degenerate graplis &ré acyclically edge colorable and
this bound is tight. In Chapter 6, we look at the acyclic edge coloring of Planar graphs. We
obtain an upper bound ak + 12 for planar graphs. In Chapter 7, we look at triangle free
planar graphs where we reduce the upper bount #03.

Chapter 8 deals with the lower bounds. Alon et.al. conjectureddhat K5, might be
the only regular graphs which haw§G) > A + 2. We disprove this conjecture. Here we
consider dense graphs which give us a lower bound ef 2. Also we give the exact bound
for K

»p» Wherep is an odd prime.



Chapter 2
Preliminaries

In this chapter, we shall look at the definitions, facts and lemmas that are used in the later
chapters. The reader is advised to go through it carefully since these things are extensively
used in the proofs later.

Let G = (V, F) be a simple, finite and connected graphrofertices andn edges. Let
x € V. ThenNg(z) will denote the neighbors afin G. For an edge € E, G — e will denote
the graph obtained by deletion of the edge~orz,y € V, whene = (z,y) = xy, we may
useG — {zy} instead ofG —e. Letc: F — {1,2,...,k} be anacyclic edge coloringf G.
For an edge: € FE, c(e) will denote the color given te with respect to the coloring. For
xz,y € V,whene = (z,y) = xy we may use:(z,y) instead ofc(e). ForS C V, we denote
the induced subgraph dghby G|S].

Partial Coloring: Let H be a subgraph aff. Then an acyclic edge coloring of H is also
a partial coloring ofG. Note thatH can be( itself. Thus a coloring: of G itself can be
considered a partial coloring. A coloringof G is said to be a proper partial coloringdfis
proper. A proper partial coloringis called acyclic if there are no bichromatic cycles in the
graph. Sometimes we also use the word valid coloring instead of acyclic coloring. Note that
with respect to a partial coloring c(e) may not be defined for an edge So, whenever we
usec(e), we are considering an edgdor which ¢(e) is defined, though we may not always
explicitly mention it.

Let ¢ be a partial coloring ofs. We denote the set of colors in the partial coloringy
C ={1,2,...,A+ 1}. Forany vertexxu € V(G), we defineF,(c) = {c(u, z)|z € Ng(u)}.
For an edgeb € E, we defineS,,(c) = F,(c) — {c(a,b)}. Note thatS,,(c) need not be the

7
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same as$), (c). We will abbreviate the notation t, andS,;, when the coloring is understood
from the context.

Let G = (V, F) be a graph om» edges where: > 1. We will remove an edge from G
and get a graply’ = (V, E’). By the minimality ofG, the graphG’ will have an acyclic edge
coloringc : E' — {1,2,..., A + 1}. Our intention will be to extend the coloringof G’ to G
by assigning an appropriate color for the edgbereby contradicting the assumption thkat
IS @ minimum counter example.

The following definitions arise out of our attempt to understand what may prevent us from
extending a partial acyclic coloring 6f — e to G.

Maximal bichromatic Path: Consider the subgraph induced by any two coteend 5 with
respect to any proper coloring The («, 3)-subgraph consists of even cycles, bichromatic
paths of length at least two, isolated edges and isolated vertices. Now when we say maximal
bichromatic path, we only concentrate on bichromatic paths of length at least two, ignoring
the even bichromatic cycles, isolated edges and isolated vertices. Thusfrmmaximal
bichromatic path with respect to a proper coloringf G is a path-component of they, 5)-
subgraph that consists of at least two edges.da,¢,b) maximal bichromatic path is an/(3)
maximal bichromatic path which starts at the veréewith an edge colored and ends ab.

We emphasize that the edge of the{,a,b) maximal bichromatic path incident on vertexs
coloreda and the edge incident on vertéxan be colored either or 5. Thus the notations
(a,,a,b) and ¢, 3,b,a) have different meanings. Also note that any maximal bichromatic path
will have at least two edges. The following fact is obvious from the definition of acyclic edge
coloring:

Fact 2.1.Given a pair of colorsy and g of a proper coloring: of GG, there can be at most one
maximal ¢,3) bichromatic path containing a particular vertex with respect ta.

Definition 2.2. A colora # c(e) is a candidatefor an edgee in G with respect to a partial
coloring ¢ of GG if none of the adjacent edges efare coloreda. A candidate color is valid
for an edgee if assigning the colory to e does not result in any bichromatic cycle@h

Lete = (a,b) be an edge id:. Note that any colof ¢ F, U F, is a candidate color for the
edgeab in G with respect to the partial coloringof G. A sufficient condition for a candidate
color being valid is captured in the Lemma below:



Lemma 2.3. A candidate color for an edge = ww, is valid if (F, N F,) — {c(u,v)} =

(Suv N Spu) = 0

Proof. Any cycle containing the edgev will also contain an edge incident an(other than

uv) as well as an edge incident en(other thanuv). Clearly these two edges are colored
differently since(S,, N S,.) = 0. Thus the cycle will have at least 3 colors and therefore any
of the candidate colors for the edge is valid. [ |

Now even ifS,,N Sy, # (), a candidate colg# may be valid. But if3 is not valid, then what
may be the reason? It is clear that cotbis notvalid if and only if there existsy # 3 such
that a (,5) bichromatic cycle gets formed if we assign cotbto the edges. In other words,
if and only if, with respect to coloring of GG there existed ad(,3,a,b) maximal bichromatic
path witha being the color given to the first and last edge of this path. Such paths play an
important role in our proof. We call thenritical paths. It is formally defined below:

Definition 2.4. Critical Path: Letab € E andc be a partial coloring ofG. Then a(a, 3,a,b)
maximal bichromatic path which starts out from the verexa an edge coloredr and ends
at the vertex via an edge colored is called an(«a, 3, ab) critical path. Note that any critical
path will be of odd length. Moreover the smallest length possible is three.

Remark: When we define critical paths, we always keep the gi@ph mind even though we
are dealing with coloring of a subgraph. Thus when we@ayg an edge, its an edge (#.

An obvious strategy to extend a valid partial coloringf G would be to try to assign one
of the candidate colors to an uncolored edg&he condition that a candidate color being not
valid for the edge: is captured in the following fact:

Fact 2.5. Let ¢ be a partial coloring ofG. A candidate color3 is notvalid for the edge
e = (a,b) if and only if 3o € S,, N Sy, such that there is &, 3, ab) critical path in G with
respect to the coloring.

Definition 2.6. Actively Present:Let ¢ be a partial coloring ofG. Leta € Ng(z) and let
c(x,a) = a. Letp € S,,. Color S is said to beactively presenin a setS,, with respect to
the edgery, if there exists ga, 3, zy) critical path. When the edgey is understood in the
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context, we just say thatis actively present id,,.

If all the candidate colors turn out to bewvalid, we try to slightly modify the partial
coloringc in such a way that with respect to the modified coloring, one of the candidate colors
becomes valid. An obvious way to modify is to recolor an edge so that some critical paths
are broken and a candidate color becomes valid. Sometimes we resort to a slightly more
sophisticated strategy to modify the coloring namelipr exchange defined below:

Color Exchange: Let ¢ be a partial coloring of7. Letw,i,j € V(G) andui, uj € E(G). We
defineColor Exchange with respect to the edge andwuj, as the modification of the current
partial coloringe by exchanging the colors of the edgesandwuj to get a partial coloring’,
ie.,d(u,i) = c(u,j), d(u,j) = c(u,i) andd(e) = c(e) for all other edges in G. The color
exchange with respect to the edgeésndu; is said to be proper if the coloring obtained after
the exchange is proper. The color exchange with respect to the edgedw; is valid if and
only if the coloring obtained after the exchange is acyclic. The following fact is obvious:

Fact 2.7. Let ¢ be the partial coloring obtained from a valid partial coloringby the color
exchange with respect to the edgesndw;. Then the partial coloring’ will be proper if and
only if c(u,i) ¢ S,; andc(u, j) ¢ Sy

The color exchange is useful in breaking some critical paths as is clear from the following
lemma:

Lemma 2.8. Letc be a partial coloring ofG and letw, i, j,a,b € V(G), ui,uj,ab € E. Also
let {\, &} € C suchthat{\ &} N {c(u, i), c(u,7)} # 0 and{i, j} N {a,b} = 0. Suppose there
exists an 4,£,ab) critical path that contains vertex, with respect to a valid partial coloring
c of G. Letc be the partial coloring obtained from by the color exchange with respect to
the edgesii andwj. If ¢ is proper, then there will not be any£,ab) critical path in G with
respect to the partial coloring'.

Proof.  Firstly, {\, &} # {c(u,i),c(u,j)}. This is because, if there is &,,ab) critical path
that contains vertex, with respect to a valid partial coloringof GG, then it has to contain the
edgeu: anduj. Sincei ¢ {a,b}, vertexi is an internal vertex of the critical path which implies
that both the colors. and¢ (that isc(u, ) andc(u, 7)) are present at vertex That means
c(u,j) € Sy and this contradict$'act 2.7, since we are assuming that the color exchange is
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proper. Thug \, &} # {c(u,i), c(u, 5)}.

Now let P be the @,£,ab) critical path with respect to the coloring Without loss of
generality assume that = c(u,i) € {\ ¢}. Since vertex: is contained in pattP, by the
maximality of the pathP, it should contain the edgei sincec(u,i) = v € {\,{}. Letus
assume without loss of generality that pdtlstarts at vertex. and reaches vertexbefore it
reaches vertex. Now after the color exchange with respect to the edgemnduy, i.e., with
respect to the coloring, there will not be any edge adjacent to veridkat is coloredy. So
if any (A\,&) maximal bichromatic path starts at vertexthen it has to end at vertex Since
1 # b, by Fact 2.1we infer that the {,£,ab) critical path does not exist. [ |






Chapter 3
Subcubic Graphs

A graph is called subcubic if the maximum degree of the graph is three. In this chapter we will
look at the acyclic edge coloring of subcubic graphs.

3.1 Previous Results on Subcubic Graphs

Burnstein’s [L6] proved that ifA(G) < 4, G can be acyclically vertex colored using at most 5
colors. The line graph of any graph of maximum degree at most 3 (i.e., a subcubic graph) has
maximum degree at most 4. Since acyclic edge coloring of a graph is nothing but the acyclic
vertex coloring of its line graph, it follows that any subcubic graph can be acyclically edge
colored using at most 5 colors. Skulrattankulct@f][gave a polynomial time algorithm to

color a subcubic graph usin + 2 = 5 colors. Alon,Sudakov and Zaks mentioned7hthat

they have also found a polynomial time algorithm for the same.

3.2 The Theorem

Theorem 3.1.Let G be a non-regular connected graph of maximum degree 3,dH{éh < 4

(The reader may note that&X(G) < 3, thend'(G) < 3).

Proof. We prove the Theorem by induction on the number of edges. The smallest possible
number of edges in a non-regular connected gr@pdf maximum degree 3 on vertices is

n— 1. Then clearlyG is a tree and is acyclically edge colorable using 3 colors. Now le¢ a
non-regular connected graph arvertices andn > n edges with maximum degree 3. Let the
Theorem be true for all non-regular connected graphs with maximum degree 3 with at most

13
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m — 1 edges. Without loss of generality we can assumehet 2-connected, since if there
are cut vertices i+, the acyclic edge coloring of the blocksGfcan easily be extended €.
Thusdé(G) > 2. SinceG is not 3-regular, there is a vertex of degree 2. Let it-be

Lety € Ng(z). LetG' = G — {zy}. Note thatG’ is connected, sinc€ is 2-connected.

If A(G") < 3, thend'(G") < 3. Otherwise by induction hypothesig(G’) < 4. Letc :
E" — {1,2,3,4} be an acyclic edge coloring @¥'. Let F}, = {c(y,2)|z € Ne(y)}. Note
thatl < |F,| < 2, since2 < degs(y) < 3. Leta’ be the only neighbour aof, in G'. Let
S = {c(d,2)|z € Ng/(a') — {z}}. Note that|Ng (y)| > 1 and leta € Ng/(y). Let
Sya = {c(a, 2)|z € Nev(a) —{y}}. Note thatl < |S,,| < 2, since2 < dege(a) < 3.

Our aim now is to extend the acyclic edge coloringf G’ to G by giving a color to the
edgery from the availablel colors. SinceF, U{c(z,a’)}| < 3, there is at least one candidate
color for the edgey.

case lic(x,d’') ¢ F,

Then clearly all the candidate colors are valid for the edgesince any cycle involving the
edgery will contain the edgera’ as well as an edge incident gnn G’ and thus the cycle will
have at least 3 colors.

case 2:c(x,d’') € F,

Without loss of generality let € Ng/(y) be the vertex such tha{z,a’) = c(y,a) = 1.
Suppose firstNg (y)| = 1. Then we have 3 candidate coldrz 3,4}. Supposex € {2, 3,4}

is not valid, what may be the reason? It is because if we assign ediorthe edge xy, a
bichromatic cycle is formed. It is easy to check that this has to bend bigchromatic cycle. It
follows that if « is not valid there exists a (&) maximal bichromatic path with x and y as end
vertices inG’ with respect to the coloring Now if a color« is not valid, then it should be in
S« to form a (1¢Y) maximal bichromatic path. But,/| < 2 and hencé{2,3,4} — S,/| > 1.
Thus at least one color frof®, 3,4} is valid for the edgery.

Now we can assumgVg (y)| = 2. Let No(y) = {a,b}. Without loss of generality let
c(y,b) = 2. Now colors{3, 4} are candidates for the edgg. If both the colors 3 and 4 are not
valid for the edgery, then there are (1,3) and (1,4) maximal bichromatic paths starting at the
vertexy, passing through vertexand ending at vertex. ThusS,, = {3,4} andS,, = {3, 4}.

Now recolor the edgea’ with color 2. Let the new coloring be calledl Note that since
2 ¢ S, anda is a pendant vertex i@, coloringc is a valid acyclic edge coloring of the graph
G'. Even with respect to the coloring colors{3,4} are candidates for the edgg. If both
the colors 3 and 4 remain invalid for the edggeven now, it means that there are (2,3) and
(2,4) maximal bichromatic paths starting at the vertepassing through vertéxand ending at
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the vertexc. ThusS,, = {3, 4}, whereS,, = {c(b, z)|z € N¢ (b) — {y}}. Let P be the above
discussed (2,4)- maximal bichromatic path with respect.tdNote thatP does not contain
as2 ¢ Sy,.

Now we can exchange the colors of the edgeandyb to get the coloring”. That is, with
respect ta””, we will havec”(y,a) = 2, ¢’(y,b) = 1 andc’(e) = ¢/(e), for all other edges
in G’. Note that the coloring” is proper sincd ¢ S,, and2 ¢ S,,. Now suppose there is a
bichromatic cycle with respect td. Then clearly this bichromatic cycle should contain both
the edgega andyb asdegq (y) = 2. Moreover, there has to be an edge colateat vertex
b. Recall thatS,, = {3,4} and thus at vertek only colors{1,3,4} are present. Thus the
coloringc” is acyclic. What happens to the patmow? Since””(y,b) = 1, the pathP, which
was bichromatic in coloring’ has 3 colors in the coloring’. Let P = P — y. It is easy to
verify that P’ is a (2,4) maximal bichromatic path which starts from ventend ends at vertex
b and does not contain vertex We have”(y, a) = ¢’(x,a’) = 2. By fact 1 there can only be
at most one (2,4)-maximal bichromatic path starting from the vertaile know P’ is such a
path and it does not include vertex Thus there can not be a (2,4) maximal bichromatic path
which starts at vertex and ends at vertey, passing through vertex Thus color 4 is valid
for the edgery.

[ |

3.3 Comments

1. One natural question that may arise is whether the result can be extended to all subcubic
graphs, i.e., is it true for all 3-regular graphs also? But this is in general not true since
K, is a 3-regular graph which requires 5 colors. It was proved by Fiandk fhat
every graph other thalR, and K3 5 is 4 colorable. But his paper was in Russian and was
available only recently.

2. Every non-3-regular edge maximal connected graph with maximum degree 3 needs 4
colors to be properly acyclically edge colored. This is because, if n is even, then a
matching can have at mosf2 edges. Only one color can tak¢2 edges and all other
colors can have a maximum ef2 — 1 edges. Thus 3 colors can cover a maximum of
n/242(n/2—1) = 3n/2—2 edges. But the edge maximal graph cont8im&—1 edges
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and thus needs 4 colors. If n is odd, then each matching can have maximun) /2
edges and all the three colors can cover at Rpst- 1) /2 = (3n — 3) /2 edges. But the
edge maximal graph can ha{#n — 1) /2 edges and thus needs 4 colors. Thus our result
is tight for all non-3-regular edge maximal connected subcubic graphs.



Chapter 4
Graphs with maximum degree 4

In this chapter we will see an upper bound for acyclic chromatic index for graphs with maxi-
mum degree 4.

4.1 Definitions and Preliminaries

Most of the definitions are as in the Chapter 2. Since the proof involves much more case anal-
ysis than other chapters on upper bounds, we give a more detailed notation for the operations
Recoloring andColor Exchange. This makes the presentation easier.

An obvious strategy to extend the coloringf G’ to G would be to try to assign one of the
candidate colors id' — F' to the edgery. The condition that a candidate color is not valid for
the edgery is captured in the following fact.
Fact4.1.The colorg € C' — F'is not avalid color for the edgery if and only if3o € F,, N F),
such that there is afw, 3, xy) critical path inG'.

If none of the colors irC' — F' is valid for the edgery, then we can group the colors in
C' — F into two categories namelyeak andstrong.

Definition 4.2. Weak Color: A color g € C — F'is calledweak if it forms only one critical
path withz andy as end points. Equivalently, there exists only ane F, N F}, such that there
is an(«, 3, zy) critical path. Leta € Ng:(z). A weak color3 is said to beactively presenin
a setS,,, if 3k € Ng/(a), such thate(a, k) = 3 and the(w, 3, xy) critical path contains the
edge(a, k). Sinces € Cr andc(a, k) = 3, itis clear thatk # x. If a weak colors € S,, is

17



18 Chapter 4. Graphs with maximum degree 4

not actively present i, then it is said to bgassively present S,,.

Definition 4.3. Strong Colorif the color3 € C' — F'is not valid and also notveak, then it is
called strong. Note that it appears on at least two critical paths.

If there are weak colors, it makes sense to try to break the critical path containing one of
the weak colors, thus enabling us to use that weak color for the @dgeor this purpose we
introduce the concept dtecoloring.

Definition 4.4. Recolor: We define’ = Recolor(c, e,~) as the recoloring of the edgewith
a candidate colory to get a modified coloring’ frome, i.e.,d'(e) = v andd'(f) = ¢(f), for
all other edgesf in G’. The recoloring is said to be proper, if the colorirgis proper. The
recoloring is said to becyclic (valid), if in coloring ¢’ there exists no bichromatic cycle.

Recall that our strategy is to extend the coloring-6fo G by assigning a valid color for the
edgery. When all the candidate colors ©f turn out to benvalid, we try toslightly modi fy
the coloringe of G’ in such a way that with respect to the modified coloring, we have a valid
color for edgery. Recoloringof an edge in the critical path which contained a weak color is
one such strategy. Sometimes we resort to a slightly more sophisticated strategy to modify the
coloring namelycolor exchange defined below.

Definition 4.5. Color Exchange: Letu,i,j € V(G') andui,uj € E(G'). We define’ =
Color Exchange(c,ui, uj) as the the modification of the current colorindpy exchanging the
colors of the edgesi anduj, i.e.,d (u,1) = c(u, j), ¢ (u,j) = c(u,i) andd'(e) = c(e) for all
other edges in G'. The color exchange with respect to the edgesndwj is said to be proper
if the coloring obtained after the exchange is proper. The color exchange with respect to the
edgesui andwuy is valid if and only if the coloring obtained after the exchange is acyclic.

In our proof we use the strategy of color exchange many times and in different contexts.
All these contexts are more or less similar but differ in minor details. We would like to capture
all these different contexts in a general framework. The configuration defined below is an
attempt to formalize this:

Definition 4.6. Configuration A : Letu be avertex and, j € N¢/(u). Let N, (u) UN{, (u) be
a partition of Ng (u) — {4, j}, i.€., NG (w)UN/ (u) = Ner (u) —{i, j} and N, (u) \NL (u) = 0.
The 5-tuple(u, i, j, N (u), Nl (w)) is in con figuration A if
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1. c(u,i) ¢ S,; andc(u, j) ¢ S
2. Vz € N[ (u), c(u,z) ¢ Sy andc(u, z) ¢ Sy,

Supposéu, i, j, N/ (u), Nl (u)) is in con figuration A with respect to the coloring Let
¢’ be the coloring obtained after the color exchange with respect to the etlgadwu;. Then
note that condition 1 guarantees that the celar,7) is a candidate for edge; and the color
c(u, j) is a candidate for edgei and thus the coloring obtained after the color exchange
is proper. Condition 2 inhibits the possibility of any(u,1), c(u, 2)) or (c(u,j), c(u, 2))
bichromatic cycles being formed for any: € N{.(u). Its obvious that there can not be
any (c¢(u, j), c(u, 1)) bichromatic cycles after exchange. Thus the following fact is easy to
verify:
Fact 4.7.Let the 5-tuplgu, i, j, N (u), N (u)) be incon figuration A. Then the operation
¢ = Color Exchange(c,ui,uj) is notvalid if and only if3h € N{, (u) such that after the
color exchange (i.e., i) there exists arja, ) bichromatic cycle that passes througffor
a € {d(u,1),d(u,j)} ands = (u, h).
In view of Flact 4.7, the following F'act is obvious:
Fact 4.8.Let the 5-tupldu, i, j, N/, (u), Nl (u)) be incon figuration A. ThenifN/, (u) = 0,
the color exchange = Color Exchange(c, ui, uj) is valid.

4.2 The Theorem

Theorem 4.9. Let G be a connected graph omvertices,m < 2n — 1 edges and maximum
degreeA < 4, thend’(G) < 6. (Note that ifA(G) < 4, thenm < 2n always.
Proof. We prove the Theorem by induction on the number of edgesHLet (V, Ey) be a
connected graph of vertices andn < 2n — 1 edges and\(H) < 4. Trivially the Theorem
is true for|E| = m = 0. Let the Theorem be true for all connected graphissuch that
A(W) <4and|E(W)| <2|V(W)|—1, with at mostn — 1 edges. Without loss of generality
we can assume thdf is 2-connected, since if there are cut verticeddinthe acyclic edge
coloring of the blocksB;, B ... By, of H can easily be extended i@ (Note that each block
satisfies the property that(B;) < 4 and|E(B;)| < 2|V(B;)| — 1). Thusdé(H) > 2 (6(H)
denotes the minimum degree of grafih. Now sinceH has at mos2n — 1 edges, there is a
vertexx of degree at most 3.

Lety € Ny(z). The degree of is at most 4. LetH’ = H — {zy},i.e . H = Vg, En),
whereVy, = Vg andEy = Ey — {zy}. ThusinH’, deg(z) < 2 anddeg(y) < 3. Note that
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sinceH is 2-connectedH’ is connected.

To avoid certain technicalities in the presentation of the proof, we construct the Gfaph
from H' as below. Ifdegy/ (z) = 2, degy/(y) = 3 andVz € Ny/(x) U Ny (y), degr (2) = 4,
then letG’ = H' andG = H. Otherwise, we construct the graph= (V’, £’) from H' in the
following manner. First add pendant vertices as neighbours to the vertiaedy such that
deger () = 2 anddege (y) = 3. Next add pendant vertices as neighbours to the newly added
vertices ant/z € Ny (z) U Ny (y) such that'z € Ng/(z) U Nev (y), deger (2) = 4. Note that
since H' was connected;’ is also connected. L&t = G' U {zy}, i.e.,G = (V, E), where
V =V'andE = E' + {zy}.

By induction hypothesis, grapH’ is acyclically edge colorable usirtgcolors. Note that
we can easily extend the coloring Af to G’ by coloring each of the newly added edges with
the available colors satisfying the acyclic edge coloring propertyclets’ — {1,2,.....,6}
be an acyclic edge coloring 6f. It is easy to see that if we extend the acyclic edge coloring of
G’ to G by assigning an appropriate color to the edgethen this coloring also corresponds
to the acyclic edge coloring df, sinceH is a subgraph of;.

Our intention will be to extend the acyclic edge coloriggof G' to G = G’ + {zy} by
assigning an appropriate color for the edge We denote the set of colors of by C' =
{1,2,3,4,5,6}.

Let No/(z) = {a,b} and N (y) = {d,0',d'}. Note thatNg (z) N Ne/(y) need not
be empty. Also recall thafegq (a) = deger(b) = 4. Let Ngi(a) = {x, ki, ko, k3} and
N (b) = {x, 1,12, 13}

case 1.F, NF, =10

Since|F| =5, |C — F| = 1. Clearly thecandidate color inC' — F'is valid for the edge:y.

case 2:|F, N F,| =2

Assumption 4.10. Without loss of generality let, = {1,2} and F;, = {1,2,3}. Thus
F=1{1,2,3}.

By Assumption 4.1 C — F = {4,5,6}. If none of the candidate colors arelid, then
by Fact 4.1, the following Claim is easy to see:
Claim 4.11. With respect to the coloring,, V3 € C — F,3a € F, N F, such that there is a
(e, B, zy) critical path.
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case 2.1(S,, U Syy) NEF =10

SinceF = {1,2,3}, S;a = S = {4,5,6}.

Claim 4.12. With respect to the coloring,, all the colors ofC' — I are weak.

Proof. Suppose not. Then there is a strong colo€in- F'. Without loss of generality let
be a strong color. Lety(x,a) = ¢o(y,a’) = 1 andey(z,b) = ¢o(y, V') = 2. Now it is easy to
check that the 5-tuplér, a, b, 0, 0) satisfiescon figuration A. Let

¢y = Color Exchange(cy, xa, xb)

By Fact 4.8 the color exchange with respect to the edgesand b is valid. Thus the
coloring ¢ is acyclic.

Since color 4 was strong in coloring, there was g1, 4, zy) critical path as well as a
(2,4, zy) critical path beforecolor exchange (i.e., with respect to the coloring)). Thus
by Lemma 2.8 (1,4,zy) critical path and(2,4, zy) critical path will not exist after the
color exchange (i.e., with respect to the coloring). Thus byFact 4.1, color 4 is valid for
edgery. Thus we infer that with respect to the colorifg all the colors of”' — F' are weak[]

By Claim 4.12, all the colors ofC' — F' are weak. Each weak color should be actively
present in exactly one &, or S,,. Since there are 3 weak colors, we can infer that eithgr
or S, is such that at least 2 of the weak colors are actively present in it.
Assumption 4.13.Without loss of generality assume that coléand5 are actively present
in S,q. Letey(a, k1) = 4 andcy(a, ko) = 5.

From Assumption 4.13 it follows that sincecy(r,a) = 1, there exist(1,4,zy) and
(1,5, zy) critical paths The following claim is obvious.
Claim 4.14. With respect to the coloring,, 1 € S, andl € S, .

It is easy to verify that the 5-tupler, a, b, 0, ) satisfies configuratiod with respect to the
coloringc.

¢1 = Color Exchange(cy, za, xb)

By Fact 4.8 the color exchange with respect to the edgesand b is valid. Thus the
coloring ¢, is acyclic.

But there werg(1, 4, zy) and (1,5, zy) critical paths before color exchange (i.e., with
respect to the coloring)). By Lemma 2.8, both (1,4, zy) and(1, 5, zy) critical pathsdo not
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exist after thecolor exchange (i.e., with respect to the coloring).

Thus even with respect to the coloring if both the colorst and5 are notvalid for the
edgery, by Fact 4.1, there has to bé2, 4, xy) and (2, 5, zy) critical paths Thus2 € Sy,
and2 € S,;,. Thus we carClaim the following:

Claim 4.15. With respect to the coloring,, {1,2} C Sk, and{1,2} C S.,. Moreover there
will not be any(1, 4, zy) and (1, 5, zy) critical paths

Now since the colors 4 and 5 are weak, we try to break2hé, zy) and(2, 5, zy) critical
pathsby recoloring the edgea.

¢o = Recolor(cy1,za, 3)

Note that color 3 is a candidate for the edgesincesS,, = {4, 5,6} andc,(x,b) = 1. And
also sinceS,, N S,, = 0, by Lemma 2.3 color 3 isvalid for the edgera.

Note that with respect to the coloring, F,, N F, = {1, 3}. In view of Claim 4.15 there
will not be any(1,4, zy) and(1, 5, xy) critical pathswith respect to the coloring, also. If
both the colorst and5 are notvalid for the edgery still, then by Fact 4.1, there has to be
(3,4,zy) and(3, 5, xy) critical pathsimplying 3 € S,;, and3 € Su,. Thus combined with
Claim 4.15 we infer the following:

Claim 4.16. With respect to the coloring,, we haveS,, = S.r, = {1,2,3}. Moreover there
will not be any(1, 4, zy) and (1, 5, xy) critical paths

Now the 5-tuple(a, k1, ko, {k3}, {2}) satisfies configuratioA.

c3 = Color Exchange(cs, aky, aks)

By fact'4.7if there is any bichromatic cycle (recalling thata, x) = 3), it has to be either
a(5,3) or (6,3) bichromatic cycle that passes through verdeand hence vertex. But any
cycle that passes through vertexshould contain edgeb also. Since:s(x,b) = 1, thisis a
contradiction and we infer that is acyclic.

There was 43, 4, zy) critical path as well as €, 5, xy) critical path beforeolor exchange
(i.e., with respect to the coloring). Thus byLemma 2.8, both these critical paths does not
exist after the color exchange (i.e., with respect to the colatipgNote thatk,, ks ¢ {z,y}
sincecy(a, k1) = 4 andey(a, ko) = 5 ¢ F, or F,,. Therefore we can applyremma 2.8)

To summarizegs(z,a) = 3, cs(x,b) = 1 and thusF, N F, = {1, 3}. With respect to the
coloring c3, there exist nq3, 4, xzy) and (3, 5, zy) critical paths. Recall that by Clai.16
there won't be any1, 4, xy) and(1, 5, xy) critical paths with respect to the coloring. It is
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easy to see that even with respect to the colotinthere won't be anyl, 4, zy) and(1, 5, zy)
critical paths.
Thus byFact'4.], color 4 and 5 are valid for edgey.

case 2.2(S,, U Sp) N F # ()

Assumption 4.17.Without loss of generality lef,, N F' # (. It follows that one of4, 5,6} is
missing inS,, since|S,,| = 3. Without loss of generality let it be color 5. Also lgfz, a) =
co(y,a’) = 1andey(x,b) = co(y,b') =2 andcy(y,d) = 3.

Claim 4.18. With respect to the coloring,, there exists 2,5, xy) critical path. Thus
5 € Sup.

Proof. Since color 5 is not valid for the edgey, by Claim 4.11there has to be @1, 5, zy)
critical path or a2, 5, zy) critical path. But byAssumption 4.17%, color5 ¢ S,, and hence
there can not be @, 5, zy) critical path. Thus there exists(3, 5, zy) critical path. O

Claim 4.19. With respect to the coloring,, all the colors ofC' — F" are weak.
Proof. Suppose not. Then there is at least one strong colo-F'. Without loss of generality
let 4 be a strong color. Thus we haves S,,. Combined withC'laim 4.1§ we have:

{4,5} C S, (4.1)

Now let

¢y = Recolor(co, xa, 5)

Note that color5 is a candidate for the edge: sincecy(z,b) = 2 and5 ¢ S,, (by
Assumption |4.17). Now we claim that assigning color 5 to the edgecan not result in any
bichromatic cycle. To see this first note that since any cycle containing thezedsjeould
also contain the edgeb, butcy(x,b) = 2 and therefore if a bichromatic cycle gets formed it
must be g2, 5) bichromatic cycle, implying that there is(a, 5, za) critical path. But there is
already a2, 5, zy) critical path (byClaim 4.18) and byFact 2.1there can not be &, 5, za)
critical path, a contradiction. Thus colorirgis acyclic.

Note that with respect to the coloring, color 6 remains to be a candidate color for the
edgery. Also note thatF, N F, = {2}. If the candidate colo6 is not valid for the edgey,
then by Fact 4.1 there has to be &, 6, xy) critical path and thus € S,,. Thus combined
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with (4.1)), we have:

Sup = {4,5,6} (4.2)

With respect to the coloring,, color 4 was strong (assumption) and thus there existed
a (1,4, zy) critical path. After recoloring the edge: with color 5 (i.e., with respect to the
coloringcy), the(1, 4, xy) critical path gets curtailed to@, 4, y, a) maximal bichromatic path
without containing the vertex. Moreover note thatl, 4, y, a) maximal bichromatic path does
not contain the vertel since ifb is in this path, then it is an internal vertex and thus both colors
1,4 € F,, a contradiction{ ¢ F;). Thus we have,

With respect to the coloring,, a (1, 4, y, a) maximal bichromatic path exists, (4.3)

but this path does not contain the verticesr b.

Now with respect to the coloring, £, N F,, = {2}. Let

¢y = Recolor(cy, b, 1)

Note that color 1 is a candidate color for the edgesincec|(x,a) = 5 andl ¢ S, =
{4,5,6}. Color 1 isvalid for the edgerb because any bichromatic cycle containing edge
should also contain edge: and since colot ¢ S,, (Recall thatcg(x,a) = 1. Thusl ¢ S,,
with respect to the coloring,. Thereforel ¢ S,, with respect to the coloring) also.), such a
(1,5) bichromatic cycle can not be formed. Thtfss acyclic.

Thus with respect to coloring;, F,, N F, = {1}. Now by (4.3), with respect to the
coloring ¢, there existed &1, 4, y, a) maximal bichromatic path that does not contain vertex
b or z. Thus noting that; is obtained just by changing the color of the edgeo 1, by Fact
2.1we infer thatej can not contairi1, 4, zy) critical path.

Thus byFact 4.1 color 4 is valid for the edgey. Thus we can infer that with respect to
the coloringcy, all the colors ofC — F' are weak. O

Claim 4.20. In view of Assumption 4.17, with respect to the coloring,, eacha € {4,5,6}
IS actively present iN Sy,

Proof. Suppose not. ByClaim 4.1§ we know that color 5 isictively present in Sg.
Without loss of generality let color 6 be nattively present in S,,. Therefore color 6 is
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actively present in S,,. Now let

¢y = Recolor(co, xa, 5)

Note that color5 is a candidate since ¢ S, (by Assumption 4.17) andcy(z,b) = 2.
Now we claim that assigning color 5 to the edgecan not result in any bichromatic cycle. To
see this first note that since any cycle containing the edgghould also contain the edgé,
butcy(z, b) = 2 and therefore if a bichromatic cycle gets formed it must b &) bichromatic
cycle, implying that there is &, 5, za) critical path with respect to the coloring. But in ¢q
there is already &, 5, xy) critical path (by Claind.11and Claim4.18) and byFact 2.1there
can not be &2, 5, za) critical path, a contradiction. Thus colorirgis acyclic.

Now F, N F, = {2}. Butin ¢, there did not exist &2, 6, zy) critical path since by
assumption color 6 is not actively presentSp,. Thus noting that|, is obtained just by
changing the color of the edge to 5, we infer thatc, can not contair{2, 6, xy) critical path.

Thus byFact'4.1color 6 is valid for the edgey. We infer that with respect to the coloring
co, €acha € {4,5,6} is actively present in Sy,. O

Recall thatcy(z,b) = co(y,b') = 2. In view of Claim 4.2Q with respect to the coloring
co, We have:

Sa:b = Syb’ = {4a 57 6} (44)

Let

c1 = Recolor(cy, zb, 3)

Note that color 3 is a candidate for edgg since3 ¢ S,, = {4,5,6} (by (4.4)) and
co(x,a) = 1. Moreover sinceS,, N Sy, = B, by Lemma 2.3 color 3 is alsovalid. Thus the
coloringc, is acyclic.

With respect to the coloring, F,, N F,, = {1, 3}. In view of Claim 4.19andClaim 4.2Q
Vo € {4,5,6}, a is notactively present in S,, and thug1, «, zy) critical path does not exist
with respect to the coloring,. It is true with respect to the coloring also. Hence if none
of the colors from{4, 5,6} is valid for the edgery with respect to the coloring;, then by
Fact 4.1there has to bé3, 4, xy), (3,5, xy) and (3,6, zy) critical paths Recalling that by
Assumption 4.17c(y, d') = 3, we infer thatS,, = {4,5,6}.
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Thus with respect to the coloring, we have:

Sy = Sya = {4,5,6} (4.5)

The 5-tuple(y, ', d’, {a'}, D) is configurationA. Now let

co = Color Exchange(cy, yb', yd')

By Fact 4.8 the color exchange with respect to the edgésandyd’ is valid. Thus the
coloringc, is acyclic.

Fora € {4,5,6} there was 43, «, xy) critical path beforeolor exchange (with respect
to coloringc,). Thus bylemma 2.8, these critical paths do not exist after théor exzchange
(with respect to coloring,). Also recall that there was nd, «, zy) critical path, fora €
{4,5,6}, with respect to the coloring,. Noting that thecolor exchange involved only the
colors2 and3 there is no chance of anfy, «, zy) critical path to get formed with respect to
the coloringcs,.

Thus by fact'4.], color« is valid for edgery.

case 3)|F, N F,| =1

Assumption 4.21. Without loss of generality let, = {1,2} and F,, = {1,3,4}. Thus
F=1{1,2,3,4}. ThenC'— F = {5,6}. Letcy(x,a) = co(y,a’) = 1, co(x,b) = 2, ¢o(y,b') =3
andcy(y,d') = 4.

If none of the colors fronC' — F arewalid, then byFact 4.1, there exist(1, 5, zy) and
(1,6, zy) critical paths. We capture this in the followingaim:
Claim 4.22. With respect to coloringy, there exist(1,5, zy) and (1,6, zy) critical paths.
Thus{5,6} C S,, and{5,6} C Sy, .
Claim 4.23. With respect to coloringy, {3,4} C Sy.
Proof. Suppose not. Then at least one3pft is missing inS,,. Without loss of generality let
4 ¢ S,. Recalling thaty(z,a) = 1, it follows that color4 is a candidate color for the edge
xb. We claim that there exists(a, 4, xb) critical path with respect to the coloring. Suppose
not. Then let

¢y = Recolor(co, xb, 4)

Clearlycj is acyclic since any bichromatic cycle being formed should involve the edge
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as well. Butej(z,a) = 1 and hence &1, 4) bichromatic cycle has to be formed, implying that
there is &1, 4, xb) critical path, a contradiction to our assumption.

With respect to the coloring,, |(F, N F,,) = {1,4}| = 2, and bycase 2 we will be able to
find a valid color for the edge xy.

Thus we can infer that there existg & 4, zb) critical path with respect to the coloring
co. For a(l,4,xb) critical path to exist clearly we should hatec S,,, sincecy(z,a) = 1.
Combined withC'laim 4.22, we get:

Spa = {4,5,6} (4.6)

Moreover we hava € S,, with respect ta;, since there is &1, 4, xb) critical path. Now
let the other two colors i%,, be {«, 5}. Theny € ({3,5,6} — {«, 5}) is a candidate color
for the edgerb. Let

¢y = Recolor(cg, xb,7)

We claim that is acyclic. Otherwise if any bichromatic cycle gets formed with respect to
the coloringcy, then it should be &y, 1) bichromatic cycle since any cycle that contains edge
xb should contain edgea also and(z, a) = 1, implying that there exists @, v, zb) critical
path with respect to the coloring. If v = 3, such a critical path can not exist sinte S,,

(by (4.6)). On the other hand i € {5,6}, by Fact 2.1, (1,~, zb) critical path can not exist
with respect to the coloring, since there is already(@, -y, zy) critical path (byClaim 4.22).
Thus we infer thaty is acyclic.

With respect to coloringg, if v = 3, |(F, N F,) = {1,3}| = 2, and bycase 2 we will be
able to find a valid color for the edgey.

With respect to coloringy, if v € {5,6} we have(F, N F,) = {1} and2 € C' — F. Thus
color 2 is a candidate color for the edgg. Moreover sinces,, = {4, 5,6} (by (6)), there can
not be a(1, 2, xy) critical path and hence b¥act 4.1, color 2 is valid for the edgey. Thus
we infer that with respect to coloring, {3,4} C Sy. O

Claim 4.24. With respect to the coloring,, S., = {3, 4, 1}.

Proof. Suppose not. Then in view of Claith23 we can infer that colot ¢ S,,. Recall that
by Claim4.22, {5,6} C S,,. Let the remaining color it¥,, bea. Let5 € {3,4} — {a}. Now
let
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¢y = Recolor(cg, xb, 1)

and

¢y = Recolor(cy, xa, 3)

Note thatcj is proper sinca ¢ S,;, (by Assumption) andg ¢ S.,, by the definition of5.
The coloringcj is acyclic since any cycle containing the edgeshould also contain the edge
xb (and vise versa), bufj(z,b) = 1 and therefore if a bichromatic cycle gets formed it must
be a(1, #) bichromatic cycle, implying that € S,,. But this is a contradiction since¢ S,
with respect tay ascy(x,a) = 1 and thereford ¢ S, with respect ta; also.

Now sincef € {3,4}, we have|(F, N F,) = {1, 3}| = 2 and thus the situation reduces
to case 2, thereby enabling us to find a valid color for the edge Thus we infer that with
respect to the coloring,, S,, = {3,4,1}. O

Claim 4.25. There is a1, 2, zy) critical path . Thus in combination witb'laim 4.22.5,, =
{5,6,2}, Sye = {5, 6,2} with respect to the coloring.
Proof. Suppose not. Let

¢y = Recolor(co, xb, 5)

Note that color 5 is a candidate color for the edgeince, byClaim 4.24 S,, = {3,4,1}
andcy(z,a) = 1. Itis also valid since if there is a bichromatic cycle, then it should contain the
edgesra andzb and hence it has to be(&, 5) bichromatic cycle, implying that there exists a
(1,5, xb) critical path with respect to the coloring. But there can not be @, 5, zb) critical
path (by Fact 2.1) as there is already @, 5, xy) critical path (byClaim 4.22). Thus the
coloringc; is acyclic.

Now with respect to the coloring,, £, N F, = {1}. Color 2 is a candidate color for
the edgery since2 ¢ (F, U F, = {1,3,4,5}). Since there is n¢l, 2, zy) critical path (by
assumption), byFact 4.1, color 2 is valid for the edgey. Thus we can infer that there exists
a(1,2,xy) critical path with respect to the coloring. O

Recall thatNg (a) = {x, ki, ko, ks} and Ng/(b) = {z,1,1s,13}. Also recall that by As-
sumption4.2], co(z,a) = co(y,a’) = leo(z,b) = 2,c0(y,b’) = 3 andey(y,d’) = 4. By
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Claim4.24 and Claim4.25 S,, = {5,6,2} andS,, = {3,4,1}. We make the following
Assumption:

Assumption 4.26. Without loss of generality let,(a, k1) = 5, co(a, ka) = 6, co(a, ks) = 2,
co(b,l1) =3, co(b,l2) = 4andcy(b,l3) = 1.

The main intention of the next tw@'laims is to establish that,,, = Sy, = {2,5,6}.
Claim 4.27. With respect to the coloring,, there exis{(2, 3, za) and (2, 4, za) critical paths.
Thus2 € Sy, 2 € Sy,.

Proof. Suppose not. Then without loss of generality let there b&n®, xa) critical path. Let

¢y = Recolor(cy, za, 3)

Note that color 3 is a candidate color for edgesince3 ¢ S,, = {2,5,6} (by Claim
4.25 andcy(z,b) = 2. Itis also valid since if there is any bichromatic cycle containing edge
xa, then it should also contain edgé and since(x, b) = 2, it has to be 42, 3) bichromatic
cycle, implying that there is &2, 3, za) critical path, a contradiction to our assumption. Thus
the coloringc; is acyclic.

With respect to the coloring),, ¢;(y, b") = 3and(F, N F,) = {3}. Now if one of the colors
5 and 6 are valid for the edge), we are done. Otherwise Wyact 4.1, there arg3, 5, xy) and
(3,6, xy) critical paths. Thus

{5, 6} C Syb/ (47)

Let,

¢y = Recolor(cy, b, 5)

First note that color 5 is a candidate for the edgesinceb ¢ S,;, = {3,4,1} (by Claim
4.24 andc)(xz,a) = 3. Itis also valid since if there is any bichromatic cycle containing
the edgerd then it should also contain edge and sincesj(z,a) = 3, it has to be &3, 5)
bichromatic cycle,implying that there existg@ 5, xb) critical path. But there can not be a
(3,5, zb) critical path (byFact 2.1) as there is already €, 5, xy) critical path. Thus the
coloringcg acyclic.

Now with respect to the coloringj, (F, N F,) = {3} and2 ¢ (F, U F,) = {1,3,4,5}.
Color 2 is acandidate for the edgery. Ifitis valid then we are done. Otherwise Byict 4.1,
there exists &3, 2, zy) critical path.
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Thus2 € S,y and in combination with{4.7), we get,

Sy = {2,5,6} (4.8)

Recall thatS,,, = {2, 5,6} by Claim 4.25with respect to the coloring,. It is easy to see
thatS,,, = {2,5,6} even with respect to the coloring. Now in view of Assumptior#.2],
we have the 5-tupléy, a’, V', {d'}, 0) in Con figuration A. Let,

7

¢y = Color Exchange(cy, ya', yb')

By Fact 4.8 the color exchange with respect to the edgé&sandyt’ is valid. Thus the
coloring ¢y’ is acyclic.

There was 43, 6, xy) critical path beforeolor exchange (i.e., with respect to the coloring
¢y) since otherwise color 6 would have been valid for the edgeith respect to the coloring
¢y Thus byLemma 2.8 no (3,6, xy) critical path exists after thevlor exchange (i.e., with
respect to the coloring)’). Thus byFact 4.1, coloré6 is valid for edgery. We can infer that
with respect to the coloring,, there exis{(2, 3, za) and(2, 4, za) critical paths. O

Claim 4.28. With respect to the coloringy, Va € {3,4} and Vs € {5,6}, there exist
(e, B, b, a) maximal bichromatic path which ends at vertexvith an edge coloreds. Thus
Spy, = {2,5,6} and Sy, = {2,5,6}.

Proof. Suppose not. TheBa € {3,4} and33 € {5,6} such that there is n, 3, b, a)

maximal bichromatic path which ends at vertexvith an edge colore@. Without loss of
generality let = 3 and = 5. Now let,

¢y = Recolor(cy, za, 3)

and

co = Recolor(cy, xb,5)

Note thatc is a proper coloring ( since3(¢ S.. = {2,5,6} and¢j(x,b) = 5) and
(b5 ¢ Sw = {3,4,1} andcy(z,a) = 3)). Now to see thatj is acyclic, note that if there is a
bichromatic cycle with respect to the colorig then it should contain both the edgesand
xb, thus forming(3, 5) bichromatic cycle, implying that there should bé3a5, a, b) maximal
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bichromatic path which ends at vertexvith an edge colored with respect to the coloring,,
a contradiction to our assumption.

Note that with respect to the coloring, I’ = {1,3,4,5} and thus color 2 is a candidate
color for the edgery. By Claim '4.27there was d2, 3, xa) critical path with respect to the
coloringc,. From this it is easy to see that with respect to the cologiaghere is &3, 2, zb)
critical path. Thus byFact 2.1 there can not be 8,2, zy) critical path with respect to the
coloringc;. Hence color 2 is valid for the edgey.

ThusVa € {3,4} andVvj € {5,6}, there exist«, /3, b, a) maximal bichromatic path which
ends at vertex with an edge colored. Thus recalling that,(b, [;) = 3 andcy (b, ls) = 4 with
respect to the coloring,, we have,

{5,6} C Sbh (49)
{5, 6} C 5512 (4.10)

By Claim 4.27, 2 € Sy, and2 € Sy,. Thus we have,

Seiy = Sw, = {2,5,6} (4.11)

Now let,

¢1 = Recolor(cy, xb, 5)

Recalling Claimé.24 s,;, = {3,4, 1} and¢y(z,a) = 1, color 5 is a candidate for the edge
xb. Moreover color 5 is also valid since if there is any bichromatic cycle containing the edge
xb then it should also contain edge and since:(z,a) = 1, it has to be 41, 5) bichromatic
cycle,implying that there exists @, 5, xb) critical path with respect to the coloring. But
there can not be @él, 5, zb) critical path (byFact 2.1) as there is already @, 5, zy) critical
path (byClaim4.22). Thus the coloring; is acyclic.

Recall that byClaim 4.28 with respect to the coloring,, there was &3, 5, b, a) maximal
bichromatic path that ends at vertexvith an edge colored. After the recoloring of edgeb
with color 5 (i.e., with respect to the coloring),it is easy to see that th{8, 5, b, a) maximal
bichromatic path gets extended t97a3, xa) critical path. Thus we have,
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With respect to the coloring,, there exists &5, 3, xa) critical path. (4.12)

Recall that byC'laim 4.27, with respect to the coloring,, there existed &, 3, za) critical
path. After recoloring the edgeb with color 5 (i.e., with respect to the coloring), the
(2,3, za) critical path gets curtailed to &, 3, a,b) maximal bichromatic path that ends at
vertexb with an edge colored. Note that(2,3,a,b) maximal bichromatic path does not
contain the vertey, since ify is in this path, then it is an internal vertex and thus both colors
2,3 € F,, acontradictionf ¢ F;). Thus noting that, (b, [;) = 3, we have,

With respect to the coloring,, there exists &2, 3, a, b)) maximal bichromatic path(4.13)
that ends at vertek with an edge colored 3. This path contains the eblge

but does not contain vertex

In view of Claim 4.28 we haveSy, = Sy, = {2,5,6}. The 5-tuple(d, Iy, I, {ls}, {z}) is
in con figuration A. Let,

¢y = Color Exchange(cy, bly, bly)

By Fact 4.7if there is any bichromatic cycle, recalling thatz,b) = 5, there has to be
either(3,5) or (4, 5) bichromatic cycle that passes through verteBut any cycle that passes
through vertex: should contain edgea also. Sincex(x,a) = 1, this is a contradiction and
we infer thatc, is acyclic.

Note that by(4.13) there existed2, 3, a, b)) maximal bichromatic path containing the edge
bl; with respect to the coloring;. Since the color of edgé&l; is changed i, this path
gets curtailed to &2, 3, a, [;) maximal bichromatic path which now ends at the veftesince
3 ¢ F,, with respect to the coloring,. Note that it still does not contain vertgx Thus we
have,

With respect to the coloring,, there exists &2, 3, a, [;) maximal bichromatic path(4.14)

which does not contain vertex

But beforecolor exchange (i.e., with respect to the coloring) by (4.12) there was a
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(5, 3, za) critical path. Clearly this path passes through the vert&@hus byLemma 2.8, the
(5, 3, za) critical path, does not exist after the color exchange (with respect to the cotgjing
(It easy to see thdt, I, ¢ {z,a} sincel ¢ [}, I}, butl € F,, F,. ThereforeLemma 2.8 can
be applied). Thus we have,

With respect to the coloring,, there does not exists afy, 3, za) critical path.  (4.15)

Now let

c3 = Recolor(cq, xa, 3)

By Claim 4.25 s,, = {2,5,6} with respect to the coloring, ands,, = {2,5,6} even
with respect to the coloring,. Thus color 3 is candidate for edge since3 ¢ S,, and
co(x,b) = 5. Coloringes is also acyclic since if there is any bichromatic cycle containing edge
xza then it should also contain edgé. Butcs(z,b) = 5 andcs(x,a) = 3. Thus it has to be a
(3,5) bichromatic cycle, implying that there exist$7@a 3, za) critical path with respect to the
coloringc,, a contradiction (by4.15)).

Note that by(4.14) there existed2, 3, a, [;) maximal bichromatic path with respect to the
coloring ¢;. Since the color of edgea is changed irc3 to color 3, it is easy to see that this
path gets extended to(8, 2, x, [;) maximal bichromatic path which now starts at the vertex
since2 ¢ F, with respect to the coloring;. Note that it still does not contain vertgx

Now with respect to the coloring;, F' = {1,3,4,5} andF, N F,, = {3}. Thus color 2 is a
candidate for the edgey. Since(2, 3, z, ;) maximal bichromatic path contains vertexand
does not contain vertey by Fact 2.1there can not bé2, 3, zy) critical path. Thus byFact
4.1 color 2 is valid for the edgey.

[

4.3 Comments

The following is obvious fromY" heorem 4.S;

Corollary 4.29. LetG be a graph with maximum degrée < 4. Thend/(G) < 7.
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Proof. If A(G) < 4, thenm < 2n for each connected componentnif< 2n—1, by Theorem
4.9d'(G) < 6 for each connected component. Otherwiseiif= 2n, we can remove an edge
from each connected component and color the resulting graph with at most 6 colors. Now the
removed edges of each component could be colored using a new color'TGus< 7. O

Remark: There exist graphs with\(G) < 4 that require at least 5 colors to be acyclically
edge colored. For example, any graph witfiG) = 4 andm = 2n — 1 requires 5 colors.
Also by using a simple counting argument we can show Hat, (complete tripartite graph
with 2 vertices in each part) needs at least 6 colors to be acyclically edge colored2Ree [
But we do not know whether there exist any graphs wiltz) < 4 that needs 7 colors to be
acyclically edge colored. Thus we feel that the bound’ofollary 4.29and T heorem 4.9
can be improved.



Chapter 5
2-degenerate Graphs

In this chapter, we look &-degenerate graphs.

Definition 5.1. A graph@ is calledk-degenerate if any induced subgraph @f, has a vertex
of degree at most. For example, planar graphs are 5-degenerate, forests are 1-degenerate.

5.1 Previous Results

The earliest result on acyclic edge coloring of 2-degenerate graphs was by Card and Roditty
[17], where they proved that (G) < A + k — 1, wherek is the maximum edge connectivity,
defined as: = max, ,cv(e) A(u,v) , wherel(u, v) is the edge- connectivity of the pair u,v.
Note that heré can be as high ad. Muthu,Narayanan and Subramani®d][proved that

a'(G) < A + 1 for outerplanar graphs which are a subclass of 2-degenerate graphs and posed
the problem of proving the conjecture for 2-degenerate graphs as an open problem. In fact
they have informed us that very recently they have also derived an upper bone affor
series-parallel graph8¥%], which is a slightly bigger subclass of 2-degenerate graphs. Con-
nected non-regular subcubic graphs are 2-degenerate graphs with Recently Basavaraju

and Chandrarill(] proved that connected non-regular subcubic graph can be acyclically edge
colored usingA + 1 = 4 colors. Another two interesting subclasses of 2-degenerate graphs
areplanar graphs of girth @Gandcircle graphs of girth §1]. As far as we know, nothing much

is known about the acyclic edge chromatic number of these graphs.

35
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5.2 The Theorem

Theorem 5.2.Let GG be a 2-degenerate graph with maximum degleehena’(G) < A + 1.

Proof. We prove the theorem by way of contradiction. ébe a 2-degenerate graph with
vertices andn edges which is a minimum counter example for the theorem statement. Then
the theorem is true for all 2-degenerate graphs with at mostl edges. To prove the theorem

for G, we may assume that is connected. We may also assume that the minimum degree,
d(G) > 2, since otherwise if there is a vertexwith degree(v) = 1, we can easily extend the
acyclic edge coloring off — e (where e is the edge incident opto G. Keeping the assumption
that G is a minimum counter example in mind we will show that any partial colocing G
should satisfy certain properties which in turn will lead to a contradiction.

Selection of the Primary Pivot: Let W, = {z € V(G) | degreesz(z) = 2}. Since
G is 2-degeneraté&l; # (). We may assume that — W, # () because otherwis€; is a
cycle and it is easy to see that itd&s+ 1 = 3 acyclically edge colorable. Thu&(G) > 3.
Let G = G|V — Wy andW; = {z € V(G') | degreec:(z) < 2}. By the definition of
2-degeneracy there exists at least one vertex of degree at mo&t 2 thudt’; # (.

Let V' = V(G'). If V! — W, # 0, then there exists at least one vertex of degree at most
2inG'V' —Wy. LetG" = G[V' — W, andW, = {z € V(G") | degreeg(z) < 2}. Let
q € Ws. ClearlyNg(q) N W, # 0 and letz € Ng(¢) N W;. On the other hand ¥ — 17, = 0,
then letx € W;. We callx the Primary Pivot, sincex plays an important role in our proof.
Let N/, (z) = Ng(x) N Wy andN{(x) = Ng(z) — Ni(x) = Ner(x). Sincex € Wh, itis easy
to see thatV/.(z)| < 2 and|N/(z)| > 1.

Let N.(z) = {v1, y2,...,y:}. AlsoVy,, let No(y;) = {z,y.} (Seefigure5.1). Vy;, let
G; denote the graph obtained by removing the egdge;) from the graphG:. Let N (r) =
Ng(z) — {y:} and N¢, (v) = Ng,(z) — Ng,(x). By the minimum choice ot7, graphG; is
A + 1 acyclically edge colorable. Let be a valid coloring of7; and thus a partial coloring
of G. We denote the set of colors loy= {1,2,..., A+ 1}.

Comment: Note that the figures given in this paper are only for providing visual aid for
the reader. They do not capture all possible configurations.
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e Wy U W,

/
Yy

Figure 5.1:Vertexx and its neighbors

5.2.1 Properties of any valid coloringc; of G;

Let Fi.(c;) = {ci(w, 2)|z € Ng,(z)}. Let Fy(c;) = {ci(x,2)|z € Ng, (o)} and F/(c;) =
{ci(z,2)|z € Ng, (v)}. Note thatF,(c;) is the disjoint union off (c;) and F}/(c;) and also
|[F7 (ei)] < 2.

Lemma 5.3. With respect to any valid coloring of G;, ¢;(y;, yi) € FV(c;).

Proof. Itis easy to see that(y;,y;) € F.(c;). Otherwise all the candidate colors are valid for
the edgery;, since any cycle involving the edge; will contain the edge;y; as well as an edge
incident onz in G; and thus the cycle will have at least 3 colors. Suppegg, v;) € F.(c;).
Clearly we haveF,(c;) U {c;(yi,yi)}| < A — 1. Thus there are at least tveandidate colors
for the edgery;. Lety; € N, (v) be the vertex such thai(y;, y;) = c;(,y;). When we color
edgexy; there is a possibility of a bichromatic cycle only if we assigfy;, y;) to the edge
zy; sincedegreeg, (y;) = 2. But since we have at least twandidate colordor edgezy;, this
situation can easily be avoided. We infer thay;, v.) € F/(c;). |

Lemma 5.4.With respect to any valid coloring of G, |F (¢;)| = 2

Proof: Suppose not. Thelt/(c;)| < 1. Since|F,(c;)| < A, we have at least oreandidate
color for the edgey;y;. Note that anycandidate coloyis valid for the edgey;y; in G; sincey;
is a pendant vertex i¥;. Let ¢, be the valid coloring obtained by recoloring the eggg with
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a candidate color. By.emma 5.3 we havec;(y;,y.) € F/(c;). Clearly sinceF/(¢;)| < 1
anddi(yi, vi) # ci(yi,yl), we can infer that!(y;, ) ¢ F/(¢;) = F!(c}), a contradiction to

Lemma 5.3 ]

An immediate consequence 6tmma 5.4 is that| N/.(z)| = 2. Moreover by the way we
have selected vertexat least one of them should belongitg U W,. We make the following
assumption:

Assumption 5.5. With respect to any valid coloring; of GG;, without loss of generality let
F!'(¢;) ={1,2} andN/i(z) = {q,¢'}. Thus{c;(x,q),ci(x,q")} = {1, 2}. Also without loss of
generality we assume thate W, U W, (seefigure 5.7).

Lemma 5.6. With respect to any valid coloring of G;, colors1, 2 ¢ S,

Proof.  Since|Fy(c;)| < A, we have at least oneandidate colory # c;(y;, y;) for the edge
y:y.. Note thaty is valid for the edgey;y! in G; sincey; is a pendant vertex itr;. Letc,
be the valid coloring obtained by recoloring the edgg with v. Now sincec; as well as’;
are valid, byLemma 5.3 we have{c;(y;, y!), ci(yi, y))} = Fl(¢;) = {1,2} (by Assumption
5.5). Sincec;(yi, y;) ¢ Sy, andci(yi, y;) ¢ Sy, We havel, 2 ¢ S, |

LetC" = C' — {1, 2}. For each coloty € C’, we define a grapty; , as below:

G G if yeC' —Fl(c)
v G; — vy, where ci(x,y,) =~ ifve€ Fl(c)

Also letc; , be the valid coloring of7; , derived fromc; of GG}, that is by discarding the color

of the edgery,, wherey, is the vertex such that(z, y,) = . Also if ¢; , is a valid coloring

of G, thenc; , is said to be derivable from, if we can extend the coloring , of G ., to

the coloringc; of G4. Also note that even though we define these graphs we always have

the original graph in mind when using definitions like critical paths, which are defined with
respect to an edge in the graph.

Lemma 5.7. Let¢; be any valid coloring of+;. With respect to coloring; , of G, ., Vy €
C" — Fy(ci), 3(p, v, zy;) critical path, whereu = ¢;(y;, y;)-
Proof. Recall that when, € C' — F)(¢;), we havel,; , = G; and hence; , = ¢;. Suppose if
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there is no(, 7y, zy;) critical path, wherey € C" — F!(¢;), then byFact 2.5 color v is valid
for the edgery;. Thus we get a valid coloring @, a contradiction. |

Lemma 5.8. Let ¢; be any valid coloring of>;. With respect to coloring; , of G, ,, Vv €
C" — Fl(¢;), 3(v,v, x,y;) maximal bichromatic path, wheder} = {1,2} — {c;(vi,¥})}-

Proof. Recall that wheny € C' — F.(c;), we haveG, , = G; and hence; , = ¢;. Suppose
there is no(v, v, x, y;) maximal bichromatic path, where € C' — F.(¢;). By Lemma 5.6,
color v is a candidate for the edgegy.. Now recolor the edge;y; with color v to get a valid
coloring ¢, of G;. Since by our assumption that there is (9, z, y.) maximal bichromatic
path with respect te; , = ¢;, there cannot be anfy, ~, zy;) critical path with respect to the
coloring¢;, a contradiction td_emma 5.7 (Note that the coloy discussed in Lemma.7 and
assumption is same as= c;(y;, y.) in c}). [

Assumption 5.9. Since|F,(¢;)| < A — 1, we havelC' — F(¢;)| > 2. SinceC — F,(¢;) =
C" — F!(¢;), we havgdC’ — Fl(c¢;)| > 2. Thusdegreeg,(y:) > 3 and hencelegrees(y.) > 3.
Leta, B € C' — Fl(¢;).

Lemma 5.10. Let ¢; be any valid coloring of+;. With respect to coloring; ., of G, , Vv €
Fl(¢;), 3, v, zy;) critical path, whereu = ¢;(y;, ys).

Proof. Let¢;(z,y;) = v, wherey € F!(c;). Suppose if there is nQu, v, zy;) critical path,
then by Fact [2.€ color +y is valid for the edgery; with respect to the coloring; ,. Color the
edgexy; with color~ to get a valid coloring! of G — {zy; }.

Now we will show that we can extend the colorid@f G — {zy;} to a valid coloring of the
graphG by giving a valid color for the edgey;, leading to a contradiction of our assumption
thatG was a minimum counter example. We claim the following:

Claim 5.11. With respect to the coloring, either colora or 3 is valid for the edgey, (Recall
thata, 3 € C" — Fl(¢;) by Assumption5.9)
Proof: Without loss of generality, lef(y;, y;) = . Note thaty # v = ¢;(z, y;). Now if,

1. n ¢ F.(¢;). Inview of Assumptiorb.S, «, 5 ¢ F.(c;). Noting thaty cannot be equal
to botha and 3, without loss of generality, lef # «. Then color the edgér, y;) with
color o to get a proper coloring’. If a bichromatic cycle gets formed, then it should
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contain the edgey, and also involve both the colofsanda sincedegreeq(y;) = 2.
But sincen ¢ F.(c;), such a bichromatic cycle is not possible. Thus the colodirig
valid.

.n e {1,2} = {u,v} = F/(¢;). Recolor the edgey; with color « to get a coloring'.

We claim that the coloring’ is valid. This is because if it is not valid, then there has
to be a(a, ) bichromatic cycle containing the edge; with respect ta?’. This implies
that there has to be @, o, zy;) critical path with respect to the coloringand hence
with respect to the coloring; , (Note that the coloringl is obtained fronr; , just by
giving the colory to the edgery; andn, v # «, ().

If n = p, this means that there was(a = 1, o, zy;) critical path with respect to; ,.
But this is not possible by'act 2.1 since there is already (@, «, zy;) critical path with
respect ta;; ., (by Lemmal5.7) andy; # y;.

Thusn = v. This means that there has to béje= v, o, zy;) critical path with respect
to ¢; ,. But this is not possible by act 2.1 since there is already @&, a, =, y;) maximal
bichromatic path with respect g, (by Lemma 5.8) andy, # y; (y; # y, since by
Assumption 5.5, degreeg, (y;) > 3. Butdegreeg,(y;) = 2). Thus there cannot be any
bichromatic cycles with respect to the coloritig Thus the coloring/’ is valid.

.m € Fl(¢;). Lety, € Nj(x) be such thatl(z,y,) = n. With respect to color§a, 5},

without loss of generality lef(y;, y;,) # 3. Recall thatd(y;, y;) = n. Now recolor the
edgezy; with color 3 to get a coloring?’. Now if a bichromatic cycle gets formed, then
it should contain the edgey; and also involve both the colorsand3. Thus the bichro-
matic cycle should contain the edgg;. Sincedegreeq(yx) = 2, the bichromatic cycle
should contain the edgg,y,. But by our assumptior; (y;, ;) # /3, a contradiction.
Thus the coloring! is valid.

Hence either colot: or /3 is valid for the edge:y;.

Thus we have a valid coloring (i.€)) for the graph, a contradiction.

Lemma 5.12. Let¢; be any valid coloring of7;. With respect to coloring; , of G, ,, Vv €
F!(¢;), 3(v, 7, z,y.) maximal bichromatic path, wheke'} = {1,2} — {c;(ysi, v)) }-
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Proof. Suppose if there is nf, v, x, y;) maximal bichromatic path, wheree F.(c;), then
by Lemma 5.6, colorv is a candidate for the edgey,. Now recolor the edgeg;y. with colorv
to get a valid coloring; , of G;. Since by our assumption that there is(moy, x, y;) maximal
bichromatic path with respect tg,, there cannot be any, v, zy;) critical path with respect
to the coloring; , a contradiction td.emma/5.10(Note that the coloy: discussed in Lemma
5.10and assumption is sames= ¢; (v, y;) in c; ,).

[

Critical Path Property: In the rest of the paper we will have to repeatedly use the properties
(namely the presence ¢fi, v, zy;) critical path inG; .,, wherep = ¢; ,(y;, y;)) described by
Lemma 5.7 and Lemma 5.1Q0 Therefore we will name these properties as@ngical Path
Propertyof the graph’; .

If ¢; is any valid coloring ofG;, then inG, ,, Vy € C', by Critical Path Property (i.e.,
Lemma 5.7 or Lemma 5.10) there exists &y, v, zy;) critical path and byLemma 5.8 and
Lemma 5.12 there exists dv, v, x,y;) maximal bichromatic path, wheye = ¢;(y;,y;) and
{v} = F(c;) —{p}. Recall thatS,,| < A—1foranyab € E. As animmediate consequence
we have,

Saq = Saq = Sy = C —{1,2} = C". (5.1)
In view of (5.1)), we have

|qu‘ = ’S:vq” = |Syiy§

—|C'|=A-1. (5.2)

Lemma 5.13. Let ¢; be any valid coloring ofG;. Letu = ¢;(y;,y)) € {1,2}. Also let
y; € Ni(z) — {v:}. Thenvy € 7, the (u, v, zy;) critical path in G, ., does not contain the
vertexy;.

Proof: Suppose there exists(a, v, zy;) critical path that contains the vertgy, theny, can-
not be an end vertex as # y,. Thusy, is an internal vertex. Now sincégreeq(y;) = 2,
the (i, ~, zy;) critical path should contain the edge;, as well. But the(yu,~,xy;) criti-
cal path ends at vertex with color xz which impliesc;(x,y;) = p, a contradiction since
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ai(,y;) ¢ {12} = {n,v}. u

Lemma 5.14. Let ¢; be any valid coloring of7; and letu € {q,¢'} . Letu = ¢;(yi, ) =
ci(z,u) € {1,2} andv = {1,2} — {u}. Thenvy € ', the(u, v, zy;) critical path inG, , has
length at least five.

Proof. Suppose not. Then thg., v, zy;) critical path has length three which implies that
the vertices in the critical path are u, y., y; in that order. Thus. € F,(¢;) and F,(¢;) =
Sz« U {u}. Now change the color of the edggy; to v. It is proper since b.1, we have
{1,2} = {p,v} ¢ S, Itis valid sincey; is a pendant vertex id; ,. Now in view of
Critical Path Property (i.e., Lemma/5.70r Lemma'5.10) there has to be @, v, xy;) criti-

cal path that passes through the vergewith respect to this new coloring. Sineg, (u, y;) =

7, this (v, v, xy;) critical path should contain vertexas an internal vertex, which implies that
colorv € F,(¢;). Recalling thatt’, (¢;) = S, U{u}, we haver € S,,, a contradiction in view
of (5.1). Thus the(u,, xy;) critical path has length at least five with respect to the coloring
iy OFf G 4. [

5.2.2 The structure of the minimum counter example in the vicinity of
the primary pivot, x

Lemma 5.15.The minimum counter examplésatisfies the following properties,
(@) Yu,v € Ng(z), (u,v) ¢ E(G).
(b) Yy; € Ni(x) andVYv € Ng(z) — {v:}, we havgv, y}) ¢ E(G).

Proof. To prove(a) we consider the following cases:

case 1.1u,v € Nj(x)

Letu =y, andv = y;. Now if u € Ng(v), thenu = y}. Recalling thatA(G) > 3, in view
of (5.2), we havedegreeg(u) = degreeq(y;) > 3. Butdegreeg(u) = degreec(yx) = 2, @
contradiction.

case 1.2u,v € N/i(z)
Then we need to show that ¢ Ng(q). To see this consider the colorimgof graphG;. We
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know that{c;(x, q), ¢;(x,q")} = {u, v}. Without loss of generality let(x, ¢) = ¢;(vi, y.) = p.
Note that by(5.2), we haveS,, = C'. If ¢ € Na(q), thenc;(q,q') € C'. Letei(q,¢') =7 ¢
{p,v}. Now in G, -, the(u,y) maximal bichromatic path that starts at vertegontains only
edgesrq andqq’ sincep ¢ F(c;) (by (5.2)). Thus byFact 2.1, there cannot be @, v, zy;)
critical path inG; -, a contradiction t@ritical Path Property (i.e., Lemma 5.7 0r Lemma
5.10. Thusq' ¢ Ng(q).

case 1.3 € N/\(z) andv € N/ ()

Letv = y;,. Then we have to show thaf ¢ N/:(x) = {q,¢'}. To see this consider the col-
oring ¢; of graphG;. Recall that{c;(x, q), c;(x,q")} = {u,v}. Without loss of generality let
ci(x,q) = ¢i(yi, yi) = p. Now if y. = ¢, then we have(q, v;) = ¢;(y., y;) = p, a contradiction
sincec(z, q) = p. On the other hand i, = ¢/, thenc(¢', y;) = ¢;(y}, ;) = . This means that
w € Sy, acontradiction in view of5.1)). Thusy, # q,¢'.

ThusVu,v € Ng(z), we have(u,v) ¢ E(G)

To prove(b) we consider the following cases:

case 2.1w € N¢, (z)

Letv = y; € Ng(x). If (v,y;) = (y5,v;) € E(G), theny; = y;. Consider the coloring;
of graphG;. Letc;(y;, y;) = p. Recall that by(5.2), we haves, . = C". If y; =y, then
cj(ys,yi) € C'. Lete;(y),y:) = . Now in Gy, the (i, ) maximal bichromatic path that
starts at vertey; contains only edgeg;y’, y;y; and thus ends at vertex sinceu ¢ F,,(c;).
This is becaus&Vc,  (v;) = {y}, z} and we havey;(y;, ;) = v ande;(z,y;) # u( since by
Assumption 5.5, 1 € ¢j(x,q),¢;(x,q)} ). Thus byFact 2.1, there cannot be &, v, zy;)
critical path inGG; ,, a contradiction t@'ritical Path Property (i.e., Lemma 5.7 0r Lemma

2,7

5.10. Thusy; # y;.

case 2.2w € Nji(x) ={q¢,q'}

Then we have to show that ¢ Ng(q) U Ng(q'). To see this consider the coloring of
graphG;. Recall that{c;(x, q),c;(x,q")} = {p, v}. Without loss of generality let;(z,q) =
¢i(vi, ;) = p. Supposey; € Ng(q), then we have(y,,q) € S, Thus by(5.1), we have
¢i(yi, q) # v. Now there exists u, ¢;(y, q) # v, xy;) critical path of length 3, a contradiction
to Lemma 5.14 Now if y. € Ng(¢'), then we recolor the edggy, with color v to get a valid
coloring ¢,.. Now there exists &v, ¢;(y,, ¢'), zy;) critical path of length 3, a contradiction to
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Lemmal5.14 Thusy, ¢ N¢(q) U Na(q).

ThusVy; € N (z) andYv € Ng(z) — {y;}, we have(v, y) ¢ E(G).

5.2.3 Moadification of valid coloring c; of G to get valid coloring ¢; of G;

Assumption 5.16.Letc; be a valid coloring of+; and without loss of generality let(x, ¢) =
1,c(x,¢)=2andei(y1,yy) = p = 1.

Remark: In view of Assumption 5.1 the Critical Path Property with respect to the
coloringc; of G, reads as follows: With respect to the coloring,, there exists &1, v, zy, )
critical path, for ally € C" .

Let f; be the coloring oi7; obtained frome; by exchanging the colors of the edges
andzq'. Also fory € C’, we define the coloring; ., as the coloring obtained from ., by
exchanging the colors with respect to the edggeandzq’. Note thatf; , can be obtained from
f1 just by discarding the colored edge incident on vertexfor v € F.(f1).

Claim 5.17. The coloringf; is proper but is not valid.

Proof. The coloringf; is proper since in view of5.1), 2 ¢ S,, andl ¢ S,,. Suppose the
coloring f; is valid. Lety be a candidate color for the edgg,. Clearlyy € C' — F,.(f1). Now
since f; is proper, taking: = z,i = ¢, j = ¢/, ab = zy;, A = 1 and§ = v, Lemma 2.8 can
be applied. There existed(a, v, xy;) critical path with respect to coloring. By Lemma
2.8 we infer that there cannot be afiy, v, zy; ) critical path with respect to the coloring.
Thus by FacP.5, candidate coloty is valid for the edgery;. Thus we have obtained a valid
coloring for the minimum counter examplé a contradiction. O

By Claim 5.17, there exist bichromatic cycles with respect to the colorfnglt is clear
that each bichromatic cycle with respectfohas to contain either the edge or ¢’ since
we have changed only the colors of the edgesandzq¢’ to get the coloringf; from ¢;. Thus
each such bichromatic cycle should be eithér,a/) bichromatic cycle or &2, ) bichromatic
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cycle. Note that each of these bichromatic cycles should pass through thexekiexeover
observe that there cannot be afly2) bichromatic cycle since colar ¢ S,, with respect
to fi in view of (5.1). Thusy € F.(f1). From this we infer thatF.(f;)| > 1. Recalling
Assumption 5.9, we havelC' — F,(f1)| > 2. It follows that|C’| > 3. Thus we have,

A(G) > degreeg,(q) > |Seql +1 > 1C'| +1 > 4. (5.3)
Let
Cy1 = Ci(f1) ={y € F.(c1)| 3(1,~) bichromatic cycle with respect to colorirnfg}.

Cy = Cy(f1) = {vy € F.(c1)| 3(2,7) bichromatic cycle with respect to colorirfg}.

Note that from the discussion above, any bichromatic cycle with respect to the cofering
contains a vertey; € N, (z). Butdegreeg, (y;) = 2 and thereforgS,,,| = 1. ThussS,,,
contains exactly one of the color 1 or 2. Thus with a fixed celos C; U C; there exists
exactly one of 1, ) or (2, ~) bichromatic cycle, which implies that the sétsandC, cannot

have any element in common (Séggure/5.2). Thus we have,

CiNCy = . (5.4)

Figure 5.2:Bichromatic cycles o’} andCs
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Recall that in view ofCritical Path Property (i.e., Lemma 5.7 or Lemma 5.10), for a
coloringc, , of Gy, Vy € (', there exists &l, v, xy; ) critical path. With respect to the new
coloring f ,, since the colors of only edges andz¢’ are changed, this path starts frgrand
reaches the vertex But since color 1 is not present at vertewith respect to the coloring, -,
the bichromatic path ends at verigxThus the(1, v, zy, ) critical path with respect to coloring
c1,, gets curtailed to &, 1, ¢, y;) maximal bichromatic path with respect fp.,. Also note
that in view of Lemma 5.14the length of thig~, 1, ¢, y;) maximal bichromatic path is at least
four. This is true for the coloring; also i.e., there exists @, 1, ¢, y:) maximal bichromatic
path with respect tgf;,. To see this observe thdt is obtained fromf; , by putting back the
edgezy,, wherec (z,y,) = 7. This cannot alter théy, 1, ¢, y;) maximal bichromatic path
sincex does not belong to this path and algo# y;. Also in view of Lemmeéb.13 none of the
above maximal bichromatic paths contain verjexvy; € N/.(z) — {y1}. Thus the coloring
f1 satisfies the following property which we nameRsperty A:

Property A: A partial coloring ofG is said to satisfyProperty A iff Vy € C' — {1,2}, there
exists a(v, 1, ¢, y1) maximal bichromatic path of length at least four. Moreover none of the
above maximal bichromatic paths contain verteor vertexy;, wherey; € N/.(z) — {v1 }.

Claim 5.18. There exists a proper colorinf] obtained fromf; such thatvi € {1, 2}, |C;| < 1,
whereC; = C;(f]). Moreoverf; satisfiesProperty A.

Proof If |Cy] < 1and|Cy| < 1, thenletf] = fi. If |Ci| < 1, then letf] = f;. Other-
wise if |C1] > 2, then letCy = {vi, Vi, ---,7,_, y @nd also lety;; be the vertex such that
fi(z,yi;) = v;, V5 €{0,1,2,... k — 1} (seeFigure5.2). Now let the coloringf{’ be defined
as f{'(x,y;,) = vi,, wherel = j + 1(mod k), Vj € {0,1,2,...k — 1} and f{'(e) = fi(e) for
all other edges. Note that we have only shifted the colors of the edggs zv,,, ..., 2y, _,
circularly. We call this procedurderanging of colors)

Note that we are changing only the colors of the edggsfor j = 0,1,2,...,k—1. Also
we are using only the colorg, € C; for recoloring. Since with respect to the colorirfg
a(1,;,) bichromatic cycle passed through anddegreeg, (y;;) = 2, we haveS,,, = {1}.
Thus the coloringf; is proper.

Since for ally;;, 0 < j < k — 1 we haveS,,, = {1} with respect to the coloring’, it is
clear that any:ew bichromatic cycle created (in the process of gettfiigrom f| ) has to be
a(1,~) bichromatic cycle, where € (.

We claim that the coloring;” does not have an{i,~) bichromatic cycle fory € C;. To
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see this consider @ € C, say~;,. There existed &1, v;,) bichromatic cycle with respect
to f;. It contained the edgey;,. Now with respect tof edgexy;, is colored with colory;,.
Thus the(1, v;, ) maximal bichromatic path which contains the verielias one end at vertex
y;, Since colory;, is not present at the vertex, with respect tof;. Thus(1,;,) bichromatic
cycle cannot exist with respect to the colorifig This argument works for ay € C; and
thus for any colory € (1, there is nq 1, ) bichromatic cycle with respect tff'.

If |Cy| < 1, thenf] = f'. Otherwise if|Cy| > 2, by performing similar recoloring (now
starting with f]') as we did to get rid of thél, ) bichromatic cycles, we can get a coloring

" without any(2, ) bichromatic cycle. Now lef] = f”. Thus we get a coloring; from f;
which has|C| < 1 and|Cy| < 1.

Note that we are changing only the colors of the edggsfor y; € N, (x). But the col-
oring f, satisfiedProperty A and hence none of the, 1, ¢, y;) maximal bichromatic paths
, Vv € C —{1,2}, contained the vertey; or x. Thus these bichromatic paths have not been
altered (i.e., neithdmroken norextended) by the recoloring to gef; from f;. Thus the color-
ing f; satisfiesProperty A. O

Observation 5.19. Note that the color of the edggy; is unaltered infi, i.e., f|(v1,v}) =
filyr,¥)) = a(y1, ;) = 1. Also only the colors of certain edges incident on the vegtex
wherey; € N/, (z)—{y: } are modified when we obtainggstarting frome,. (This information

is required later in the propf

It is easy to see thaft] is proper but not valid. It is not valid because, if it is valid then since
f1 satisfiesProperty A, there arg~, 1, ¢, y;) maximal bichromatic pathsvy € C' — {1, 2}.
Thus byFact 2.1, for anyd € C' — F,(f]), there cannot be @, 0, xy,) critical path. Thus by
Fact 2.5, colord is valid for the edgery;,. Thus we have a valid coloring for the graph G, a
contradiction. Thug is not valid. It implies that at least one 6f or C, is nonempty. In the
next lemma we further refine the proper colorif{g

Lemma 5.20. There exists a proper colorinty, of G; obtained fromf; such that there is at
most one bichromatic cycle. Moreovier satisfiesProperty A.

Proof. By Claim 5.18 we havelC,| < 1 and|Cs| < 1. If exactly one ofC', (s is singleton,
then leth; = f. Otherwise we havg’,| = 1 and|Cy| = 1.

Assumption 5.21.Without loss of generality lef, = {+} andC, = {0}. Let f{(z,y,;) = v
and fi(z,yx) = 0. Thusf(y;,y;) = 1 and f{(yx,y;,) = 2, since there aré1,~) and (2, 0)
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bichromatic cycles passing through the veriex

Claim 5.22.Color 2 ¢ Sy,

Proof. Suppose not, theh Syjy;_. Since there is &1, ) bichromatic cycle passing through
y;, the colors 1 and are present aj;. It follows that there existg € C' — {1,2,~} missing
aty’. Now recolor edgey;y; with color n to get a coloringfy'. If the colory is valid for

the edgey;y;, then leth; = f{' and we are done as the situation reduces to having only one
bichromatic cycle (i.elC’,| = 1 and|C,| = 0). If the colory is not valid for the edge;y/,
then there has to be(a, n) bichromatic cycle that passes through vertexet f'(z,y;) = 7.
Sincedegreec(yi) = 2, we haveS,,, = {f{(vi,y;)} = {7}. Recall that byAssumption 5.5,

a € C'" — Fl(c;) and thusae € C" — F/(f{"). Clearlya # n. Recolor the edgey; with
color « to get a coloringf;”. Note that the colow is valid for the edgery; because if there

is a(a, n) bichromatic cycle, then it implies that,,, = {«}. But we know thatS,,, = {7},

a contradiction. Thus let; = f]” and the situation reduces to having only one bichromatic
cycle (i.e.,|Cy| = 1 and|C}| = 0) O

In view of Claim 5.22, color 2 is a candidate for the edgg);. Recolor edgey;y; with
color 2 to get a coloringfy'. If the color2 is valid for the edgey;y;, then leth, = f) and the
situation reduces to having only one bichromatic cycle (j@&| = 1 and|C;| = 0). If the
color2 is not valid for the edgg;y;, then there has to be(a, 2) bichromatic cycle created due
to the recoloring, thereby reducing the situatiofg| = 2 and|C,| = 0. Now we can recolor
the graph using the procedure similar to that in the proaf'afim 5.18(i.e., derangement of
colors inC5) to get a valid coloring:; without any bichromatic cycles.

The coloringf; satisfiedProperty A and hence none of the, 1, ¢, y;) maximal bichro-
matic paths Yy € C' — {1, 2}, contained the vertey;. Thus none of th¢v, 1, ¢, y;) maximal
bichromatic paths will béroken or curtailed in the process of gettingg;, from f;. This is
because we are changing only the colors of the edges incident on the yedey, and if
a(v, 1, ¢g,y1) maximal bichromatic path getgoken or curtailed, it means that the vertey;
or y, was contained in those maximal bichromatic path, a contradictidtrtgerty A of f;
sincey; € N(.(z) — {y1}. On the other hand, if any of these paths gets extended, then vertex
y; € {y1,q}. Butin view of Lemma 5.15(part (a)) this is not possible. Thus the, 1, ¢, 1)
maximal bichromatic paths have not been extended. Thus these bichromatic paths have not
been altered by the recolorings to getfrom f{. Thus the coloring:, satisfiesProperty A.
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Observation 5.23. Note that the color of the edggy; is unaltered inhy, i.e., hi(y1,y;) =
f1(y1,y}) = 1 (by Observation 5.19. Also only the colors of certain edges incident on the
vertexy;, wherey; € N/.(z) — {y,} are modified.

It is easy to see thdt; is proper but not valid. It is not valid because, if it is valid then since
h, satisfiesProperty A, there ard~, 1, ¢, y;) maximal bichromatic pathsvyy € C' — {1, 2}.
Thus by Fact 2.3, for anyd € C — F,(hy), there cannot be €L, 0, xy,) critical path. Thus
by Fact 2.5, color@ is valid for the edgery,;. Thus we have a valid coloring for the graph G,
a contradiction. Thug; is not valid. Then in view of.emma 5.20 we make the following
assumption:

Assumption 5.24.Without loss of generality let the only bichromatic cycle in the colofing
of G, pass through the vertey, j # 1. Also leth,(z, y;) = p.

We get a coloring;; of G; from h; of G, by:
1. Removing the edgey;.

2. Adding the edgey; and coloring it with the coloh, (z,y;) = p.

Note that the coloring; is proper since # c;(y1,v;) = hi(y1,vy)) = 1 (by Observation
5.29 andp ¢ S,.(c;) (by the definition ofc;). Note that by removing the edge;; we
have broken the only bichromatic cycle that existed with respeét toThe coloringc; is
valid because if there is a bichromatic cycleGf with respect tac; then it should contain
the edgery; and thus it should be @, p) bichromatic cycle since;(z,y1) = hi(z,y;) = p
andc;(y1,y;) = 1. The(p,1,q,y;) maximal bichromatic path with respect tq is still a
bichromatic path with respect t9. And since no edge incident tpis recolored, there is a
(p, 1) maximal bichromatic path that startsqeand contains vertey; . This clearly implies that
there cannot be g, 1) bichromatic cycle containing vertex. It follows that the coloring:;
of G; is acyclic. Therefore all the Lemmas in previous sections are applicable to the coloring
c; also.
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Now we may assume thaj(y;,y;) = 2 because it;(y;,y;) = 1, then we can change the
color of the edgey;y; to 2 without altering the validity of the coloring singg is a pendant
vertex inG;. Thus we make the following assumption:

Assumption 5.25.Without loss of generality let;(y;, y;) = 2. Also recall thatc;(z,q) = 2
andc;(z,q') = 1.

Remark: In view of Assumption 5.25 the Critical Path Property with respect to the
coloringc; of G, reads as follows: With respect to the coloring, there exists &2, v, zy;)
critical path, for ally € C’. The reader may contrast th&-itical Path Property of ¢; with
that ofc; (See remark aftedssumption 5.1€). This correspondence is very important for the
proof.

Observation 5.26. Note thatc;(r,q) = 2, ¢;(z,q¢') = 1, ¢;(y1,91) = 1, ¢;(y5,9;) = 2 and
ci(z,y1) = p ¢ {1,2}. Also ife is an edge such that none of its end points s y;, where
y; € Ni(z), we haver;(e) = ¢ (e).

Lemma 5.27.Coloring ¢;, of G; , satisfiesProperty A.

Proof. We consider the following cases:

case iy e C' — {p}

Recall that the coloring, satisfiedProperty A. In gettingc,; from h;, we have only colored
the edgery; with color p and have discarded the edgg,. ThusvVy € C’ — {p}, there exists
a(v,1,¢,y1) maximal bichromatic path in; also. Noting that byProperty A, the maximal
bichromatic path does not contain vertexr y;, whereVy, € N((x) — {y:}, we infer that
even inG, , the (v, 1, ¢, y1) maximal bichromatic path is unaltered.

case 2y =p

ThenG, , is the graph obtained by removing the edgg from G, sincec;(z,v:) = p. Recall
that with respect to the coloring, we have &p, 1, ¢, y1) maximal bichromatic path. Removal
of edgezy; from G, cannot alter this path sindg satisfiesProperty A and thus edgey;
is not in the path. Now the graph obtained is nothing but the graphwith respect to the
coloringc; ,. ThusG) , satisfiesProperty A. |

Property B: Let ¢, be a partial coloring o+, ,, forn € C — {1,2}. Thenc,, is said to
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satisfy Property B iff YV € C — {1, 2}, there exists &y, 2) maximal bichromatic path which
starts at vertey and involves the vertex.. Also the length of the segment of this bichromatic
path between the verticgsandy; is at least three. Moreover in none of the above maximal
bichromatic paths the segment between the verjcasd y; contains vertex: or vertexy;,
wherey; € N/ (z).

Lemma 5.28.Coloring ¢, ,, of Gy ,, satisfiesProperty B, forn € C' — {1, 2}.

Proof. By C'ritical Path Property (i.e., Lemma 5.7 or Lemma 5.10) and Lemma 5.14

Vv e C', there exists &2, v, x, y;) critical path of length at least five ii; ,. Also by Lemma

5.13 these critical paths do not contain veriexvy, € N¢.(z)—{y,}. Recall that we obtained

c; from ¢, by a series of recolorings. How will the above mentioned critical paths change if
we undo all these recolorings and get back Note that in the process of obtaining coloring
¢; from¢;, we have only changed the colors incident on the vertjcesherey; € N(.(x) and

have exchanged the colors of the edgesandzq’ (by Observation 5.2€). Thus only the col-

ors of edgerq and possibly edge;y; of these critical paths will get modified when we undo
the recolorings. The reader may recall that the first step in getfifrom c; was to exchange

the colors of edgesq andzq’. It follows that with respect to a coloring ,, there exists a
(7,2) maximal bichromatic path whicktarts at vertexq and involves the vertex;. It also
follows that the length of the segment of the bichromatic path between the vertaoesy;

is at least three. Moreover it is easy to see that none of the above maximal bichromatic paths
the segment between the vertigeendy; contains vertex or vertexy;, wherey; € N(r). B

5.2.4 Selection of secondary pivop and properties of ¢; and c; in the
vicinity of p

Let N (q) = Ng(q) N (W7 UW,) and N/i(q) = Na(q) — Ni(q). Sinceq € Wy U W,
(seeAssumption 5.5) it is easy to see thgtV/i(¢)| < 2. Now recall that in view of(5.2)
degreec(q) = A and by(5.3), A > 4. Thus we haveN(.(q)| > 2.

Letp € N/ (¢q) be such thap # z. In the rest of the proof, this vertexwill play a central
role. Therefore we name it as ti¥econdary Pivot. Letci(q,p) = n. Note thaty € C’ by
(5.1). Thus byCritical Path Property (i.e., Lemma 5.7 or Lemma 5.10), there exists a
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(1,n,zyy) critical path with respect to the coloring,, that passes through the vertgxand
clearly ¢gp is the second edge of this critical path. Recalling that this critical path has length
at least five (byLemma 5.14), we can infer thap # y; anddegreeq, (p) > 2. Now since

p € Wy UW,, there is at most one neighbor piother thang which is not inW. If such a
vertex exists let it bg’. Otherwise clearly ¥ (p) N Wy)# 0 and letp’ € Ng(p) N Wy. Thus
Na(p) —{q,p'} € Wo. If Na(p) — {q,p'} # 0, let Na(p) — {q,p'} = {21, 22,..., 2} Also

Vzi, let No(z:) = {p, zi} (Seefigure5.3) (At this point the reader may note that the primary
pivot x and secondary pivgt are somewhat structurally similar).

N"(q) o

c Wou Wy

/ Zk
o

Figure 5.3:Vertexp and its neighbors

Lemma5.29.z,y; ¢ {p,p', 21, .., 2y 21, - - -, 2 }» fOr y; € Ni ().

Proof. First note thatr # p, by the definition ofp. It is easy to see that ¢ {p’, 21, ..., z},
by part(a) of Lemma 5.15% Now x ¢ {z1,...,z,.} because otherwise will be somey;
and hencep = y., But now there is an edge betwegrand p, a contradiction to partb)
of Lemma 5.15 Similarly from part(a) of Lemma 5.15 y; # p and from part(b) of

Lemma 5.15 y; ¢ {p',z1,...,2}. Now if y; € {21,..., 2.}, then sincer # z;, we have
y. = z;, a contradiction sincéegreeq(y;) = A > 4 (by (5.2)) anddegreeg(z;) = 2. Thus
z,y € {p, v, 21, e 2, 2 ) TOry, € NG (). [

Lemma 5.30.¢(q,p) = c1(q,p) = 1.
Proof. Recall that byObservation 5.26 only the edges incident on verticesor y;, where
y; € N{(x) are altered while obtaining coloring from ¢;. Now to show that;(q,p) =
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c1(q, p) = n, its enough to verify thag, p ¢ {z} U N/,(z). But this is obvious from pafiz) of
Lemma 5.15%

Lemma 5.31.{1,2} C Sy, (c1).
Proof. By Lemma 5.14 we know thatl € S,,(c1,) sincegp is only the second edge of
the (1,7, zy,) critical path which is guaranteed to have length at least five with respect to the
coloringc; ,, of Gy ,,. Now by Lemma 5.2§ with respect ta, ,, there exists &z, 2) maximal
bichromatic path which starts at vertexand contains vertey;. Moreover the segment of
the bichromatic path between the verticeandy; is of length at least three with respect to
c1,,- Since this(n, 2) maximal bichromatic path starts with edgge coloredn, we infer that
2 € S,(c1y). Thus{1,2} C Sy, (c1).

[

Remark: In view of Lemma 5.3], degreec > 3. Thereforep ¢ Wj. It follows thatp € W;.

It is interesting to note thatcould have been selected as themary Pivot instead ofc. The

reader may want to reread the procedure for selecting the primary pivot given at the beginning
of Section3. With respect to this procedure vertgexs symmetric to vertex and thus is an
equally eligible candidate to be the primary pivot. It follows that the structure of the minimum
counter example at the vicinity ¢of is symmetric to the structure at the vicinity of More
specifically we have the following Lemma, correspondind.¢éenma 5.15

Lemma 5.32.The minimum counter examplésatisfies the following properties,
(@) Vu,v € Na(p), (u,v) ¢ E(G).
(b) Vz; € Na(p) — {¢.p'} andVv € Ng(p), we havev, z) ¢ E(G).
This Lemma is not explicitly used in the proof, but we believe that this information will

help the reader to visualize the situation better.

In view of Lemma 5.31lete; ande, be the edges incident gnsuch that; ,(e;) = 1 and
c1,,(e2) = 2. Then we claim the following:

Lemma 5.33.¢;,(e;) = 1 andc; ,,(e2) = 2.
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Proof. Recall that byObservation'5.26 only the edges incident on verticesr y;, wherey; €
N{(x) are altered while obtaining coloring frome;. Lete; = (p, z;,) andes = (p, z;,). Now
to show that:; ,(e;) = 1 andc; ,(e2) = 2, itis enough to verify thap, z;,, z;, ¢ {x} U Nj(x).
But this true byLemma 5.29

[

Lemma 5.34.c,,(p,p') € {1,2} (In other words, one of the edgg or e, is pp’. By Lemma
5.33 this also implies that; ,,(p,p’) = c1,(p,?') € {1,2}).
Proof. Suppose not. Then, # pp’ ande; # pp’. Without loss of generality let; =
(p,z1) andey = (p, 22). Thuscy,(p,z1) = 1 andcy,(p, 22) = 2. By Lemma 5.14 there
exists a(1,n, zy,) critical path of length at least five with respectdg,. This implies that
c1y(z1,21) = n. Now by Lemma 5.28 with respect tar ,, there exists &n,2) maximal
bichromatic path which starts at vertgxand contains vertex;. Moreover the segment of this
bichromatic path between the vertiagandy’ is of length at least three with respectdg,.
Sincepz; is only the second edge of this path, we can infer thatz,, z5,) = 7.

Now with respect to the coloring, ,, we exchange the colors of the edges andpz; to
get a coloring ..

Claim 5.35. Coloring ¢}, is valid.

Proof: Note thatc, , is proper since; ,(z1,2;) = n ande; , (22, z,) = n. Now the coloring

¢, , is valid because otherwise there has to bg,d) or (n,2) bichromatic cycle since only
the colors of the edges:; andpz, are altered. Thus such a bichromatic cycle has to contain
the edgegp sincec, ,(¢,p) = n. From (5.1), we can infer that colo ¢ F,(c;,). But if
there exists a bichromatic cycle with respect to the coloring it has to contain vertexy.
From this we can infer that it has to be(® 1) bichromatic cycle. This means that the cy-
cle has to contain the vertexsincec, ,(z,q) = 1. But we know by definition ot , that

n ¢ Fy(c1y) = Fu(cy,). Thus there does not exist(a, 1) bichromatic cycle with respect to
the coloringc ,. We conclude that the coloring , of G ,, is valid. O

Claim 5.36. With respect to the partial coloring , , there does not exist arty, n, vy, ) critical
path.

Proof: Now sincec, , is proper, takingy = p, i = 21, j = 23, ab = zy1, A = 1, §{ =7
and noting thafx, y1} N {21, 22} = 0 (by Lemma5.29, Lemma 2.8 can be applied. There
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existed &1, 7, zy; ) critical path containing vertexin coloringc, ,,. By Lemma 2.8, we infer
that there cannot be ary, n, zy, ) critical path in the coloring’ , . O

Claim 5.37. There exists a valid coloring, of G; such that the coloring’lﬂ7 of Gy, is deriv-
able fromd].

Proof. Itis enough to show that we can extend the coloripgof G, , to a valid coloring)
of Gy. If n € C — F,(c1), then by definitionG, , = G, and thust;, = ¢ ,. Otherwise let
yr € N () be the vertex such that(z, y,) = n. Note thatt # 1. Recall that; ,, is obtained
by discarding the color on the edge,.. Thus it is enough to extend the coloring, to ¢; by
assigning an appropriate color to the edge.

Note that there exists @, «, xy,; ) critical path with respect to, ,, fora € C' — F,(¢1)
(by Lemma 5.7). Clearlya # n. We claim that the1, «, zy;) critical path exists even with
respect ta ,. To see this note that we have changed the colors of only edgesidpz; to get
cy, frome, ;. Note that by this exchange thig, o, ry, ) critical path cannot be extended since
p, 2o & {z,y1} (by Lemmal5.29. Now if the (1, «, 2y, ) critical path gets altered it means that
this critical path contained the edge, (recall thatc; ,(p, z1) = 1) and hence, , (21, z}) = a.
But we know that; , (21, 2;) = n, a contradiction. Thus we have,

With respect to the partial coloring, , , there exists &1, o, zy, ) critical path, (5.5)
fora ¢ F,(c},) anda # 1.

Now color the edgey;. with color to get a coloring?; of GG;. If d; is valid we are done
andd; = d;. Ifitis not valid, then there has to be a bichromatic cycle containing the golor
Note that the coloring; andc; differ only due to the exchange of colors of edgesandpzs.
Thus it has contain one of the edges or pz,. Therefore it has to be either(a, 1) or (7, 2)
bichromatic cycle sincd;(p,z;) = 2, d1(p,22) = 1. This also means that the bichromatic
cycle has to contain the vertex sinced(p, ¢) = n. Thus the bichromatic cycle has to be a
(n, 1) bichromatic cycle sinceé ¢ F,(d,). This means thaf; (yx, y,) = 1. Now recolor the
edgezy;, with colora to get a coloring?} of G;. If d} is valid we are done and = d). Ifitis
not valid then there has to bga, 1) bichromatic cycle containing the verteximplying that
there existed &1, o, xy;) critical path with respect to the coloring and hence with respect
to the coloringc; ,. Butin view of (5.5)), there already exists@, o, zy, ) critical path and by
Fact2.3, (1, «, zyy,) critical path is not possible, a contradiction. Thus the colodnis valid



56 Chapter 5. 2-degenerate Graphs

and letc| = d;.
Thus there exists a valid coloring of GG; such that the coloring’m of G, is derivable
from ¢]. O

Now in view of Claim 5.36andClaim 5.37there does not exist anyt, n, zy; ) critical path
with respect to the coloring, , of G1,, a contradiction taCritical Path Property (i.e.,
Lemma 5.7 0r Lemma 5.10).

We conclude that; ,(p, p') € {1,2}.

Assumption 5.38. In view of Lemma 5.31, Lemma 5.33and Lemma 5.34 let z; be the
vertex such thafc, ,,(p, z1)} = {1,2} — {c1,(p,p’)}. Itfollows that{c;, (p,z1)} = {1,2} —
{¢in(p,p')} and{er, ea} = {pp', p21}.

Observation 5.39.

(@) Ifery(p,p') = cjn(p, ') = 2, we have by Assumptién3g§ thatc; , (p, z1)=c;,(p, 1) =
1. Thus with respect to the partial coloring ,,, there exists d1,7, zy;) critical path
of length at least five which contains the vertex|t follows thatc; , (21, 2;) = n since
2127 Is just the fourth edge of thig, n, zy,) critical path.

(b) Ifc1,(p,p') = cjn(p, ') = 1, we have by Assumpti@n3§ thatc; , (p, z1)=c;,(p, 1) =
2. Thus with respect to the partial coloring,, there exists 42,7, zy;) critical path
of length at least five which contains the vertex|It follows thatc;, (21, 2;) = n since
212, is just the fourth edge of thi, n, zy;) critical path.

Local Recolorings: If a partial coloringh of G is obtained from a partial coloring of G
by recoloring only certain edges incident on the vertices belonginydt) — {¢’,q¢} =
{z1,29,..., 2} and also possibly the edge’, thenh is said to be obtained fromby local
recolorings.

The concept of local recolorings turns out to be crucial for the rest of the proof. The
following lemma provides the main tool in this respect.

Lemma 5.40.
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(@) Letcy,(p,p') = ¢j,(p,p') = 2. Also leth, ,, be any valid coloring obtained from ,, by
recoloring only certain edges incident on the vertices belonginy4op) — {p', ¢} =
{21, 22, ..., 2} and also possibly the edge’ (i.e., by only local recolorings). Then
there exists a valid coloringj; of G; such that the valid coloring, , of G, ,, is derivable
from h;.

(b) Letcy,(p,p') = cjn(p,p’) = 1. Also letf;,, be any valid coloring obtained fromy,, by
recoloring only certain edges incident on the vertices belonginydop) — {p', ¢} =
{21, 29,..., 2} and also possibly the edge’ (i.e., by only local recolorings). Then
there exists a valid coloring; of G; such that the valid coloring; ,, of G, ,, is derivable
from f;.

Proof:

(a) Recall thaty # 1,2. If n ¢ F,(c1), thenc;,, = ¢;. In this case we také,; = c¢.
Otherwise ifn € Fl(c1), let zy, be the edge iz, such that (z,y,) = n. Note that
k # 1. Itis enough to show that we can extend the valid colofipg of G ,, to a valid
coloring h, of G; by assigning an appropriate color to the edgg (Reader may note
that neithempp’ nor any edge incident on the vertices{in, 2o, . .., z;} can be the edge
xyx sincex & {p,p',z1,29,..., 2k, 21, 25, ..., 25} due toLemma 5.29. Now assign
color n to the edgery; to get a coloringi. If the coloringd is valid we are done and
we haveh; = d. If it is not valid then there has to be a bichromatic cycle created in
G with respect to the colorind. The cycle has to be @, ¢) bichromatic cycle, where
d(yk,y,) = 0. Moreover we can infer that € F,(d). If 8 # d(p,p’) = 2, then let
d" = d. Otherwise we havé = d(p, p’) = 2. Now there exists a colay # 2,7 thatis a
candidate for the edgg.y,. Recolor the edge,y; using colorw to get a coloring?’ of
G,. Now if ' is a valid coloring, then we are done and we haye- d'. Ifitis not valid,
thend (yx, y,.) # 2. Letd (v, y,) = 5 # 2. Moreover with respect to the coloring
there should be @, 3) bichromatic cycle. Also let (£ n) € C—F,(¢;) = C—F,(d').
Now if,

(1) =1
Claim 5.41. None of the(1, v, zy, ) critical paths, wherey (4 n) € C — F.(c;)
are altered in the process of getting the colorilag, fromc, ,,.

Proof. Recall that only the edges incident on verticgswherez; € Ng(p) —
{p',q} and edgepp’ are possibly recolored to get the colorihg, of G;, from
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c1,,.- Note that by these recolorings tfik v, 2y, ) critical path cannot be extended
sincex,y; & {p,p, 21, 22, ..., 2k, 24, 25, . . ., 2.} due toLemma 5.29 Now if any
(1,~,zy, ) critical paths are altered then they have to contain the above mentioned
edges. Note that none of the verticeqin, zs, . . ., z; } or vertexp’ can be the end
verticesz or y; and hence any critical path containing the vertgwr p’ should
also contain the vertex sincedegreeg, , (z;) = 2. We can infer that with respect
to the coloringe, ,, the (1, ~, zy;) critical path passes through the verjext fol-
lows that this critical path has to contain the egge sincec, ,(p, z1) = 1 (from
part(a) of Observation5.39. Now sincez; € W (i.e.,degreeg, , (21) = 2), this
implies thatc, ,,(21, 2;) = 7, a contradiction since from paft.) of Observation
5.39 we know thatr, ,,(21,27) = 1. Thus there cannot be ariy, v, zy;) critical
path containing the edges incident on vertieesvherez; € N (p) — {p/, ¢} and
edgepp’. Thus none of thél, v, xy, ) critical paths, where € C — F,(¢1), v # 1
are altered. O

Sinced’ is not valid there has to be(g, 1) bichromatic cycle that passes through
the vertexz. Now recolor the edgey; with color « to get a coloring?”. Now

if still there is a bichromatic cycle, then it should contain the edgeand hence
the edgey,y,. Therefore it is &, 1) bichromatic cycle. This implies by act
2.5that there existed él, «, zy;,) critical path with respect to the coloring and
hence with respect to the colorirkg ,,. But in view of Claim 5.41], there exists a
(1, o, zyy ) critical path with respect to the coloririg ,,, a contradiction in view of
Fact 2.1. Thus the coloring!” is valid.

(2) B # 1. This implies thats (# 1) € F.(d'). Lety, € N{(z) be such that
d(z,y;) = (. Thusd'(y;,y;) = n. Now recolor the edgey, with color o €
C — F,(d') to get a coloringl”. Note thate # 7 sincen ¢ C' — F,(d'). Now if
still there is a bichromatic cycle, then it should contain the edgeand hence the
edgey,y,. Therefore it is g«, 3) bichromatic cycle. Thus the bichromatic cycle
should contain the edgey;. Sincedegreeq, (y;) = 2, the bichromatic cycle should
contain the edge.y;. But by our assumption?”(y:, v;) = d'(y,y;) = n # o, a
contradiction. Thus the coloring’ is valid.

Now leth; = d”. Thus we get a valid coloring @¥; from A ,,.
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(b)

The proof of this is similar to that of paft) with G}, ¢;, y; taking the roles ot+, ¢4,
y; respectively and the coloiisand2 exchanging their roles.

Lemma 5.42.

(@)

(b)

Proof:

(@

If c1,,(p, p') = ¢cjn(p,p') = 2, then with respect to the coloring ,,, 2 ¢ S.,... (Recall
that by AssumptioB.38 {c1,(p, 21)} = {¢jn(p, 21)} = {1, 2} = {c1,(p, )} = {1}.)

If ¢; . (p, p') = c1,(p, ') = 1, then with respect to the coloring,,, 1 ¢ S.,.;. (Recall
that by AssumptioB.38 {c;,(p, z1)} = {c1,(p, 1)} = {1,2} — {¢;,(p,P)} = {2}.)

Suppose not. Thats € S, ... Note that by parta) of Observation 5.39 we have
¢jn(p,z1) = 1 andc;, (21, z;) = n. Therefore there exists sorle¢ {1,2, 7} missing
in S.,... Now recolor edge:; z; with color ¢ to get a coloringc; . If the coloring
1, 1s valid, then let¢], = ¢;,. Otherwise a bichromatic cycle gets formed by the
recoloring. Sincer, (p,21) = 1, it has to be g1, 0) bichromatic cycle and it passes
through the vertex. Thus there exists; € Ng(p) —{q,p'} such thaty , (p, z;) = 6 and
(2, 27) = 1.

Now there exists a colgr ¢ {1, 6,2, n} missing ap. Recolor the edggz; with color y

to get a coloring’/ . This clearly breaks thél, ) bichromatic cycle that existed with
respect tar} . But if a new bichromatic cycle gets formed with respect't, then it
has to contain vertex; and therefore the edggz], implying that it has to be &u, 0)
bichromatic cycle sincey, (z1,2;) = 6. This cycle passes through the verjexand
hence passes through the vertesincecy, (p, z;) = ¢, implying thatey , (z;, z;) = 1, @
contradiction sincef , (z;, 2;) = 1. Thus the coloring? , is valid.

Note that we have possibly changed the colors of the eglgesndz, 2; to getcy, from
c1,, (i.e., only local recolorings are done). Therefore by gajtof Lemma 5.40we
infer that there exists a coloring of G, such that, is derivable fromey. It follows
from Critical Path Property (i.e., Lemma 5.7 or Lemma 5.10) that there exists a
(1,m, zy,) critical path with respect to the coloring/,. On the other hand recall that
with respect ta ,, there existed &1, 7, zy,) critical path passing throughe; andz; 2}
(by part(a) of Observation 5.39). But while gettingey, from ¢,, we have indeed
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changed the color of at least one of the edggsor z, 2| using a color other thahand
n. It follows that the(1, ) maximal bichromatic path which contains the vertegnds
at either vertey or z;. Noting thatp, z; # y1, we infer by Flact 2.1 that there cannot be
a(1,n,zy,) critical path with respect to the coloring,, a contradiction.

(b) The proof of this is similar to that of paft) with G, ,, c;,,, y; taking the roles ot7, ,,,
c1,, andy,; respectively and the coloisand2 exchanging their roles.

5.2.5 Getting a valid coloring that contradicts the Critical Path Property
either from ¢; or from ¢;

In this section we will get the final contradiction in the following wayedf, (p, p') = ¢;., (p, ')
= 1, then we will show that we can get a coloridgfrom c; that contradicts the Critical Path
Property. Otherwise if, ,,(p, ') = ¢;,(p, p’) = 2, then we will show that we can get a coloring
¢} from ¢, that contradicts thé'ritical Path Property.

The two colorings:; andc; are very similar and hence we will only describe the way we
getc; from ¢;. The same arguments can be imitated easilycfdsy keeping the following
correspondences in mind.

1. Vertexy, has same role as vertgx
2. Colorsl and2 exchange their roles.

3. (1,v,zy,) critical path has the same role @5 v, zy;) critical path, fory € C’. The
C'ritical Path Property of ¢, corresponds to that of (See Remarks aftetssumption
5.16and Assumption 5.25).

4. Part(a) of Lemma 5.40and Lemma 5.42 applies to coloring; while part(b) applies
to coloringc; in a corresponding way.

5. Lemma/5.28has the same role d&mmal5.27.

We make the following assumption:
Assumption 5.43.Letc; , (p,p') = ¢j,(p,p') = 2.
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Observation 5.44.1n view of Assumption5.43andObservation 5.39 there exist$1, n, zy,)
critical path which contains the vertex with respect to the partial coloring, ,,. Moreover
this path is of length at least five. It follows that,(p, 1) = 1 ande; , (21, 1) = n. The first
five vertices of the path are, ¢, p, z1, z;. Then clearlyz] # y; and hence is not a pendant
vertex inGy . Thus we have, ., # ) andl € S, ...

Getting a valid coloring d; of G, — {pz:} from ¢, , by only local recolor-
Ings

In view of Lemma 5.42and since; ,(p, z1) = 1, the color2 is a candidate for the edgez;.
We get a valid coloring; of G, — {pz } from ¢, ,, by removing the edggz;, and recoloring
the edge; 21 by the color2. Note thatd; is valid sincez; is a pendant vertex it ,, — {pz }.
Moreover we have broken thé, n, zy,) critical path. Hence we have,

With respect to the partial colorind,, there does not exists any (5.6)

(1,n, zy,) critical path.

Lemma 5.45.With respect to the partial coloring; of G, ,, , Vy € C' — F,(d;), there exists a
(2,7, pz1) critical path. Since each of these critical paths has to contain the gglgeve can
infer thatC' — F,(dy) C S,,.

Proof: Suppose not. Then there exists a colar C' — F),(d;) such that there is n@, v, pz)
critical path. ByFact 2.5 color is valid for the edgez,. Thus we get a valid coloring, of
G4, by coloring the edgez; with color .

Note that we have possibly changed the colors of the eggeandz,2] to getd; from
c1, (i.e., only local recolorings are done). Therefore by gant of Lemma 5.40 we in-
fer that there exists a valid coloring 6}, from which d| can be derived.It follows from
Critical Path Property (i.e., Lemma 5.7 or Lemma 5.10) that there exists &1, 7, xy;)
critical path with respect to the coloring;. On the other hand recall that with respectig
there existed &1, n, xy;) critical path passing throughz; andz, 2| (by Observation 5.44).
But while gettingd) from ¢, ,, we have indeed changed the color of the edge$ using the
color2 ¢ {1,n}. It follows that the(1, ) maximal bichromatic path which contains the vertex
x ends at either vertexor z;. Noting thatp, z; # y;, we infer that there cannot be& & 7, xy; )
critical path with respect to the coloringj, a contradiction.
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Note that with respect t6', ,, — {pz1}, |F,(d1)| < A — 1 and therefor¢C — F,(dy)| > 2.
But we know that colod ¢ F,(d;). Since|C' — F,(d;)| > 2, there exists a colot # 1 €
C — F,(dy). Note thaty # 2 also. The following observation is obvious in view @faim
5.45

Observation 5.46. With respect to the partial coloring, of G, , 1, ¢ F,(d;) and there
exist(2, 1, pz;) and (2, i, pz; ) critical paths.

Selection of a special colof: Since|F,(d;)| < A, there exists a coldt missing at vertey'.
By Lemma5.45 6 ¢ C — F,(d1) C F(dy). Thus# € F,(d;). Clearlyd # 2 since2 € Fy,
andf # 1,, becausd, u ¢ F,(d;) and hence byLemma 5.45we havel, u € S,,(d).
Furtherf # 7. This is because by.emma 5.28 the (n,2) maximal bichromatic path starts
at vertexq and contains the vertex. Clearly the first three vertices of this path are, p'.
Recall that the length of the segment of this path between verieesly’ is at least three.
Thereforen € S,,/(dy). Now without loss of generality let; (p, z2) = 6(# 1,7, 1, 2). Note
thatz, is a vertex different from;.

Note that with respect to the coloring,,, the (1,7, zy;) critical path passes through the
vertex z; (by (5.44)). This critical path cannot contain the vertex This is because it,
is an internal vertex of this critical path, then the egge should be contained in the path,
a contradiction since; ,(p, z2) = 0 # 1,7. On the other hand if, is an end vertex then
it implies thatz, € {x,y,}, a contradiction in view ofLemma 5.29 Thus vertexz, is not
contained in the¢1,n, zy; ) critical path. While getting the coloring; from ¢, ,, this path was
broken due to the recoloring af 2/ andpz;. It follows that the(1, ) maximal bichromatic
path that starts at vertex does not contain vertex. Thus we can infer that,

Observation 5.47.With respect to the colorind;, there cannot exist &l, 7, y1, z2) maximal
bichromatic path.
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Getting a valid coloring d; of G ,, — {pz2} from d; of G, ,, — {pz:} by only
local recolorings

We get a coloringl] of G;, — {pz1,pz2} from d; by discarding the edgez,. Note that the
partial coloringd’ of Gy, is valid.

Now recolor the edggz; with color thespecial color 6 to get a coloringl, of Gy ,,—{pz2}.
Note that the colof is a candidate for the edge; with respect to the coloring] since
di(z,24) = 2andf ¢ F,(d) since we have removed the edgg (Recall that? (p, z2) = 6).
We claim thatd, is valid also. Clearly if there is any bichromatic cycle created, then it has
to be a(f, 2) bichromatic cycle sincés(z;, z;) = 2. Now this bichromatic cycle has to pass
through vertexy’ sinceds(p,p’) = 2. But by the definition of colop, it was not present at
vertexp'. Thus there cannot be(4, 2) bichromatic cycle. It follows that the partial coloring
dy of Gy, — {pz} is valid. Recall that by(5.6) that there exists n¢l, n, xy,) critical path
with respect tal,. Note that to getl, from d,, we just assigned(# 1, 2,7, 1) to the edgez,
and removed the edge,. Thus there is no chance 6f, n, xy,) critical path getting created
with respect tal,. Hence we have,

With respect to the partial colorind,, there does not exists any (5.7)

(1,n, zy,) critical path.

Getting a valid coloring Cll,n of Gy, from d, of G, — {pz2} by only local
recolorings

Now we will show that we can give a valid color for the edge to get a valid coloring for the
graphG, ,,. We claim the following:

Lemma 5.48. With respect to the coloring, at least one of the colors, p is valid for the
edgepz,. (Recall that byObservation5.46 1, i ¢ F,(d,) and thereforel, i ¢ F,(ds))
Proof. Letdy (29, 2)) = 0. Now if,

1. 0 = 2. Recolor the edgez, using color 1 to get a colorinds. The coloringds is
valid because if a bichromatic cycle gets formed it has tg1be) bichromatic cycle
containing the vertey implying that there was &2, 1, pz,) critical path with respect
to d,. But by Observatiorb.46 there was 42, 1, pz;) critical path with respect to the
coloring d; and hence with respect to the coloridg(Note that to getl; from d;, we
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just assigned (p, z2) = 6 (# 1,2,n, ) to edgepz; and removed the edge,. Thus
the (2, 1, pz;) critical path is not altered during this recoloring ). Thus in view of Fact
2.1, there cannot be an§2, 1, pz,) critical path with respect td, sincez; # 2o, a
contradiction. Thus the coloring; is valid.

2. 0 € {1,u}. Recolor the edgez, using color{1, u} — {c} to get a coloringl;. The
coloring ds will be valid because if a bichromatic cycle gets formed it has tdlbg)
bichromatic cycle containing the vertgx But since colow € {1, 1} is not present at
vertexp, such a bichromatic cycle is not possible.

3. 0 ¢ {1,2,u}. Recolor the edgez, using color 1 to get a colorind,. If the coloring
dj is valid, then letd; = d,. Otherwise if the coloring/, is not valid, then there has to
be a(o, 1) bichromatic cycle. Now letl;(p, z;) = 0. Then the bichromatic cycle passes
through the vertex; and hencels(z;, 2;) = 1, sincedegreea(z;) = 2. Now we recolor
edgepz; with color 1 to get a coloringis. If there is a bichromatic cycle formed with
respect to the colorings, then it has to be §u, o) bichromatic cycle and hence it passes
through the vertex;. But colory is not present at; sinced,(z;, ;) = 1. Thus there
cannot be anyyu, o) bichromatic cycle. Hence the coloring is valid.

Thus either colot or p is valid for the edge zs.

To get the coloringi; from d, we have only given a valid color for the edge, and have
not altered the color of any other edge (i.e., only local recolorings are done). Recal} that
does not have anyi, n, zy, ) critical path (by(5.7)). Note thatds(x,q) = 1 andds(q,p) = 7.

If we give coloru # 1,7 to the edgez,, there is no chance of@, n, zy,) critical path getting
formed ind;. On the other hand, by giving color 1 to the edgs if a (1,7, zy,) critical
path gets formed, then it means that there exists &y, z2) maximal bichromatic path with
respect tal, and hence with respect th. But by Observation 5.47 such a bichromatic path
does not exist. Now Iei’lﬂ7 = d3. Thus we have,

With respect to the valid coloring , of G, ,, there does not exists any (5.8)

(1,n, zy,) critical path.

In gettingc, , from ¢, , we have done only local recolorings and thus/lynma5.40¢; ,
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can be derived from some valid coloringof G;. Note that we have not changed the color of
the edgey, y; while gettingc; , from ey, sincey: ¢ {p,p', 21, ., 2k, 21, - - ., 2.} (DY Lemma
5.29. Thusc) , (y1,v;) = 1. It follows that theC'ritical Path Property of ¢| , is the same as
Critical Path Property of ¢;,. This implies that there exists(a, n, xy, ) critical path with
respect to the coloring, , , a contradiction in view of5.8).

This completes the proof. |

5.3 Remark

Our result is tight since there are 2-degenerate graphs which reyuiré colors (e.g., cycle,
non-regular subcubic graphs, etc.) our proof is constructive and yields an efficient polynomial
time algorithm. It is easy to see that its complexityi§An?). (We have presented the proof

in a non-algorithmic way. But it is easy to extract the underlying algorithm from it.)






Chapter 6
Planar Graphs-General case

In this chapter we look at acyclic edge coloring of planar graphs.

6.1 Previous Results and Definitions

The acyclic chromatic index of planar graphs has been studied previously. Fiedorowicz,
Hauszczak and Narayana2d| gave an upper bound @fA + 29 for planar graphs. Indepen-
dently Hou, Wu, GuiZhen Liu and Bin Lit28] gave an upper bound afaz(2A — 2, A +22),

which is the best known result up to now for planar graphs. Note thakfor 24, it is equal

to 2A — 2.

Now we give some definitions that are used in the proof.

Definition 6.1. Multisets and Multiset Operations:A multiset is ageneralizedset where a
member can appear multiple times in the set. If an elemegpearst times in the multiset

S, then we say that multiplicity af in S is ¢. In notationmults(z) = t. The cardinality of

a finite multisetS, denoted by| S || is defined ag| S ||= >, g mults(r).LetS; and S, be

two multisets. The reader may note that there are various possible ways to define ufijon of
and S;. For the purpose of this paper we will define one such union notion- which we call as
the join of S; and S;, denoted asS; W S;. The multisetS; w S, will have all the members

of S; as well asS,. For a member: € S; W Sy, mults,ws,(x) = mults, (x) + multg, ().
Clearly || Sy W Sy [|[=]| S1 || + || S2 ||- We also need a specially defined notion of the multiset
difference ofS; and.S,, denoted bys; \ Ss. It is the multiset of elements 6f which are not

in Sy, i.e,xe s\ S iff v € Sy bute & S, andmults, s, (x) = multgs, (x).

67
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6.2 The Theorem

Theorem 6.2.1f G is a planar graph, ther'(G) < A + 12.

Proof. A well-known strategy that is used in proving coloring theorems in the context of planar
graphs is to make use of induction combined with the fact that there aretsaxeidablecon-
figurations in any planar graph. Typically the existence of thesevoidableconfigurations

are proved using the so callettarging and discharging argume®ee B7], for a compre-
hensive exposition). Loosely speaking, for the purpose of this papenfggurationis a set

{v} U N(v), wherev is some vertex in, along with some information regarding the de-
grees of the vertices ifw} U N (v). For example, the following lemma illustrates how certain
unavoidable configurations appear in a planar graph:

Lemma 6.3.[4(] Let G be a simple planar graph with > 2, whered is the minimum degree
of graphG. Then there exists a vertexn G with exactlydeg(v) = k neighboursy, vs, . .., vy
with deg(v,) < deg(vy) < ... < deg(vx) such that at least one of the following is true:

(A1) k = 2,
(A2) k=3 anddeg(v,) < 11,
(A3) k=4 anddeg(v,) < 7,deg(vy) < 11,

(A4) k=5 anddeg(vy) <6, deg(vy) < 7, deg(vs) < 11.

Let graphG be a minimum counter example with respect to the number of edges for the
statement in Theore®.2. From Lemma 6.3 we know that there exists a vertexn G such
that it belongs to one of the configuratioA$- A4. We now delete the edge); to get a graph
G', wherev andv, are as inLemma 6.3 SinceG was the minimum counter exampl@/
has an acyclic edge coloring usidyG’) + 12 colors. Letc be such a coloring. Now if
A(G") < A(G), then we have at least one extra color forand we can assign that color to
edgewvv; to get a valid coloring of7, a contradiction to the fact th&t is a counter example.
Thus we haveA(G’') = A(G) = A. To prove the theorem faoff, we may assume thak
is 2-connected since if there are cut vertices I, the acyclic edge coloring of the blocks
By, By ... By of G can easily be extended t&. Thus we havej(G) > 2. We present the
proof in two parts based on which configuration the vertdelongs to - The first part deals
with the case when there exists a vertethat belongs to configuration2,A43 or A4 and the
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second part deals with the case when there does not exists any vaéntéx that belongs to
configurationA2,A3 or A4.

6.2.1 There exists a vertex that belongs to configuration A2,A3 or A4

Claim 6.4. For any valid coloringc’ of &/,

F,NF,|>2.

Proof. Suppose not. The casé, N F,,| = 0 is trivial. The reader can verify from close
examination of configurationd2- A4 that|F, U F,, | will be maximum for configuratiom2
and thereforeF, U F,, | = |F,| + |F,,| < 2+ 10 = 12. Thus there aré\ candidate colors
for the edgevv, and by Lemma 2.3 all the candidate colors are valid, a contradiction to the
assumption that7 is a counter example. Thus we havé N F,, | = 1. In this case it is easy
to see thatF, U F,,| = |F,| + |F,,| — |F, N F,,| < 11 and hence there are at least+ 1
candidate colors for the edge;. Let F,, N F,,, = {a} and letu € N(v) be a vertex such that
d(v,u) = a. Now if none of theA +1 candidate colors are valid for the edge, then byFact
2.5, for eachy € C — (F, U F,,), there exists &«, v, vv;) critical path. Since’(v,u) = «,
we have all the critical paths passing through the ventexd hences,,, C C — (F, U F,,).
This implies thalS,,,| > |C — (F, U F,,)| > (A +12) — 11 = A + 1, a contradiction since
|Syu| < A — 1. Thus we have a valid color for the edge,, a contradiction to the assumption
thatG is a counter example. Thys, N F,, | > 2. O

Let S, be a multiset defined a8, = Sy, W Sypy W ... W Syy,. In view of Claim 6.4 and
Lemma6.3 2 < |F, N F,,| < 4. We consider each case separately.

case 1:|F, N F,,| =2

Let F, N F,, = {1,2} and letv’,v" € Ng (v) andu/,v” € Ng/(vy) be such that/(v,v") =
d(vy,u') = 1andd(v,v") = d(v,u”) = 2. Itis easy to see that’, U F,,| < 10. Thus there
are at least\ + 2 candidate colors for the edge; . If any of the candidate colors are valid for
the edgevv;, we are done. Thus none of the candidate colors are valid for thevegg@his
implies that there exist either(a, 6, vv,) or (2,0, vv,) critical path for each candidate colér

Claim 6.5. With respect to the coloring, the multisetS, contains at leastF,,| — 1 colors
from F,, .
Proof. Suppose not. Then there are at least two colors,jrwhich are not inS,. Letr andu
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be any two such colors. Now assign colorandy: to the edgesv’ andvv” respectively to get
a coloringc”. Now sincev, i ¢ S,, we havev ¢ S,,» andu ¢ S,,». Moreoveru, v ¢ {1,2}.
Thus the recoloring” is proper. Now we claim that the coloring is acyclic also. Suppose
not. Then there has to be a bichromatic cycle containing at least one of the e@ad..
Clearly this cannot be &, 1) bichromatic cycle since. ¢ S,,,. Therefore it has to be a
(v, A) or (u, A) bichromatic cycle where. € F,(¢") — {v,u}. Letu be a vertex such that
d"(v,u) = A. This means that there was alreadyav, vv’) or (A, u, vv”) critical path with
respect to the coloring’. This implies that € S,, or u € S,,, implying thatv € S, or
u € S,, acontradiction. Thus the coloring is acyclic. Letu;,us € Ng(v1) be such that

" (v1,u1) = v andd”’(vy, ug) = p.

Note that|F, U F,,| < 10 (The maximum value ofF, U F,, | is attained when the graph
has configuratiom2). Therefore there are at lea&t+ 2 candidate colors for the edge; .
If any of the candidate colors are valid for the edge, then we are done as this is a contra-
diction to the assumption thé&t is a counter example. Thus none of the candidate colors are
valid for the edgevv; and therefore there exist either(@ 6, vv,) or (u, 0, vv;) critical path
for each candidate coldt. Let C,, andC), respectively be the set of candidate colors which
are forming critical paths with colorsandy. Then clearlyC, < S,,,, andC, C S, since
d"(v1,u1) = v andd’(vy,us) = p. Now weexchange the colorsf the edgesv’ andvv” to
get a modified coloring. Note thatc is proper since. ¢ S, andv ¢ S,,». By Lemma
2.8, all (v, 3,vv,) critical paths whereg € C, and all(u, v, vv,) critical paths wherey € C,,
are broken. Now if none of the colors @, are valid for edgeyv;, then it means that for
eachp € C,, there exists du, 3, vv;) critical path with respect to coloring implying that
C, C S,,4,- Since the recoloring involved no candidate colors, we still l@ye S,,,.,,. Thus
we have(C, U C,) C S,,4,-. But|C, UC,| > A+ 2 which implies thatS,,.,| > A + 2, a
contradiction sincéS,, .| < A — 1. O

Claim 6.6. With respect to the coloringd, there exists at least two colotssand 3 in C' — F,,
with multiplicity at most one ity),.

Proof. In view of Claim6.5 we have) . . mults,(z) =[ S, || —(|F,| — 1). Thus if
| Sy || —(|F,|—1) < 2|/(C— F,,)|— 3, then there exist at least two colarsindg in C — F,,
with multiplicity at most one inS,. Thus it is enough to prove S, ||< 2|C| — |F,,| —4 <
2A+24—|F, —4 =2A+20—|F,,|. Now we can easily verify thdt S, || +|F,,| < 2A+20
for configurationsA2 — A4 as follows:
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o ForA2, || .S, || +[Fu| < (deg(va)—=1)+(deg(vs)=1)+|F, | = (A=1)+(A-1) +10 =
2A + 8.

o ForA3, || Sy [| +[Fu| < (deg(v) — 1) + (deg(vs) — 1) + (deg(va) = 1) + [y, | =
04+ (A-1)+(A—=1) +6=2A+14.

o ForAd, |[ S, [| +[Fy,| < (deg(vz) = 1) + (deg(vs) — 1) + (deg(vs) — 1) + (deg(vs) —
)+ |F,|=6+10+(A-1)+(A—-1) + 5=2A+109.

The colorsa and g of Claim 6.6 are crucial to the proof. Now we make another claim
regardingn and:

Claim 6.7. With respect to the coloring, a andg € F,.

Proof. Without loss of generality, let ¢ F,. Then recalling thatr ¢ F,,, « is a candidate
for the edgevw;. If it is not valid, then there exists either(a, o, vv;) or (2, «, vvy) critical
path with respect to’. Since the multiplicity ok in S, is at most one, we have the coleiin
exactly one ofS,, or S,,~. Without loss of generality let € S,,». Hence there exists either
a (2, a,vvy) critical path with respect td.

Now recolor the edgev’ with color « to get a coloringe. It is obvious that the recol-
oring c is proper sincex ¢ F,(c') anda ¢ S,.(c'). Itis also valid since if a bichromatic
cycle gets formed due to this recoloring, it has to bévay) bichromatic cycle for some
v € F,(c) — c(v,v'). Leta € N (v) be such that(v,a) = ~. Then the(«, ) bichromatic
cycle should contain the edge and therefore, € S,,, with respect ta:. But we know that”
is the only vertex inV¢ (v) such thaty € S,,». Thereforex = v”. This implies thaty = 2 and
there existed &2, o, vv’) critical path with respect to the colorirng This is a contradiction to
the Faci2.1 since there already existed 2 «, vv;) critical path with respect to the coloring
¢’. Thus the recoloring is valid. Now with respect to the coloring | F, N F,,| = 1, a contra-
diction toClaim 6.4. O

Note thato, 5 ¢ {1,2} sincea, 5 ¢ F,,. In view of Claim 6.7, we have{l,2,a, 3} C F,
and thugF,| > 4, which implies thatleg(v) > 5. Thus the vertex belongs to configuration
A4. Thereforeleg(v) = 5andF, = {1,2,«, 3}. There are atleagt+ 12— (5+4—2) = A+5
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candidate colors for the edge,. Also recall thatleg(v) < 7, ¢(v,v") = ¢(v1,u’) = 1 and

d(v,0") = (v, u") = 2.

Claim 6.8. With respect to the colorind, v, ¢ {v',v"}.

Proof. Suppose not. Then without loss of generalitydet= " andd (v, v5) = 1. Now if none
of the A + 5 candidate colors are valid for the edge , then they all form critical paths that
contain either the edge’ or the edgev”. Now | Sy, | + [Spur| < 6+ A —1 = A+ 5. Since
each of theA + 5 candidate colors has to be present in eithef,in or S,,~, we infer that
Sy U Sy is exactly the set of candidate colors, i|6,,,/| + |S,.7| = A+ 5. This requires that
|Spur| = 6, | S| = A — 1 andS,,» N S, = 0. Since for each € S,,», we have(2, v, vv,)
critical path containing:”, we can infer thatS,,» C S,,,~» (Recall that?(v,,u”) = 2). But
since|S,,u| < A — 1, weinferS,,» = S,, .. Thus we haves,, ,» N Sy = Sy NSy = 0.

Now we exchange the colors of the edgeSandwvv” to get a coloring: i.e., c(v,v") = 2
andc(v,v”) = 1. The coloringc is proper since ¢ S, (¢) andl ¢ S,,(c') (Recall that
Sw () and S, (¢’) contain only candidate colors). The coloring is also valid: If a bichro-
matic cycle gets formed it has to bé ) or (2, ) bichromatic cycle wherg € F,,. Clearly
it cannot be &1, 2) bichromatic cycle sincé ¢ S, (c) and therefore) = « or 5 (Recall
that F, = {1,2,«, $}). This implies that eithew or 3 belongs taS,,, U S,,~. But we know
that S, U S, is exactly the set of candidate colors for the edgg a contradiction since
a, § € F, cannot be candidate colors for the edge. Therefore the coloring is acyclic. By
Lemma 2.8, all the existing critical paths are broken. Now consider a colar S,,. Ifitis
still not valid then there has to be(2, v, vv,) critical path since:(v,v’) = 2 andy ¢ S,,~(c).
This implies thaty € S,,.»(c), a contradiction sincé&,,,~(c) N Sy (c) = 0. Thus we have
a valid color for the edgewv;, a contradiction to the assumption tliatis a counter example.
Thuswvy ¢ {v/,v"}. O

FromClaim 6.8 we infer that?' (v, vy) ¢ F,NF,, sinceF, N E,, = {d(v,v),c(v,v")} =
{1,2}. Therefore we have(v, v,) € {«, 5} sinceF, = {1, 2, «, 3}. Without loss of generality
let ¢(v, v9) = . We know that the colof can be in at most one ¢f,,, andS,,» by Claim6.6.
Now letv’ be such that ¢ S,.. Note thatC — (S, UF,UF,,) # 0 since|S,, UF,UF, | <
A—1+44+5—-2=A+6.Assignacolop € C — (S, UF,UF,) to the edge’ to get a
coloringc”. If itis valid, then letc = ¢”.

If the recoloring is not valid then there has to be a bichromatic cycle created due to the
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recoloring. Now the bichromatic cycle should involve one of the colprs, 3 along with
6. Since the bichromatic cycle contains a color fréfy, andj ¢ S, it cannot be &6, 3)
bichromatic cycle. Now with respect to the coloring color # was not valid for the edge
vuy implying that there existed either(&, 0, vv;) or a(2, 0, vv;) critical path. But(1, 6, vv, )
critical path was not possible sinée# S, by the choice o). Thus there existed @, ¢, vv;)
critical path with respect te’. Thus by FacP.1, there cannot be &, 6, vv') critical path
with respect ta’ and hence there cannot b¢2a#) bichromatic cycle in?” formed due to the
recoloring. Thus if there is a bichromatic cycle formed, then it has to (ee @ bichromatic
cycle, which implies thaty € S, .

Now taking into account the fact thatis in S,,» as well asF,,, we get|S,,, U F,, U F,,| <
A—-1+4+45-2—-1= A+5and therefordS,, U F, UF,, US,,| < A+5+6=
A+ 11. ThusC — (S, U F, U F,, U S,,,) # 0. Now recolor the edgev’ using a color
v € C — (S UF,UF, US,,) toget acoloringc. Clearly the recoloring is proper. It
is also valid since if a bichromatic cycle gets formed it has to e, ) bichromatic cycle
(Note that the(2, ) and (3, ) bichromatic cycles are argued out as before). Bgt S,,,,, a
contradiction. Thus the coloringis acyclic.

With respect to the coloringwe havelF, N F,,| = 1, a contradiction to Clairg.4.

case 2:)|F,NF,|=3

Note that in this casg,| > 3 and thereforéeg(v) > 4. Thusv belongs to either configuration
A3 or A4. Let S/ be a multiset defined by, = S, \ (F,,, U F,). Letv',v" 0" € Ng/(v) be
such that{c(v,v'), c(v,v"), c(v,v")} = F, N F,,. Also letc(v,v') = 1, ¢(v,v"”) = 2 and

c(v,0") = 3.

Claim 6.9. With respect ta’, || S ||< 2A + 11.

Proof: Whendeg(v) = 4, itis clear that| S || < (deg(vy)—1)+(deg(vs)—1)+(deg(vs)—1) <
10+ A—-14A—1=2A+8. Onthe other hand whefeg(v) = 5, try to recolor one of the
edges’, vv”, vv™ using a color inC' — (F, U F,, ). There areA + 6 colors inC' — (F, U F,)

and if any of these colors is valid for one of’, vv” or vv””, then the situation reduces to
case li.e.|F, N F,, | = 2. Otherwise there has to be a bichromatic cycle formed during each
recoloring. Since such a bichromatic cycle has tgfey,) bichromatic cycle where; is the
color used in the recoloring and € F, — {+ }, we infer thatsS,,, S,,» andsS,,» contain at
least one color fron#,. Thus we havel S; ||<|| S, || =3 < (deg(ve) — 1) + (deg(vs) — 1) +
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(deg(vy) — 1) + (deg(vs) —=1) =3 <64+ 10+ A-14+A—-1-3=2A+11. O

Claim 6.10. With respect ta’/, there exists at least one colar € C' — (F, U F,,) with
multiplicity at most one irb,.

Proof. Sincev belongs to either configuratioA3 or configurationA4, we havelF, U F,, | <
9—3=6. Thus|C' — (F,UF,,)| < A+6. By Claim6.9we have|| S! ||[< 2A+ 11 and from
this it is easy to see that there exists at least one eoloIiC' — (F, U F,,,) with multiplicity at
most one inS!. O

Note thata € C — (F, U F,,), wherea is the color fromClaim 6.10is a candidate
color for the edgew,. If it is not valid then there has to be(é, o, vv;) critical path, where
0 € {1,2,3}. By Claim6.10 « can be present in at most one%,, S~ andsS,,~. Without
loss of generality letv € S,,,». Thus there exists &, «, vv;) critical path with respect to the
coloring . Recolor the edgev’ using the colokr to get a coloring:. Clearly the recoloring
is proper sincev ¢ S,,» anda ¢ F,. The recoloring is valid since if a bichromatic cycle gets
formed then it has to contain the coleras well as a coloty € F,(c) — {a}. If v = ¢(v,w),
thena € S,,, for the (o, ) bichromatic cycle to get formed. But' is the only vertex in
Ne/(v) such thate € S,,». Thusw = v”, v = 2 and it has to be &a,2) bichromatic
cycle. This means that there existe(Ra«, vv') critical path with respect to the coloring a
contradiction byF'act 2.1 since there already existed 2 «, vv;) critical path with respect to
the coloringc’. Thus the coloring is acyclic. This reduces the situation to case 1.

case 3:|F,NF, | =4

Note that in this cas&,| > 4 and sinceleg(v) < 5, we havedeg(v) = 5. In other wordsy
belongs to configuratior4. Let S! be a multiset defined by, = S, \ (F,, U F,). Also let
c(v,v9) =1, ¢(v,v3) = 2, ¢(v,v4) = 3 andc(v, vs) = 4.

Now try to recolor an edge incident anwith a candidate color fron®' — (F, U F,).
If the recoloring is valid then the situation reduces to case 2. Otherwise there has to be a
bichromatic cycle created due to recoloring with one of the colors ffQmThis implies that
F,NS, #0. Thuswe havd S/ ||<|| S, || =1 < (deg(vz) — 1) + (deg(vs) — 1) + (deg(vy) —
1) + (deg(vs) — 1) < 6+10+A—-1+A—-1—-1= 2A + 13. Now since there are
|C— (F,UF,))| > A+12—(445—4) = A+ 7 candidate colors and S} ||< 2A +13, itis
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easy to see that there exists at least one candidatecc@ldh multiplicity at most one inS..

Note thate € C' — (F, U F,,) is a candidate color for the edge;. If it is not valid then
there has to be @, «, vv, ) critical path, wher® € {1, 2, 3,4}. We know thatx can be present
in at most one ob,,,,,, Syus, Svu, @NAS,,,. Without loss of generality let € S,,,,. Thus there
exists a(2, o, vvy) critical path with respect to the coloring Recolor the edgev; using the
color « to get a coloring:. Clearly the recoloring is proper sinece¢ S,,, anda ¢ F,. The
recoloring is valid since if a bichromatic cycle gets formed then it has to contain thecolor
as well as a coloty € F,(c) — {a}. If v = ¢(v,w), thena € S,,, for the(«, v) bichromatic
cycle to get formed. Butjs is the only vertex inNg (v) such thaiv € S,,,. Thusw = vs,
~v = 2 and it has to be &, 2) bichromatic cycle. This means that there existd@,av, vv,)
critical path with respect to the coloring, a contradiction byFact 2.1 since there already
existed &2, a, vvy ) critical path with respect to the coloring Thus the coloring: is acyclic.
This reduces the situation to case 2.

6.2.2 There exists no vertex that belongs to configuration A2,A43 or A4

Then clearly byLemma 6.3, we can assume that there is a vertethat belongs to config-
uration A1, i.e., deg(v) = 2. Now delete all the degre2 vertices fromG to get a graph
H. Now since the grapl# is also planar, there exists a verteXin H such thatv’ be-
longs to one of the configuration$l — A4, say A’. The vertexy’ was not already in con-
figuration A’ in G. This means that the degree of at least one of the vertices of the con-
figuration A’ i.e., {v'} U Ng(v'), got decreased by the removal of 2-degree vertices. Let
P={z e {}UNg():dy(z) < dg(z)}. Letu be the minimum degree vertex idin the
graphH. Now it is easy to see thaly (u) < 11 sincev’ did not belong ta4’ in G.

Let N'(u) = {z|z € Ng(u) anddg(u) = 2}. Let N"(u) = Ng(u) — N'(u). It is obvious
that N (u) = Ny (u).

Sinceu € P anddy(u) < 11, we have/N'(u)| > 1 andN"(u) < 11. In G letw’ € N'(u)
be a two degree neighbour ofsuch thatV(u') = {u,«”}. Now by inductionG — {uu'} is
acyclically edge colorable using + 12 colors. Letd be such a coloring. With respect to
a partial coloring” let F!(¢') = {d(u,z)|x € N'(u)} andF/(¢') = {d(u,z)|x € N"(u)}.
Now if c(u’,u") ¢ F,, we are done sincg, U F,/| < A and thus there are at ledtcandidate
colors which are also valid bizemma 2.3

We know that|F”| < 11. If d(u/,u”) € F!, then letc = ¢. Else ifd(v/,u") € F!,
then recolor edge’«” using a color fromC' — (S,,» U F”) to get a coloring: (Note that
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IC — (Sywr UF")] > A+12— (A —1+11) = 2 and since is a pendant vertex in
G — {uu'} the recoloring is valid). Now it(v', u") ¢ F, the proof is already discussed. Thus
c(u',u") € F.

With respect to coloring, leta € N'(v) be such that(v,a) = c(uv/,u”) = 1. Now if
none of the candidate colors @ — (F, U F,,) are valid for the edge’, then byFact 2.5,
for eachy € C — (F, U F,), there exists &1, v, uu’) critical path. Since’(v,a) = 1, we
have all the critical paths passing through the vedtexd hence,, C C — (F, U F,/). This
implies thatS,,| > |C — (F,UFy, )| > A+12—(1+A—1-1) = 13, a contradiction since
|Sya| = 1. Thus we have a valid color for the edge’, a contradiction to the assumption that
G is a counter example.

|



Chapter 7
Triangle Free Planar Graphs

In this chapter we look at acyclic edge coloring of triangle free planar graphs.

7.1 Previous Results

The acyclic chromatic index of special classes of planar graphs characterized by some lower
bounds on girth or the absence of short cycles have also been studi@d] &m [upper bound

of A + 2 for planar graphs of girth at leaSthas been proved. Fiedorowicz and Borowiecki

[23] proved an upper bound df + 1 for planar graphs of girth at leaStand an upper bound

of A + 15 for planar graphs without cycles of lengthIn [24], an upper bound of\ + 6 for
triangle free planar graphs has been proved. In this chapter we improve the baingd 3o

In fact we prove a more general theorem as described below:

Definition 7.1. Property A : Let G be a simple graph. If every induced subgrafihof GG
satisfies the conditiofF’(H)| < 2|V (H)| — 1, we say that the grapty satisfiesProperty A.
If G satisfiesProperty A, then every subgraph ¢ also satisfiesProperty A.

Note that triangle free planar graphs, 2-degenerate graphs, 2-fold graphs (union of two
forests), etc. are some classes of graphs which sd@isbperty A. The earlier known bound
for these classes of graphs wast 6 by [24].
The following is the main result ofil]. We will need this result for proving our theorem.

Lemma 7.2.[11] Let G be a connected graph onvertices,n < 2n — 1 edges and maximum
degreeA < 4, thend/ (G) < 6.

77
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7.2 The Theorem

Theorem 7.3.1f a graph G satisfiesProperty A, thend' (G) < A(G) + 3.

Proof. A well-known strategy that is used in proving coloring theorems in the context of sparse
graphs is to make use of induction combined with the fact that there aretstawaeidablecon-
figurations in any such graphs. Typically the existence of tneseoidableconfigurations are
proved using the so calledharging and discharging argume(fee B7], for a comprehensive
exposition). Lemma [7.4 will establish that one of the five configuratiofd, ..., B5 is un-
avoidable in any grapty that satisfied’roperty A. Loosely speaking, for the purpose of this
paper, econfigurationis a subset) of ', where one special vertex< () is called thepivot

of the configuration and) = {v} U N(v). Besidess, one more vertex i) will be given a
special status: This vertex, called tbe-pivotof the configuration, is selected such that it is
a vertex of smallest degree i¥i(v) and will be denoted by. Moreover the vertices oV (v)
will be partitioned into two sets namely’(v) and N”(v). The members oN’(v) and N (v)
are explicitly defined for each configuration.

Lemma 7.4.Let G be a simple graph such thd(G)| < 2|V (G)| — 1 with minimum degree
d > 2. Then there exists a vertexn G with k£ = deg(v) neighbours such that at least one of
the following is true:

(B1) k = 2,

(B2) k = 3 with N(v) = {u,v1,a} such thatdeg(u), deg(vy) < 4. N'(v) = {u,v;} and
N"(v) = {a},

(B3) k = 5 with N(v) = {u, vy, v, a,b} such thatdeg(u), deg(v), deg(vy) < 3. N'(v) =
{u,v1,v2} and N"(v) = {a, b},

(B4) k = 6 with N(v) = {u, vy, vq,v3,v4,a} such thatdeg(u), deg(vy), deg(vs), deg(vs),
deg(vy) < 3. N'(v) = {u, vy, v2, 03,04} and N”(v) = {a},

(B5) k& > 7 with N(v) = {u,v1,v9,...,v,_1} such thatdeg(u), deg(vy), deg(v2), deg(vs),
condeg(vg—1) < 3. N'(v) = {u,v1,v9,...,06-1}.

> 2,

Proof. We use the discharging method to prove the lemma.dLet (V, E), ¢ Vi=n
and|E| = m < 2n — 1. We define a mapping : V —— R using the rulep(v) = deg(v) — 4
for eachv € V. The valuep(v) is called the charge on the vertexSincem < 2n — 1, itis
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easy to see that’ _, ¢(v) < —2. Now we redistribute the charges on the vertices using the
following rule. (This procedure is usually known discharging Note that the total charge
has to remain same after the discharging.)

e If vertex v has degree at least 5, then it gives a chargé b each of its 3-degree
neighbours.

After discharging, each vertex has a new charge'(v). Now since the total charge is
conserved, we havg, ., ¢(v) = > o, ¢'(v) < —2. Now suppose the graphi has none of
the configurationd31, ..., B5. Then we will show that for each vertexof GG, ¢'(v) > 0 and
therefored  _,, ¢'(v) > 0, a contradiction. Sincé&' does not have configuratia®l, we have
0 > 3. Now we calculate the charge on each vernte{ GG as follows:

e If deg(v) = 3: SinceG does not have configuratidB2, at least two of the neighbours
have degree at least 5. Thusreceives a charge o} each from at least two of its
neighbours. Thus'(v) > deg(v) —4+2-1 =0.

e If deg(v) = 4: A four degree vertex does not give or receive any charge. Phug =
¢(v) = deg(v) —4 = 0.

e If deg(v) = 5: SinceG does not have configuration B3, at most two of the neighbours
have degree 3. Thusgives a charge o§ each to at most two of its neighbours. Thus
¢'(v) > deg(v) —4—2-3 =0.

e If deg(v) = 6: SinceG does not have configuration B4, at most four of the neighbours
have degree 3. Thusgives a charge o§ each to at most four of its neighbours. Thus
¢'(v) > deg(v) —4—4-1 =0.

o If deg(v) > 7: SinceG does not have configuration B5, at masy(v) — 1 of the
neighbours have degree 3. Thugives a charge o§ each to at mosfeg(v) — 1 of its
neighbours. Thus'(v) > deg(v) — 4 — (deg(v) — 1) - 3 = 1(deg(v) — 7) > 0.

Thus we have established thal{v) > 0, Vv € V and therefore) _, ¢'(v) > 0, a
contradiction.
|
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We prove the theorem by way of contradiction. l&tbe a minimum counter example
(with respect to the number of edges) for the theorem statement among the graphs satisfying
Property A. ClearlyG is 2-connected since if there are cut vertices @, the acyclic edge
coloring of the blocks~,, Gs, ..., G, of G can easily be extended & (Note that each block
satisfies theProperty A since they are subgraphs@j. Thus we havej(G) > 2. Also from
Lemma 7.2, we know that/(G) < A+3, whenA < 4. Therefore we can assume tiat> 5.
Thus we have,

Assumption 7.5.For the minimum counter examplé 6(G) > 2 and A(G) > 5.

By Lemma 7.4, graphG has a vertex, such that it is the pivot of one of the configurations
B1,..., B5. We present the proof in two parts based on the configuratiorvtbatongs to.
The first part deals with the case whérhas a vertex that belongs to configuratioR2, B3,

B4 or B5 and the second part deals with the case wHeloes not have a vertexthat belongs
to configurationB2, B3, B4 or B5.

7.2.1 There exists a vertex that belongs to configurationB52, B3, B4 or
B5

Let v be a vertex such that it is the pivot of one of the configuratiBgs. . ., B5 and letu be
the co-pivot. Sincé&- is a minimum counter example, the graph- {vu} is acyclically edge
colorable using\ + 3 colors. Letc be a valid coloring of7 — {vu} and hence a partial coloring
of G. We now try to extend’ to a valid coloring ofGG. With respect to the partial coloring
let £/(¢) = {d(v,z)|x € N'(v)} andF/ () = {c(v,x)|x € N"(v)} i.e.,F' =F, — F.

Claim 7.6. With respect to any valid coloring of G — {uv},

F,NF,|>1

Proof. Suppose not. Thef,, N S,, = § and by Lemma 2.3 all the candidate colors are
valid for the edgeu. It is easy to verify that irrespective of which configuratiobelongs to,
|F,UF,| <A—-1+2= A+1. Therefore there are at least two candidate colors for the edge
vu Which are also valid, a contradiction to the assumptionthet a counter example. [

Claim 7.7.Vz € N(v), we haveleg(z) > 3.
Proof. Suppose not. Then bylssumption [7.5, it is clear that the degree of the co-pivot,
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deg(u) = 2. Let N(u) = {v,v'}. It is easy to verify from the description of configurations
B2 — B5 and the fact thatleg(u) = 2 that there can be at most two verticesNiiv) whose
degrees are greater than 3. By Claimg, we know that/(u,v’') € F,. LetD, = D,(¢) =

{d (v, x)|degg(x) < 3}. Clearly havgd D, | < 2.

If ¢ (u,v’) € F, — D,, then letc = ¢. Else ifc'(u,v') € D,, then recolor edgev’ using a
color fromC—(S,,UD, ) to get a coloring: (Note that C—(S,,,,UD,))| > A+3—(A—1+2) =
2 and since/’ is a pendant vertex ity — {uu'} the recoloring is valid). Now i(u,v") ¢ F,,
then it a contradiction to Claif.6. Thusc(u,v’) € F, — D,,.

With respect to coloring, let ¢(u,v") = ¢(v,v;). Now there are at least four candidate
colors for the edgew since|F,, U F,| < A — 1. If none of them are valid then they all have
to be actively present ifi,,,, implying that|S,,,| > 4, a contradiction sincés,,,,| < 3. Thus
there exists a color valid for the edge, a contradiction to the assumption tliais a counter
example. O

Claim 7.8. deg(v) > 3. Thereforev does not belong t6'on figuration B2.

Proof. Suppose belongs taCon figuration B2. Let N(v) = {u, v, a} such thatleg(u) < 4
anddeg(vy) < 4. We also know fromClaim [7.7 thatdeg(u) > 3. Let N(u) = {x,y, v}, if
deg(u) = 3 and letN (u) = {z,y, z,v}, if deg(u) = 4. Now the following cases occur:

o |F,NE,| =2
Let F, N F, = {1,2}. Also letc(u,z) = c(v,a) = 1 ande(u,y) = c(v,v1) = 2.
Since|F, U F,| < 3, there are at leagk candidate colors for the edge:. If none of
them are valid then all those colors are actively present eithgy,inor S,,. Recalling
that|S,.] < A — 1 we can infer that there is at least one catore C' — (F, U F,)
that does not belong t8,,. Note that|S,,, U F, U F,| < 6 sincel|S,,,| < 3 and
|F, U F,| < 3. SinceA > 5, we haveC' — (S,,, U F, U F,) # (. Recolor the edge
vv; with the a colorg from C' — (S,,, U F, U F,) to get a coloring:. The coloringc
is valid because if a bichromatic cycle gets created due to recoloring then it has to be
a (g, 1) bichromatic cycle since(v,a) = 1, implying that there existed @, 3, vv;)
critical path with respect to coloring. Recall that colors was not valid for the edge
vu. Sinces ¢ S,.,, itimplies that colorg was actively present if,,. This implies that
there existed &1, (3, vu) critical path with respect to coloring. Therefore byFact 2.1,
there cannot exists@, 3, vv;) critical path with respect td, a contradiction. Thus the
coloringcis valid. Now inc we haveF, N F,, = {1} and«a ¢ S,,. Thus colorx is valid
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for the edgevu, a contradiction to the assumption tliais a counter example.

o |F,NFE,|=1.

Let £, N F, = {1}. Now if ¢(v,v;) € F, N F,, then let¢” = . Otherwise let
c(u,z) = c(v,a) = 1 andd (v,v1) = 4. If deg(u) < 3, then|F, U F,| = 3. Now there
are at leastA candidate colors for the edge:. If none of them are valid then all the
candidate colors are actively presentiify, a contradiction sinceS,,| < A — 1. Thus
there exists a valid color for the edge. Thusdeg(u) = 4 and|F, U F,| = 4. Let
c(u,y) = 2andc(u, z) = 3. There are at leagk — 1 candidate colors for the edge. If
none of them are valid then all the candidate colors are actively presépt andsS,,..,
implying thatS,, = S,. = C' —{1,2,3,4}. Now recolor edge.r using color4 to get a
coloringc”. Itis valid by Lemma[2.3sinceS,, N S,, = 0 (Note thatS,.,(¢) = {2, 3}).

In both cases we havg” (v, v;)} = F, N F,. If none of the colors are valid for the
edgevu, then all the candidate colors are actively presertt,in, implying thatS,,, =
C —{1,2,3,4}. SinceA > 5, we havelC' — {1,2,3,4}| > 8 —4 = 4. But|S,,,| < 3,

a contradiction. Thus there exists a color valid for the edgea contradiction to the
assumption thatr is a counter example.

In view of Claim 7.8 we havedeg(v) > 3. Thereforev belongs to configuration83,
B4 or B5. Now in view of Claim [7.7, we have the following observation:

Observation 7.9.deg(u) = 3. Let N(u) = {v, w, z}.
In view of C'laim 7.6, we have the following two cases:

case 1:|F, N F,| =2

Note that in this casé), C F,. LetF, = F, N F, = {1,2}. Letd (u, z) = 1 andd (u, w) = 2.

Claim 7.10. F,, € F.. ThereforeF” N F, # 0.

Proof. Suppose not. Then let(v,v;) = /(u,2z) = 1 andd'(v,v2) = d(u,w) = 2 (See the
statement oLemma 7.4for the naming convention of the neighbours®f Since|F,, U F, | <

A — 1, there are at least four candidate colors for the edgdf none of the candidate colors
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are valid for the edgeu, then we should hav&,,, ¢ C—(F,UF,)andsS,,, C C—(F,UF,)
since|S,,,| = 2 and|S,,,| = 2. Also S,,, N S,,, = 0. Note thatC' — (S,,, U F, U F,) # 0
since|F, U F,,| < A —1and|S,,, | = 2. Now assign a color fromy’ — (.S,,, U F,, U I}, to the
edgevv, to get a coloring. Recall thatS,,, ¢ C — (F, U F,) and thereforeS,,,, N S,,, = 0.
Thus by Lemma 2.3, the coloringe is valid. With respect to the coloring F,, N F, = {2}
and therefore if a candidate color is not valid for the edgeit has to be actively present in
Syu,- Leta € S,,,. Clearlya € C — (F, U F,) is a candidate color for the edge. Now
sincea ¢ S, (recall thatS,,, N S,,, = 0), color« is valid for the edgew, a contradiction to
the assumption that is a counter example. O

In view of Claim 7.1Q F!' N F, # () and therefore" # 0. It follows that vertexv does
not belong to configuratiol5. RecallingClaim 7.8, we infer that the vertex belongs to
either configuratiorB3 or B4. We take care of these two configurations separately below:

subcase 1.1v belongs to configurationB3.

Sincedeg(v) = 5, we have|F,| = 4. Let F,, = {1,2,3,4}. Recall that by Clain¥.10 we
haveF! N F, # (. Without loss of generality let' (u, z) = ¢(v,a) = 1 andd'(u, w) = 2.
Now there areA\ — 1 candidate colors for the edge. If none of them are valid then all these
candidate colors are actively present in at least ong,0&indS,,,. LetY = C —{1,2,3,4}.
We make the following claim:

Claim 7.11. With respect to any valid coloring of G — {uwv},Y = S,, andY = S,,,.

Proof. We use contradiction to prove the claim. Firstly we make the following subclaim:

subclaim7.11.1: With respect to any valid coloring of G — {uv}, one ofS,, or S, isY'.
Proof. Suppose not. Thexi # S, andY # S,,,. Note thatY| = A —1 while|S,.| < A-1
and|S,.,| < A — 1. Therefore there exist colors 3 € Y such thaix ¢ S,, and ¢ S,.,.
Note thatn # 3 since otherwise colar = 5 will be valid for the edgeu as there cannot exist
a(l,a,vu) or (2, a, vu) critical path with respect td. It follows that« is actively present in
Sww andg is actively present irb,.. Hence there exis, o, vu) and(1, 5, vu) critical paths.
Now recolor edge:z using colora to get a coloring”. The recoloring is valid since if there
is a bichromatic cycle then it has to bé@ 2) bichromatic cycle, implying that there existed
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a (2, o, uz) critical path inc, a contradiction in view of Fa@.1l as there already existed a
(2, o, vu) critical path. With respect to coloring, F, N F,, = {2} and therefore if a candidate
color is not valid for the edgeu, it has to be actively present #),,,. Now colors ¢ S,,, and
hence colors is valid for the edgeu, a contradiction to the assumption ti@atis a counter
example. O

With respect to any valid coloring of G — {uv}, in view of subclaim 7.11.1, letu’ €
{w, z} be such thabt,,, = Y. Let{u"} = {w, z} — {«'}. Now for contradiction assume that
Sw # Y. Then clearly there exists a colare Y such thaty ¢ ...

subclaim(7.11.2: With respect to any valid coloring of G — {uv}, if exactly one of,,, and

S.. i8Y, sayS,,, =Y, then all the colors o¥" are actively present i, andd (u,u') € F.

Proof. Recolor the edgew” with the colora to get a coloring”. Sincea ¢ S,.» anda is

not valid for the edgeu, color « is actively present irb,., i.e., with respect to coloring/,

there exists &y, a, vu) critical path, wherey = ¢/(u, v'). Thus byFact 2.1, there cannot exist

a (v, «,uu”) critical path and hence the coloring is valid for the edgew.”. With respect to
coloringc”, F, N F, = {2}. Now all theA — 2 colors fromY — {a} are candidates for the
edgevu. If any one of them is valid we are done. Thus none of them are valid and hence they
all have to be actively present ). Recalling that the colot was actively present i,

we infer that all the colors of” are in fact actively present ifi,, .

Now these colors will also be actively presentSp,, wherev’ € N(v) is such that
d(v,v") = d(u,u'). This implies thatS,,,| = |Y| = A — 1. Thereforev’ cannot bev,
or vy since|S,,, | = 2 and|S,,,| = 2 while A — 1 > 4. Thusv’ € N”(v) implying that
d(u,u') € F!. O

Recalling that for configuratio®3, |F”| = 2 and since € F, at least one of, 4 belongs
to F. Without loss of generality let € F. Now recolor edge:w’ using color3 to get a color-
ing d from ¢’. The coloringd is valid by Lemma 2.3 since{d(u,v”)} N Sy = {2} NY = 0.
With respect to the coloring we haveS,,, = Y andS,,» # Y. Thus bysubclaim 7.11.2,
d(u,u') € F/, a contradiction sincé(u,v') = 3 ¢ F'. Thus we havé” = S, andY = S,,,.

O

SinceY = S,, andY = S,.,, we can recolor edgez anduw using color fromF, (Recall
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that with respect to configuratiaB3, | )| = 2) to get a new valid coloring. The coloringc is
valid by Lemmal2.3sinceF! NS, = F'!NY =0 andF/ N S,, = F'NY = (). This reduces
the situation taF, C F, a contradiction t@'laim 7.1Q

subcase 1.2v belongs to configuration34.

We havedeg(v) = 6 andF) = {¢/(v,a)}. Therefore in view of ClainY.1( ¢/(v, a) has to
belong toF,. Let F, = {1,2,3,4,5}. Without loss of generality let' (u, w) = ¢(v,v;) = 2
andd(u, z) = d(v,a) = 1. Now there areA — 2 candidate colors for the edge. If none
of them are valid then all these candidate colors are actively present in at least$neaofl
Suw. Let X = C —{1,2,3,4,5).

Clam7.12. X C S,..

Proof. Suppose not. Then let be a color such that € X — S,.. This implies thatx is
actively present irb,,,. Hence there exists @, a, vu) critical path since’(u,w) = 2. Now
recolor edgeuz using colora to get a coloring:”. The recoloring is valid since if there is
a bichromatic cycle then it has to be(a, 2) bichromatic cycle, implying that there existed
a (2, «, uz) critical path inc, a contradiction in view of Fa@.1l as there already existed a
(2, a, vu) critical path. Now with respect to coloring, F, N F,, = {2} and therefore if none
of the colors inX — {«} is valid for the edgeu, they all should be actively present i,,.
Recalling that colory was actively present i, we have all the colors ok actively present
in S,, and hence ir5,,, implying that|S,,,| > |X| = A —2 > 3, a contradiction since
|Swe, | = 2. Thus there exists a color valid for the edge a contradiction to the assumption
thatG is a counter example. O

Claim 7.13. X C S,,.

Proof. Suppose not. Then let ¢ S,,, and leta be a color such that € X — S,,,. Recolor

the edgeuw using the color. It is easy to see (by a similar argument used in the proof of

Claim7.12) that¢” is valid and all the colors oK are actively present i, and hence irb,,,.
Since|X| = A — 2 and|S,,| < A — 1, we have|S,, — X| < 1. If S,, # X, then

the singleton sef,, — X has to be a subset ¢, 3,4,5} sincel ¢ S,,. Without loss of

generality letS,, — X = {2} (Reader may note thd®, 3,4,5} = F, and these four colors

play symmetric roles ir” and therefore we need to argue with respect to only one of them).
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Recall thate” (v, v;) = (v,v1) = 2 and|S,,,| = 2. Of the colors3, 4 and5 let3 ¢ S,,,.
Also let ¢’ (v,v2) = 3. Now delete the color on the edge, and recolor the edgeu using
color 3 to get a coloringi. We claim that the coloring is valid: If S,, = X, then clearly it is
valid by Lemma 2.3 sinceS,, N S,, = (. Otherwise we hav§,, — X = {2} and if there is a
bichromatic cycle with respect to the coloridgit has to be g2, 3) bichromatic cycle. Since
d(v,v;) = 2, it means thas € S,,,, a contradiction to our assumption. Thus the coloring
valid.

Now with respect to coloring, we havei(u, z) = 1, d(u, w) = a, d(v,a) = 3, d(v,v,) =
2, d(v,v3) = 4 andd(v,v4) = 5. Edgesvu andvv, are uncolored. Now leK’ = C —
{2,3,4,5}. Note that X’| > 5 sinceA > 6. We show below that there exists a colorXf
that is valid for the edgeuv,:

e S, C X'. Now any color inX’ — S, is valid for the edgev; by Lemma 2.3

e |S,,, N X'| = 1. In this case exactly one color, séy {2, 4,5} is present inS,,, since
3 & Su, (This is because (v, v2) = 3). Now there are at least four candidate colors for
the edgerv, since|F,UF,| < 4+2—1 =5 and there are atleadt+3 > deg(v)+3 =
6+ 3 = 9 colorsinC. If none of the candidate colors are valid theffay) bichromatic
cycle should form for each € X' — S,,,. Sinced € {2,4,5}, we haved = d(v,v,)
for j = 1, 3 or4. It means that each of th@, v) bichromatic cycle should contain the
edgevv; and thusX’ — S, C Sy, But| X’ — S, >5—241>4and|S,,,| =2,a
contradiction. Thus at least one color will be valid for the edge

e S,,, N X" = (). Now all the colors inX’ are candidates for the edge,. If none of them

are valid then all these candidate colors have to form bichromatic cycles with at least

one of the colors irb,,,, N F,,. Now sincec” (v, vy) = 3, color3 ¢ S,,,(d) and therefore
3 is not involved in any of these bichromatic cycles. Also sifgg,| = 2, exactly two
of the colors from{2, 4, 5} and hence exactly two of the edges fr¢mv,, vvs, vu,} are
involved in these bichromatic cycles. But we know th&f,, | = |Syu| = [Sww,| = 2.
It follows that at most four bichromatic cycles can be formed. Bt > 5 and thus at
least one color will be valid for the edges.

Let 5 € X' be avalid color fowwv,. Color the edgew, using/ to get a new coloring’. Now:

o If g € C—{1,2,3,4,5,a}, thenF, N F, = () with respect tal’, a contradiction to
Claim17.6.
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e If 5 € {1,a}, then there are at least three candidate colors for the@dgmceA > 6.
Moreover we havd’, N F,, = {$}. If none of these three candidate colors are valid for
the edgeu, then all of them have to be actively presensjy,, implying that|S,,,| > 3,

a contradiction sinceS,,,| = 2. Therefore at least one of the three candidate colors is
valid for the edgeu.

Thus we have a valid color for edge:, a contradiction to the assumption thGtis a
counter example. O

In view of Claim [7.12, Claim [7.13and from|S,.| , |Suw| < A —1and|X| = A —2,
it is easy to see thd{S,. U S,,) — X| < 2. Thus recalling thaB, 4,5 ¢ X, we infer that
{3,4,5} — (Su2USuw) # 0. Now recolor the edgez using a colop € {3,4,5} — (Sy. USuw)-
Clearly . is a candidate for the edge sinced'(u,w) = 2 andu ¢ S,.. Moreovery is valid
for uz since if otherwise &2, ;1) bichromatic cycle has to be formed containing, implying
that, € S..,, a contradiction. This reduces the situatiorfipC F, a contradiction t@'laim
/.10

case2:)|F,NF,|=1

Recall that byClaim [7.8 and Claim [7.7, v belongs to configuration®3, B4 or B5 and
deg(u) = 3. As beforeN (u) = {v,w, z}. Also letF, N F,, = {1}.

Claim 7.14. With respect to any valid coloring & — {vu}, F, N F = (). This implies that
F,NF, CF/.

Proof. Suppose not. Then without loss of generalitydét, v;) = ¢/(u,z) = 1. Recalling
deg(u) = 3, |F,| < 2andthugF, UF,| < (A—-1)+2—1=A. Itfollows that there are
at least three candidate colors for the edge If none of the candidate colors are valid for
the edgevu, then all these candidate colors have to be actively presef), inimplying that
|Swe, | > 3, @ contradiction sincesS,,, | = 2. It follows that at least one of the three candidate
colors is valid for the edgeu, a contradiction to the assumption tliats a counter examplé.]

In view of Claim 7.14, F"(v) # () and therefore the vertexcannot belong to configuration
B5. We infer thaty has to belong to either configurati@s or B4. We take care of these two
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subcases separately below:

subcase 2.1v belongs to configurationB3.

Sincedeg(v) = 5, we have F,| = 4. Let F, UF, = {1,2,3,4,5}. By Claim7.14 we have
F,NE,={1} C F/ ={d(v,a),d(v,b)}. Without loss of generality let (u, z) = /(v,a) =
1. Also letd (u,w) = 2, d(v,b) = 3, ¢(v,v1) = 4 andd(v,vy) = 5. Since|F, U F,| = 5,
there areA — 2 candidate colors for the edge. If none of them are valid then there exists a
(1, o, vu) critical path for eachv € C — (F, U F,,) = C —{1,2,3,4,5}. Thus we have the
following observation:

Observation 7.15.With respect to the coloring, each color inC' — {1, 2, 3,4, 5} is actively
presentinS,. as well ass,,.

Claim 7.16.5,, = C —{1,3,4,5} and1,4,5 € Sy,.

Proof SinceC — {1,2,3,4,5} C S,. and|S,. — (C — {1,2,3,4,5})] < 1 we infer that
at most one of4, 5 can be present ity,.. Suppose one of, 5 € S,.. Without loss of
generality led € S,.. Now recolor edge:z using color5. It is valid by Lemma 2.3 since
SuzNS. = Su.N{2} = (. Thus we have reduced the situation{gN F’ = (), a contradiction
to Claim 7.14 Thus we have, 5 ¢ S,.. Recolor edge:z using color4 or 5. If any one of
them is valid then we will havé,, N F, # () with respect to this new coloring, a contradiction to
Claim 7.14. 1t follows that none of them are valid. That is, bichromatic cycles get formed due
to the recoloring. Clearly the bichromatic cycles have t¢bhd) and(2, 5) bichromatic cycles
sinced (u,w) = 2. Thus2 € S,, and4,5 € S,,,. Recalling thaC — {1,2,3,4,5} C S,, and
|Su:| < A —1we caninfer that,, = C — {1, 3,4,5}.

Now if 1 ¢ S,., then assign colot to edgeuw and the color to edgeuz. Clearly this
recoloring is valid byLemma[2.3sinceS., N S,. = {1} NC —{1,3,4,5} = 0. With respect
to the new coloringF,, N F, = {1,4} which reduces the situation tase 1. Thus we infer
thatl € S,,,. Therefore we havé, 4,5 € S,.,. O

Claim 7.17.|(C — {1,2,3,4,5}) — Suw| > 2.
Proof. Since|S,.,| < A — 1 there are at least four colors missing frdi,. Thus even if
colors2 and3 are missing front,,,, there should be at least two colorsGh— {1,2,3,4,5}
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that are absent i, sincel, 4,5 € S,,, by Claim 7.16 O

Now discard the color on the edge to obtain a partial coloring of G from ¢'.

Claim 7.18. With respect to coloring, Vo € C' — {1, 3,4,5}, there exists &1, a, vu) critical
path.

Proof. With respect to the coloring, there existed1, a, vu) critical path for alle € C'—(F,U

F,) =C—{1,2,3,4,5} by Observation|7.15 These critical paths remain unaltered when we
getd from . Thus these critical paths are present aiso. Thus it is enough to prove that there
exists(1, 2, vu) critical path with respect to the coloring Letd € (C'—{1,2,3,4,5}) — Suw-
Note thatd exists byClaim [7.17. Now colord is a candidate for the edgev sinced ¢ S,
andd(u, z) = 1. Recolor the edgew using colorf to get a coloring?. The coloringd’ is
valid since otherwise &l, #) bichromatic cycle has to be created due to the recoloring. This
means that there existed(& 0, uw) critical path with respect to coloring, a contradiction
by Fact2.1as there already existed & 6, vu) critical path with respect to the coloringby
Observation 7.15 Thus the coloring!’ is valid.

Now color 2 is a candidate for the edge:. If it is valid we get a valid coloring foG.
Thus it is not valid. This means that there existdl &2, vu) critical path with respect to the
coloring d’ sinceF, N F, = {1} with respect to the coloring’. Now it is easy to see that
this (1, 2, vu) critical path will also exist with respect to coloring Thus with respect to the
coloringd, Va € C' — {1, 3,4, 5}, there exists &1, «, vu) critical path. O

Observation 7.19.Let@Q = (C — {1,3,4,5}) — Syw. From Claim7.17 we know that(C' —
{1,2,3,4,5}) — Suw| > 2. Sinced (u, w) = 2 we have2 ¢ S,,,. From this we can infer that
2 € Q. Thus|Q| > 3.

Claim 7.20. There exists a coloy € @ such thaty is valid for the edgev; or vv,.
Proof.
Recall thatS,,,| = 2, |Sw,| = 2 and byObservation7.15 |Q| > 3.

o If S,,, C QorsS,, C Q. Withoutloss of generality lef,,, C Q. Let~ be a color in
@ — S..,,- Recolor edgev; using colory to get a coloring?. The coloringd’ is valid
by Lemma2.2asS,,, N S,,, = 0 sinceQ N F, = (.
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o If Sy, € QandS,,, ¢ Q. In this case, at most one color ¢hcan be inS,,, and the
same holds true fa$,,,,. Thus all the colors of) except for one are candidates for edge
vv; and all the colors of) except for one are candidates for edge. Since|Q| > 3,
we can infer that there exists a colpk @ which is a candidate for bothw; andwvws.

subclaim Color ~ is valid either for the edgew; or for the edgev,.

Proof. Recolorvv, using colory. If ~ is valid, we are done. If it is not valid, then
there has to be &y, ) bichromatic cycle getting formed, whefec F, — {d(v,v,)} =
F, — {4} = {1,3,5}. But this cannot be &y, 5) bichromatic cycle since ¢ S,,,
(recall thatd(v,v,) = (v,v3) = 5). Also this cannot be &y, 1) bichromatic cycle
since otherwise it implies that there exist$§lay, vv,) critical path with respect to the
coloringd, a contradiction in view of'act 2.1 as there already existg & v, vu) critical
path byClaim [7.1& Thus it has to be &3, ) bichromatic cycle, implying that there
existed &3, v, vv;) critical path with respect to the coloring

If v is not valid for the edgewv,; we recolor edgew, instead, using coloty to get a
coloringd’ form d. We claim that the coloring’ is valid. This is because there cannot
be a(v,4) bichromatic cycle since ¢ S,,, (recall thatd(v,v,) = ¢/(v,v1) = 4). Also
there cannot be &y, 1) bichromatic cycle since otherwise it implies that there exists a
(1,7, vve) critical path with respect to the coloring a contradiction in view of'act 2.1

as there already existy & v, vu) critical path byClaim 7.1& Finally there cannot be a
(3,) bichromatic cycle because this implies that there exist€dda vv,) critical path
with respect to the coloringd, a contradiction byF'act 2.1 since there already existed a
(3,7, vvy) critical path with respect to the coloring Thus the coloring!’ is valid. [

In view of Claim7.20, without loss of generality lef € @ be valid for the edgev;. Now
we recolor the edgev; using colory to get a coloring?'.

We claim that none of the colors i$},,, were altered in this recoloring. This is because if
they are altered therw; has to be an edge incident anand thus one of the end pointsaf;
has to bev. Sincev cannot bev, eitherv; should bew. But we know thatleg(v;) = 3. Recall
that1,4,5 € S,,, and thusieg(w) > 4. Thusv; cannot bev. Thus none of the colors ¢,
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are modified while getting’ from d. We infer thaty ¢ S,,, since@ N S,,, = 0. Thereforey
is a candidate for the edgev sinced’ (u, z) = 1. Now color the edgew using the colory to
get a coloring?”. If the coloringd” is valid, then we havé’, N F, = {1,~}. This reduces the
situation tocase 1.

On the other hand if the coloring’ is not valid then there has to be a bichromatic cycle
formed due to the recoloring of edge. Sinced”(u, z) = 1, it has to be 41, ) bichromatic
cycle. Recall that there existed(& ~, vu) critical path with respect to the coloringg Note
that to getd” from d we have only recolored two edges namely anduw, both with color
~. Clearly these recolorings cannot break they, vu) critical path that existed id, but only
can extend it. Thus we can infer thatdfi the (1, ~) bichromatic cycle passes througland
hence through the edges andvv;. Now recolor edgea using color4 to get a coloring:.
Recall thatS,, = C — {1,3,4,5} by Claim[7.18and S,, = F, — {¢"(v,a)} = {3,5,7}.
Therefore color is indeed a candidate for edge. Note that by recoloringa using color
4, we have broken thél, ) bichromatic cycle that existed i#’. Now we claim that the
coloring ¢ is valid. Note thatS,, N S., = S, N {3,5,7} = {7}. If a bichromatic cycle
gets formed due to this recoloring then it has to(bey) bichromatic cycle, implying that
4 € Sy BUt Sy, (c) = Sy (d') = Sy, (d) and4 ¢ S, (d) sinced(v,v;) = 4. Thus
4 ¢ S, (c), a contradiction. Thus the coloringis valid. With respect to the coloring we
haveF, N F, = {v} C F/, a contradiction t@'laim 7.14

subcase 2.2v belongs to configuration54.

We havedeg(v) = 6 and thereforeF,| = 5. Moreover|F)'| = 1 and|F)| = 4. By Claim
714 F,n F, = {1} C F”. Without loss of generality let'(u,z) = ¢(v,a) = 1. Also
let c(u,w) = 2, F) = {3,4,5,6} andZ = {3,4,5,6}. There areA — 3 candidate colors
for the edgevu. If none of them are valid then there exist «, vu) critical path for each
aeC—(F,UF,)=C-1{1,2,3,4,5,6}. Thus we have the following observation:

Observation 7.21.With respect to the coloring, each colorinC' —{1,2, 3,4, 5,6} is actively
present inS,. as well assS,,.

Claim 7.22.S,, > C —{1,3,4,5,6} and1 € S,,,. Also at least three of the colors frof
are present ins,,,.
Proof. As we have seen above— {1,2,3,4,5,6} C S,.. Suppose ¢ S,.. Note that every
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color inC' — (S,. U S,,) is a candidate forz. Now S,, = {¢(u,w)} = {2}. Moreover
|Su.] < A — 1 and thusS,, can have at most two more colors other than thos€'in
{1,2,3,4,5,6}. From this we can infer that at least two of the color<Zimre candidates for
the edgeuz. They are also valid by.emma2.3sinceS,, N S,, = S.. N {2} = 0. Thus we
can reduce the situation 6, N F! # (), by assigning one of the valid colors fromto uz,
thereby getting a contradiction t6la:m [7.14 Thus we infer tha2 € S,.. Therefore we get
Sy 2 C —{1,3,4,5,6}. Since|S,.| <A —1and|C —{1,3,4,5,6}| = A — 2 we can infer
that|Z N S,.| < 1.

If any one of the colors i¥ — S,,, is valid for the edge:z, then it will reduce the situation
to F,N F! # (), a contradiction t@'laim [7.14 Thus none of these colors are valid for the edge
uz. Therefore there should be bichromatic cycles getting formed when we try to recolor edge
uz using any of these colors. These bichromatic cycles have {@,hg bichromatic cycles
for each colonu € Z — S, sinced (u,w) = 2. Thus we can infer that at least three of the
colors fromZ are present ity,,, since|Z — S,.| >4 —1=3.

Now if 1 ¢ S, then assign colot to edgeuww and a coloru € Z — S, to edgeuz.
Clearly this recoloring is valid by.emma2.3sinceS,,NS,. = {1}NS,.. =0 (1 ¢ S,. since
d(u, z) = 1). With respect to the new coloring,, N F,, = {1, u} which reduces the situation
to case 1. Thus we infer that € S,,,,. O

Claim 7.23.|(C' — {1,2,3,4,5,6}) — S..| > 2.

Proof. Since|S,.,| < A —1, we haveC' — S,,,| > 4. Now since|Z N S,,,| > 3 andl € S,
{1,2,3,4,5,6} N Syuy| > 4. It follows that|(C' — S..,) N {1,2,3,4,5,6}] < 2and the Claim
follows. O

Now discard the color on the edge to obtain a partial coloring of G from ¢'.

Claim 7.24. With respect to coloringl, Voo € C — {1, 3,4,5,6}, there exists g1, o, vu)
critical path and thug” — {1,3,4,5,6} C S,,.

Proof. With respect to the coloring/, there existed &1, «, vu) critical path for eachy €
C—-(F,UF,) = C —1{1,2,3,4,5,6} by Observation 7.21. These critical paths remain
unaltered when we get from ¢/. Thus these critical paths are present/ialso. Thus it is
enough to prove that there exist§1a2, vu) critical path with respect to the coloring Let

0 e (C—{1,2,3,4,5,6})— Su,. Note that) exists byClaim 7.23 Now coloré is a candidate
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for the edgeuw sincef ¢ S, andd(u, z) = 1. Recolor the edgew using colorf to get a
coloringd’. The coloringd’ is valid since otherwise @, #) bichromatic cycle has to be created
due to the recoloring. This means that there existétl & ww) critical path with respect to
coloring ¢, a contradiction byF'act 2.1 as there already existed & 60, vu) critical path with
respect to the coloring by Observation 7.21. Thus the coloring!’ is valid.

Now color 2 is a candidate for the edge:. If it is valid we get a valid coloring foiG.
Thus it is not valid. This means that there existd &, vu) critical path with respect to the
coloring d’ sinceF,, N F,, = {1} with respect to the coloring’. Now it is easy to see that
this (1, 2, vu) critical path will also exist with respect to coloring Thus with respect to the
coloringd, Va € C' —{1,3,4,5,6}, there exists &1, a, vu) critical path. O

Observation 7.25. LetQ = (C' — {1,3,4,5,6}) — Su. From Claim7.23 we know that
|(C'—{1,2,3,4,5,6}) — Suw| > 2. Sinced (u,w) = 2 we have2 ¢ S,,,. From this we can
infer that2 € ). Thus|@| > 3.

RecallthatsS,,,| = 2, fori € {1,2,3,4} and byObservation7.25 |Q| > 3. We know that
Sva 2 C—{1,3,4,5,6} by Claim[7.24 Since|C' —{1,3,4,5,6}| = A—2and|S,,| < A—1
we havelZ N S| = [{3,4,5,6} NS,,| < 1. We make the following assumption:

Assumption 7.26. If Z N S,, # 0, let{a} = Z N S,, and letd(v,v;) = «, wheret €
{1,2,3,4}. Letpg € (Z — {a}) — Sp,. If ZN S,, = 0, then lets be any color inZ.

We now plan to recolor one of the edges{imn;, vv,, vus, vus} UsSing a specially selected
colory € Q. After this we will also use the same colgto recolor edge.w, with the intention
of reducing the situation teuse 1. Below we give the recoloring procedure for the rest of the
proof starting from the current coloringin 3 steps. The final coloringof G — {vu} that we
obtain at the end aftep3 will give the required contradiction.

Stepl: With respect to the coloringd,

(i) If one of the edgesvu;, for i € {1,2,3,4} is such thatS,,, C @, then recolor that
edge with any colory € @ — S,,,. We call the edge that we chose to recolor as

(v, vp).

(i) If Vi € {1,2,3,4}, Su; € Q, then we select an edgev,, wheret’ € {1,2, 3,4} such
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that d(v,vy) = [ (SeeAssumption 7.2€). Now recolor the edgevv,, with a suitably
selected (see the proof af’'laim [7.27) color in @ — S,

The resulting coloring after performing Stepl is namedd’.

Claim 7.27. There exists a coloy € () such that the coloring’ obtained afteiStep1 is valid.
Proof. At the beginning ofStepl, we had the following possible cases:

(i) One of the edgesv;, for i € {1,2,3,4} is such thatS,,, C @:
Let v be a color inQ — S,,,. Recolor edgewv; using colory to get a coloring?’. The
coloringd’ is valid by Lemma2.2asS,,, N S,,, = 0 since@ N F,, = ().

(i) Sw,; € Q,foreachi e {1,2,3,4}:
Let ¢’ be as defined ibtepl. Clearly all the colors i) — S,,,, are candidates for
vuy since@ N F, = (. Note that sinces,,,, ¢ Q we havelQ N S,,,| < 1 and therefore
|Q—S.,,| > 2. Ifany one of the candidate colors is valid for the edgg, the statement
of the Claim is obviously true. On the other hand if none of them are valid, then there has
to be a(, 8) bichromatic cycle getting formed, for soriec F,—{d(v,vy)} = F,—{3}
when we try to recolor edgevy using colory, for eachy € @ — S,,,. Note thatd # 1
because if &+, 1) bichromatic cycle gets formed, then there has to k&,g, vvy)
critical path with respect to the coloring a contradiction in view of'act 2.1 as there
already exists &1, v, vu) critical path byClaim 7.24 Thusé € F! — {d(v,vv)} since
F} = {1}. Therefore we hav| F, — {d(v,vy)}) N Sy, | > 1. We have the following
cases:

— |(F), = {d(v,v¢)}) N Spw,| = 1. Let Sy, N (F, — {d(v,vy)}) = d(v,), for
v € {vy,v9,u3,v4} — {vv}. Thus all the candidate colors of,, namely all the
colors of@ — S, should form bichromatic cycles passing through the edde
implying that@ — S,,, C S.,s. But|Q — S| > 2 and|S,,| = 2. Thus
Sew = Q — Sy, € @, acontradiction.

— |(F}, —{d(v,v¢)}) N Sy, | = 2: This means thas,,,, C F; and therefore we have
QN Sy, = 0. Thus|Q — S, | = |Q| > 3. Therefore there are at least three candi-
date colors for the edge,.. Let S, N(F, —{d(v,vy)}) = {d(v,v"),d(v,v")}, for
v, v" € {v1,va,v3,u4} — {vp}. Since for each candidate color we have a bichro-
matic cycle, we can infer that there are at least three bichromatic cycles, each of
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them passing through either’ or vv”. Thus at least two bichromatic cycles have
to pass through one ef’ andvv”. But since|S,,/| = 2 and|S,,»| = 2, we can
infer that eitherS,,, C Q or S,,» C @, a contradiction.

Step2: Let~ be the color which was used to recolor the edgev, in Stepl. Now recolor
edgeuw with color ~ to get a coloringd”.

Claim 7.28. The coloringd” is proper.

Proof. We claim that none of the colors it},,, were altered irbtepl. This is because if they
are altered then the edge,. should be incident om» and thus one of the end points @f,,
wheret’ € {1,2,3,4}, has to bew. Sincev cannot bew, v, should bew. But we know
thatdeg(v;) = 3. Recall thaZ N S,,,| > 3 by Claim [7.22and thusS,,,| > 3. Therefore
deg(w) > 4. Thusv, cannot bew. Thus none of the colors df,,, are modified while getting
d' from d. Recall thatQ) = (C' — {1,3,4,5,6}) — S, and thusy ¢ S,,,. Thereforey is a
candidate for the edgew sinced(u, z) = 1. Thus the coloring!” is proper. O

If the coloringd” is valid, then we havé,, N F, = {1,~} for a valid coloring ofG — {vu}.
This reduces the situation tase 1. Thus coloringd” is not valid. Since the coloring” is
not valid, there has to be a bichromatic cycle formed due to the recoloring ofuiedg8ince
d"(u,z) = 1, it has to be &1,~) bichromatic cycle. Recall that there existedla~, vu)
critical path with respect to the coloringby Claim [7.24 Note that to getl” from d we have
only recolored two edges namely, anduw, both with colory. Clearly these recolorings
cannot break thél, v, vu) critical path that existed id, but can only extend it. Thus we can
infer that ind” the (1,~) bichromatic cycle passes througltand hence through the edges
andvvy. Also note that this can happen only when we have S,,,. ThusS,.,, Z Q. It
means that substgp:) of Stepl was executed; and the color on, with respect to coloring
d wasp (from Assumption[7.2€). We break the€1, v) bichromatic cycle as follows:

Step3: Recolor the edgea with color S (see inAssumption 7.2€) to get a coloringc.



96 Chapter 7. Triangle Free Planar Graphs

Claim 7.29. The coloringc is valid.

Proof. Recall byAssumption|7.26thatj ¢ S,,. Also clearlyg ¢ F,(d”) since we recolored
vuy by a colory € @ to getd” form d (3 # v sincefs € F,(d) and F,(d) N Q = 0).
Therefore color3 is a candidate for edgez. Note that by recoloringa using colors, we
have broken thél, ) bichromatic cycle that existed uf’. We claim that the coloring is
valid. Otherwise there has to be a bichromatic cycle involyirand a color inS,, N S,,. But
Saw = (Z—{B})U{v} = ({3,4,5,6} —{B})U{~}. Since with respect td’ there was &1, )
bichromatic cycle passing through the edgesndd” (v, a) = 1, we havey € S,, N S,,. But
there cannot be @, ) bichromatic cycle getting formed insince such a cycle should contain
edgevvy and thus@ € S,,,. ButS,,,(c) = S, (d") = Suw,(d) andg ¢ S, (d) since
d(v,vy) = [. Thusg ¢ S,,,(c), a contradiction. Thus there cannot bé&sa~y) bichromatic
cycle.

Thus if the coloringe is not valid then there has to be a bichromatic cycle involving
and one of the colors i@ — {3} N S,.. We know by Assumption 7.26thatZ N S,, = a.
Thus it has to be &3, «) bichromatic cycle. Since(v,v;) = d(v,v;) = «, this bichromatic
cycle contains the edge), and hencej € S,,,, a contradiction to the way was selected in
Assumption [7.26 Thus there cannot be (@, «) bichromatic cycle. Thus the coloringis
valid. O

With respect to the coloring we haveF, N F,, = {y} C F, a contradiction t@’'/aim 7.14

7.2.2 There exists no vertex that belongs to one of the configurations
B2, B3, B4 or B5

This means that there exists a vertethat belongs to configuratiof1, i.e.,deg(v) = 2. Let

Q ={u eV : deg(u) = 2}. First we claim that) is an independent set . Otherwise let
u',u € @ be suchthatu,u') € E(G). Now sinceG is a minimum counter examplé;,— {uu’}

is acyclically edge colorable usinly+ 3 colors. Letc’ be a valid coloring of7 — {uu'}. Now

if £, N F, = 0, then there aré\ + 3 — 2 = A + 1, candidate colors for the edge/’. Since

Suw N Sy = 0, by Lemma 2.3, all the candidate colors are valid for the edgé. On the
other hand if £, N Fy| = 1, then there ard + 3 — 1 = A + 2 candidate colors for the edge
wu'. Let N(u) = {«/,u"}. If none of them are valid then all those candidate colors have to be
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actively present irb,,», implying that|S,.~| > A + 2, a contradiction SinceS,,.»| < A — 1.
Thus there exists a valid coloring 6f, a contradiction to the assumption tl@ats a counter
example. We infer thap is an independent set (.

Now delete all the vertices iy from G to get a graph’. Clearly the graphG’ has at
most2|V (G’)| — 1 edges sincé) is an independent set. It follows byemma 7.4 that there
should be a vertex’ in G’ such that’ is the pivot of one of the configurationsl — B5,
say B’ = {v'} U N (v'). But with respect to graplr, {v'} U Ng/(v') did not form any
of the configuration®B1 — B5. This means that the degree of at least one of the vertices in
{v'} U N/ (v') should have got decreased by the removal)dfom G. Let P be the set of
vertices in{v'} U N¢ (v') whose degrees got reduced due to the removg) &bom G, i.e.,
P={ze{v}UNg):dege(z) < dega(2)}.

For a vertexx € V(G), let M{i(x) = {u € Ng(x) : degg(u) > 3} and M{(xz) =
Ne(z) — M{(x). Note that in all the configurations definedlamma 7.4, the main criteria
which characterizes each configuration is the degree of the pivand the degrees of the
vertices inN’(v’). We make the following claim:

Claim 7.30. There exists a vertexin P such that A//.(z)| < 3.

Proof. Itis easy to see that//,(z) C N¢ (z). If there exists a vertex ii¥, whose degree is at
most3, sayz, then we haveM/i(z)| < 3. Thus we can assume that the degree of any vertex
in Pis at leastl.

Now suppose the pivot vertex is in P. Then letx = ¢'. Itis clear that’ has to be in
one of the configuratio®33 — B5. In any of these configurations there can be at most two
neighbours with degree greater thanNote that in this case all the degree 3 neighbours of
x =" in G’ are of degred in G also since otherwis® will contain a vertex of degree at most
3, a contradiction. Thus we hay#//.(z)| < 2.

The only remaining case is when ¢ P. Since the degree aof has not changed and
{v'} U N¢(v') was not in any configuration i¥, it means that one of the vertex ¥ (v') has
had its degree decreased. We call that vertex.aSince the degree of any vertex inhis at
least4, dege/(x) > 4. Since we can have degree4 vertex in N'(v') only if {v'} U Ng(v')
forms a configuratiorB2, we infer thatdeg./ (x) = 4. Moreoverdege (v') = degg(v') = 3.
Thus we haveM/.(z)| < |[Ng(z) —{v'}| <4—-1=3.

Thus we haveM/.(z)| < 3.
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In G, lety be a two degree neighbour of vertex selected inClaim 7.30- such that
N(y) = {z,vy'}. Now by inductionG — {xy} is acyclically edge colorable usiny-+ 3 colors.
Let ¢’ be a valid coloring of7 — {xy}. With respect to the coloring let F.(¢) = {/(z, 2)|z €
M'(x)}yandF! () ={d(x,z)|]z € M"(x)}i.e.,F! =F, — F..

Now if ¢(y,y') ¢ F, we are done as there are at least three candidate colors which are
also valid byLemma 2.2 We know byClaim 7.30that |F”| < 3. If ¢/(y,y/) € F., then let
c = c. Elseifd(y,y') € F, then recolor edggy’ using a color fromC' — (S, U F) to
get a coloring: (Note that|C' — (S, U F))| > A+3—- (A —-1+3) = 1andsincey is a
pendant vertex idi — {zy} the recoloring is valid). Now it(y,y’) ¢ F the proof is already
discussed. Thusy,y') € F..

With respect to coloring:, leta € M’(x) be such that(z,a) = ¢(y,y') = 1. Now
if none of the candidate colors i — (F, U F,) are valid for the edgey, then all those
candidate colors have to be actively present.ip, implying that|S,,| > |C — (F, U F,)| >
A+3—-(A—-1+1-1)=4,acontradiction sincesS,,| < 2 (Recall thata € M'(x) and
deg(a) < 3). Thus we have a valid color for the edge, a contradiction to the assumption
thatG is a counter example.

|



Chapter 8
Lower Bounds and Dense Graphs

In this chapter lets look at the lower bounds &(G). We also give exact bound fdt, ,,.

8.1 Previous Results

By Vizing’s theorem, we hava < \/'(G) < A+ 1(seelL8] for proof). Since any acyclic edge
coloring is also proper, we havé&(G) > x'(G) > A. There are graphs which requite+ 1

colors to be properly colored. A natural questions that comes to mind is to ask if this bound
(A + 1) the best possible lower bound for acyclic edge chromatic number also. We will soon
see that the bound could be slightly improved. We start with the following claim:

Claim 8.1. If G is ad-regular graph, then/'(G) > d + 1.

Proof. The proof is by contradiction. Suppo&ecan be acyclically colored using ondicol-

ors. Choose any two colors, sayand . Now start from a vertex with an edge colored

and trace théa, ) bichromatic path. Now since both the coler&ind5 are available at each
vertex and the graph is finite, the bichromatic path should return to the starting vertex thus
completing a bichromatic cycle. This is a contradiction to the fact@hasas acyclically edge
colored usingi colors. O

By Claim8.1, we get infinite classes of graphs which require at I&ast1 colors. Can we
better this? The following claim does that:

Claim 8.2. a/(Ka,) > 2n+1 = A+ 2.

99
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Proof. The proof is by contradiction. Suppo$&,, can be acyclically colored using ondy
colors. We know that any colors can cover onlgdges (perfect matching). There cannot be
two color classes withh edges each since they would induce a bichromatic cycle. Thus any
other color class than the first one can have anly 1 edges. Now if we cunt the number of
edges covered, itwillbe 4+ (2n —1)(n — 1) = n(2n — 1) — (n — 1). But the number of edges

in K5, = n(2n — 1). Thus there are at leagt — 1) edges which does not belong to any color
class, a contradiction. OJ

If we observe the proof carefully, we will see that even the last color clas$rhasl)
edges. This means that even if we delete @ny 2) edges fromks,,, it would require2n + 1
colors to be acyclically edge colored.

Alon, Sudakov and Zaks$/[ conjectured that complete graphs of even order are the only
regular graphs which requir®+2 colors to be acyclically edge colored. $&fil and Wormald
[36] supported the statement by showing that the acyclic edge chromatic number of a random
d-regular graph is asymptotically almost surely equal to 1 (whend > 2). In this chapter
we show that this is not true in general.

8.2 Theorems on Dense Regular Graphs

Theorem 8.3.Let GG be a d-regular graph witl2n vertices andl > n, thend'(G) > d+ 2 =
A(G) +2.
Proof. Observe that two different color classes cannot haeelges each, since that will lead
to a bichromatic cycle. Therefore at most one color class can/hadges while all other color
classes can have at mast 1 edges. Thus the number of edges in the unioA@¥)+1 = d+1
color classes is at most+ d(n — 1) < dn, whend > n (Note that dn is the total number of
edges in&). ThusG needs at least one more color. Tht&7) > d + 2 = A(G) + 2.

[

Remark: Itis clear from the proof that if. + d(n — 1) + = < dn then even after removing
edges from the given graph, the resulting graph still would regl##2 colors to be acyclically
edge colored.
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Theorem 8.4. For any d and n such thatdn is even and! > 5,n > 2d + 3, there exists a
connectedi-regular graphs that requireg + 2 colors to be acyclically edge colored.
Proof. If d is odd, letG’ = K,4,,. Else ifd is even letG’ be the complement of a perfect
matching ond + 2 vertices. LetH be anyd-regular graph onV = n — n’ vertices. Now
remove an edgéu, a’) from G' and an edgéb, b') from H. Now connect to b anda’ to b’
to create al-regular graphG. Clearly G requiresd + 2 colors to be acyclically edge colored
since otherwise it would mean th@t — {(a, a’)} is d + 1 colorable, a contradiction in view of
the Remark following Theorem 1, far > 5.

[

8.3 Complete Bipartite Graphs

8.3.1 Lower Bound for Complete Bipartite Graphs

Complete bipartite graphs offer a interesting case since they haven. Observe that the
counting argument in Theorefh3 fails. We deal with this case in this section. Before going
to the Theorem, let us look at a Lemma which helps us in the proof.

Lemma 8.5.1f n is even, ther,, ,, does not contain three disjoint perfect matchidds, M-,
M3 such that)M; U M, forms a hamiltonian cycle far, j € {1,2,3} andi # j.
Proof: Observe that a perfect matchingsf, ,, corresponds to a permutation{f, 2, ..., n}.
Let the perfect matching/; correspond to permutatiarn. Without loss of generality, we can
assume that, is the identity permutation by renumbering the vertices of one sid€,of.
Supposek,, , contains three perfect matching$,, M,, M; such that)/; U M; forms a
hamiltonian cycle foi, j € {1,2,3} andi # ;.
Now we study the permutatio;rfle. Sincel; U M; induces a hamiltonian cycle i,, ,,,
it is easy to see that the smallést 1 such that(w; '7;)!(1) = 1 equalsn. It follows that,
in the cycle structure ofr; 'r;, there exists exactly one cycle and this cycle is of length
The sign of a permutation is defined asyn(w) = (—1)* , wherek is the number of even
cycles in the cycle structure of the permutationRecalling that: is even, we have observe
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the following:
Observation 8.6.sign(r; 'm;) = —1fori,j € {1,2,3} andi # j.

Now with respect tor; '7;, takingm; = m; (the identity permutation) and; = m, (or 73),
we infer thatsign(m,) = —1 andsign(ms) = —1. Now sign(m, '73) = sign(m, ') sign(ms) =
(-1)(-1) = 1, a contradiction in view aDbservation 8.€.

Now we obtain the lower bound for complete bipartite graplis (, whenn is odd) in the
following theorem:

Theorem 8.7.d/(K,,,,) > n+2 = A+ 2, when nis odd.

Proof. Sincek,, is a regular graphy’(K,,,,) > A+ 1 = n+ 1. Suppose: + 1 colors are
sufficient. This can be achieved only in the following way: One color class contaguges
and the remaining color classes contair- 1 edges each. Let be the color class that has
n edges. Thus colar is present at every vertex on each sidleand B. Any other color is
missing at exactly one vertex on each side.

Observation 8.8. Letd # « be a color class. The subgraph induced by color clagsasd

« contains2n — 1 edges and since there are no bichromatic cycles, the subgraph induced is a
hamiltonian path. We call this afiy, #) hamiltonian path.

Observation 8.9.Let#;, andé, be color classes with — 1 edges each. The subgraph induced
by color classe®, andf, contains2n — 2 edges. Since there are no bichromatic cycles, the
subgraph induced consists of exactly two paths.

Note that there is a unique color missing at each vertex on each sidg,ofLet m(u) be
the color missing at vertex. Fora; € A andb, € B, letm(a;) = m(b,) = (. Let the color
of the edg€a,, b;) = . Clearlyy # « since otherwise there cannot béaa 3) hamiltonian
path, a contradiction t@bservation 8.8 Fora; € A andb, € B, letm(ay) = m(bs) = 7. Its
clear thata; # a, andb, # by. Consider the subgraph induced by the cof@end~. In view
of Observation 8.9 it consists of exactly two paths. One of them is the single €dgée, ).
The other path has lengthh — 3 and hasi, andb, as end points.

Now we construct &, ,.; from the abovey,, ,, by adding a new vertex,,_; to sideA
and a new vertex,, ., to sideB. Now foru € B color each edgéu,, .1, ) by the colorm(u)
and forv € A color each edgéb,, 1, v) by the colorm(v). Assign the color to the edge
(any1,bny1). Clearly the coloring thus obtained is a proper coloring.
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Now we know that there existed(a;, 5) hamiltonian path i, ,, with a; andb, as end
points. Recalling that:(a;) = m(b;) = 3, we havecolor(a,1,b1) = color(b,y1,a1) = (.
It is easy to see that i, 1,41 this path along with the edg€s,, b,+1), (by+1,an+1) and
(an+1,b1) forms a(ca, 3) hamiltonian cycle. In a similar way, fary, v) hamiltonian path that
existed ink,, ,, we can see that i, .1, we have a corresponding, ) hamiltonian
cycle.

Recall that there was @, v) bichromatic path starting from, and ending ab, in K, ..
In the K, 11,41 We created, we hav&(as, a,+1) = v, c(a1,bp1) = B, c(aps1,b1) = B
andc(a,+1,b2) = . Thus the abovég, v) bichromatic path ink, ,, along with the edges
(ag,bpi1)s (bnst,a1), (a1,b1), (b1, any1), (ans1,be) in that order forms &/, ) bichromatic
hamiltonian cycle. Thus we have 3 perfect matchings induced by the color ctassesd~y
whose pairwise union gives rise to hamiltonian cycle&jn ; ,,+1, a contradiction td.emma
8.5sincen + 1is even.

|

8.3.2 Exact Bound fork,,

Theorem 8.10.¢/(K,,) < p+2 = A + 2, whenp is an odd prime. By Theore®7, this
implies thata' (K, ,) =p+2=A+2.

Proof LetA = {0,1,...,p—1}andB = {0,1,...,p — 1}. Letmg,m,...,m—1 be the
permutation defined by; : « — (a +¢) (mod p). Let M; be the perfect matching corre-
sponding to the permutatian. It is easy to verify that if # j, then)M; N M; = (). Now we
claim the following:

Claim 8.11. If i # j, thenM; U M; forms a Hamiltonian cycle (i.eM,, M, ... M,_, form
perfect 1-factorization).

Proof. First note that the union of any two perfect matchings forms a collection of disjoint cy-
cles. Suppose two matching$; and;, (i > j) are such that a cycle of leng#h < 2p gets
formed by the edges dff; U M/; (Recall that all cycles are of even length/i ,,). Without loss

of generality let this cycle contain the vertexc A. Itis easy to see tha@frj_lm)k(a) = a. Not-

ing that(m; 'm;)(a) = a+i—j (mod p), we have(m; 'm;)*(a) = a+ki—kj = a+k(i—j)
(mod p) = a (mod p), which implies thatk(: — j) = 0 (mod p). Sincei — j # 0



104 Chapter 8. Lower Bounds and Dense Graphs

(mod p) , we havek =0 (mod p), a contradiction sincgé < p. Thus/; U M; forms a cycle
of length2p (a Hamiltonian cycle) whehand; are distinct. O

Now consider the multiplicative groug*, and letz be a generator of this group. Define
a permutationr of {1,2,...,p — 1} by 7 : a — az (mod p). Let M be the matching
corresponding to the permutatian

Claim 8.12. [M N M;| = 1, foreachM;, 1 <i < p—1andMy,nN M = 0§ (i.e., for each
M;, 1 < i < p—1, The matchings/ and M; exactly have one edge in common. Also the
matchingsV/ and M, do not have any edge in common).

Proof. By the definition of)/, we infer thatVMy N M = §. Now leta = i(z —1)"!  (mod p).
Note that since # 0, a # 0. We haver;(a) = a+i =i(z—1)"'+i=i(z—1)"(1+z—1) =

i(r —1)7Y(x) = ax (mod p) = m(a). Thus it follows that the edgé:, ax) € M N M; for
a=1i(x—1)"" (mod p). Thereforef M N M;] > 1for1 <i <p—1. Since|]M|=p—1,

we can also infer thgt\/ N A;| = 1. O

Now color the edges ak, , as follows to get a coloring with p + 2 colors:

1. ife e M;\ M (where0 < i < p— 1), then it is colored with coloe;.
2. ifee M — (1, ), then it is colored with coloe,,.

3. edgee = (1, x) is colored with color,_ ;.

Claim 8.13. The coloringf is acyclic.
Proof. Obviously f is a proper coloring. Let; andc; be two colors. We consider different
values fori andj with i > j and show thatc;, ¢;) bichromatic cycle cannot exist.
caselui=p+1
Since there is only one edge colored,, there cannot be any bichromatic cycle involving the
colorc,.
case 2,5 <p
Note that)M; U M, forms a Hamiltonian cycle by’laim 8.11. Now at least one edge of
M, belongs toM (By Claim 8.12) and is colored:, or ¢, with respect to the coloring
f, breaking the possibléc;, ¢;) bichromatic cycle. Therefore there cannot be &nyc;)
bichromatic cycle whemn, j < p.
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case3:ii=p
Supposel/; is a matching such that a cycle of length < 2p (no cycles of lengti2p can
be formed as there are only— 2 edges of colok,) gets formed by the edges of U M;
(Recall that all cycles are of even lengthif), ;). Thus(w; 'm)*(a) = a (mod p). Noting
that(r; 'm)(a) = ax —j (mod p), we have(r; '7)*(a) = (ax — j)z — j = ax® — j(z + 1)
(mod p). Similarly (z; 'm)*(a) = az* — j(a" '+ ... 42 4+1) =azk — j(zF - 1)(z—1)" =a
(mod p). We haveu(z* —1) —j(z* —1)(z—1)"' =0 (mod p) and thugz* —1)(a —j(z —
™) =0 (mod p). If (a —j(x—1)"1) =0 (mod p), thena = j(z —1)~' (mod p).
But according taClaim 8.12, edge(a, ax) € M N M;. Therefore this edge and thus vertex
cannot be in the cycle formed by U 1;, a contradiction. Thus we infer that* — 1) = 0
(mod p). This implies thatz* = 1 (mod p) and hence: = p — 1, sincex is a generator.
Thus there ar@(p — 1) edges in the cycle, out of whigh— 1 are colored:,, a contradiction
since onlyp — 2 edges are colored,. O

This completes the proof.

Notice that the last color was used for only one edge in the above colorifig of Thus
we get the following Theorem:

Theorem 8.14.For a primep > 2, if G is a graph obtained by removing just one edge from
K, thend' (G) = A +1 = p+ 1 ( The above statement is true even if we delete any number
of edges betweenandp — 2).

Proof. It is easy to infer from the proof of Theoretl1lOthata'(G) < p + 1. The lower
bound comes from a simple counting argument: At most one color class camn lealges,
since otherwise there will be bichromatic cycles. Thus (i) < p, then there can be at most
p+ (p—1)* < p*> — 1 edges in7, a contradiction.
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8.4 Remarks

1. Itis interesting to compare the statement of Theorem 1 to the res@@jphamely that
almost alld-regular graphs for a fixed, require onlyd + 1 colors to be acyclically edge
colored. From the introduction c8§], it appears that the authors expect their result for
randomd-regular graphs would extend to all d-regular graphs excepfdigrn even.
From Theoren8.3 and Theoren8.4it is clear that this is not true: There exists a large
number ofd-regular graphs which requiré+ 2 colors to be acyclically edge colored,
even whent is fixed.

2. The complete bipartite graplk,, -, is said to have a perfect 1-factorization if the
edges of,, .2 ,+2 can be decomposed intot 2 disjoint perfect matchings such that the
union of any two perfect matchings forms a hamiltonian cycle. Itis obvious from Lemma
8.5that K, 42 does not have perfect 1-factorization whers even. Whem is odd,
some families have been proved to have perfect 1-factorization 1&kdof further
details). It is easy to see that K, . ,.2 has a perfect 1-factorization théefi, 2,11
and thereforekX’,;, .1 has a acyclic edge coloring usimg+- 2 colors. Therefore the
statement of Theore®.7 cannot be extended to the case when even in general.

3. Clearly if K,, 15 12 has a perfect 1-factorization, thef{ K, ,,) = n+2. Itis known that
(seellq), if n+2 € {p,2p — 1,p?}, wherep is an odd prime or when + 2 < 50 and
odd, thenk, - ,,+2 has a perfect 1-factorization. Thus the lower bound in The@&m
is tight for the above mentioned valuesrof- 2. As of now, these are the only values of
n for which we know the exact value faf( K, ,). Note that we cannot apply the simple
argument mentioned here when= p. Alon, McDiarmid and Reed@] observed that

a/(Kpfl,pfl) = D-

4. To get an upper bound faf( X, ,), the best method we can think of is to look for the
smallest prime number such thatp > n + 2. Thend'(K,,,) < p. A weakening of
the result of lwaniec and Pint3(] gives that for every sufficiently large integerthere
exists a prime number in the range x + z%9].
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Conclusion

9.1 Open Problems

9.1.1 Acyclic Edge Coloring Conjecture

The conjecture is still open. The conjecture has been proved for some special classes of graphs.
This indicates that the conjecture might be true. One can attempt the conjecture. Till now the
best bound ofi6A uses probabilistic methods to obtain the bound. Such methods may not
work to get the conjectured bound &f+ 2. Constructive methods need to be developed. But

till now such methods have only been used for sparse graphs. The global nature of the problem
has to be investigated throughly to come up with concepts which would lead to closer upper
bounds towards the conjectured bound.

Another direction is to try to disprove the conjecture by constructing counter examples.
Our results on regular graphs which requixe+ 2 colors are the first steps towards such an
approach. The results on lower bounds use counting arguments. But such techniques might
not work in the attempt to disprove the conjecture. Clever techniques other than counting are
needed to be explored to find better lower bounds.

Planar Graphs

The best known bound for planar graphs as of now is 12. We feel that this bound could be
improved. It would be interesting to prove the conjecture for planar graphs. Even for triangle
free planar graphs, the conjecture is still open. Another question is to investigate examples of
planar graph other thalt, which requires greater thak + 1 colors.
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9.1.2 Complete Graphs

Is it true thata'(K5,11) = 2n + 1, Vn > 1? This problem of determining the acyclic chro-
matic index for complete graphs takes importance due to its equivalence with the perfect 1-
factorization conjecture.

9.1.3 Algorithmic Questions

The research till now has mostly concentrated towards finding better bounds on acyclic chro-
matic index. Since most of the results on special classes of graphs use constructive methods,
there exists an underlying polynomial time algorithm. But very few results look at time com-
plexity in a serious manner. Thus various algorithmic questions are open to be explored.
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