
For Review Only

Improved Algorithms for Variants of

Bin Packing and Knapsack

A THESIS

SUBMITTED FOR THE DEGREE OF

Master of Technology (Research)

IN THE

Faculty of Engineering

BY

Venkata Naga Sreenivasulu Karnati

Computer Science and Automation

Indian Institute of Science

Bangalore – 560 012 (INDIA)

July, 2022

Page 1 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

Declaration of Originality

I, Venkata Naga Sreenivasulu Karnati, with SR No. 04-04-00-10-22-20-1-18699 hereby

declare that the material presented in the thesis titled

Improved Algorithms for Variants of Bin Packing and Knapsack

represents original work carried out by me in the Department of Computer Science and

Automation at Indian Institute of Science during the years 2020-2022.

With my signature, I certify that:

• I have not manipulated any of the data or results.

• I have not committed any plagiarism of intellectual property. I have clearly indicated and

referenced the contributions of others.

• I have explicitly acknowledged all collaborative research and discussions.

• I have understood that any false claim will result in severe disciplinary action.

• I have understood that the work may be screened for any form of academic misconduct.

Date: Student Signature

In my capacity as supervisor of the above-mentioned work, I certify that the above statements

are true to the best of my knowledge, and I have carried out due diligence to ensure the

originality of the report.

Advisor Name: Dr. Arindam Khan Advisor Signature

1

Page 2 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

Page 3 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

© Venkata Naga Sreenivasulu Karnati

July, 2022

All rights reserved

Page 4 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

Page 5 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

DEDICATED TO

My Parents, Sister, and Brother

Page 6 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only
Acknowledgements

First and foremost, I would like to thank my advisor Prof. Arindam Khan for believing in me

and offering me a Project Associate position in his lab before I joined the M. Tech. (Research)

program under his guidance. Without his constant support, this work wouldn’t have been

possible. Apart from being a tremendous researcher, he has been an excellent advisor who

keeps striving for my academic excellence (even more than I do). The patience he has shown

in certain situations – e.g., finding a bug just a few days before submission, sloppy writing – is

truly commendable. I am also thankful for how he respects my time, allowing my schedule to

be flexible. In my opinion, he is the best kind of advisor one can possibly find.

I am grateful to IISc for being such an outstanding research center, and for its beautiful

and lively environment. I only regret that I haven’t tried for an internship here during my

undergrad studies. I am also thankful to the CSA department for the courses and the research

environment it offered. The Theoretical CS faculty here is one of the best in the country, and

I am glad to have come here. I am thankful to Prof. Arvind Ayyer (Math Department), Prof.

Siddharth Barman, Prof. Chiranjib Bhattacharya, Dr. Ankit Garg (Microsoft Research India),

Prof. Anand Louis, and Prof. Rahul Saladi for the courses they offered, through which I learned

a lot. I would especially like to thank Prof. Siddharth and Prof. Rahul for guiding me about

my future plans. A special mention goes to the CSA staff, especially Padmavati Madam and

Kushael Madam, for handling my numerous administrative queries promptly.

I would like to thank Eklavya Sharma and Swati Allabadi for being such good friends and

lab-mates when I was a Project Associate. Eklavya is one of the most hard-working students

I have ever met, and I feel privileged to have collaborated with him. His discipline, LATEX

skills, and ability to produce ideas used to amaze and inspire me. I am also thankful to Aditya

Vardhan Varre, my undergraduate friend, due to whom I first contacted Prof. Arindam.

I thank Aditya Lonkar, Aditya Subramanian, Arka Ray, Sudarshan, Rishikesh Gajjala, and

Rameesh Paul for the technical discussions I had with them. I thank Prayas Rautray for

carefully reviewing my thesis. I am also grateful to Rameesh and Vishakha Patil for patiently

helping me with the thesis submission process, travel to ICALP, and continuation to Ph. D.

i

Page 7 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

Acknowledgements

I am grateful to all my badminton and cricket friends, and mess buddies because of whom

I had a lot of fun. A special mention goes to Likhith Marrapu for being a constant badminton

partner and a good friend.

Finally, I would like to thank my parents for everything they have done for me. My wish to

make them happy keeps me motivated to achieve academic success. I thank my brother for his

company during the online semesters at home. I thank my sister for persuading me to apply

to GATE, sans which I would not have ended up studying at IISc.

ii

Page 8 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only
Abstract

We study variants of two classical optimization problems: Bin Packing and Knapsack. Both

bin packing and knapsack fall under the regime of “Packing and Covering Problems”. In bin

packing, we are given a set of input items, each with an associated size, and the objective is to

pack these into the minimum number of unit capacity bins. On the other hand, in knapsack,

each item has an additional profit associated with it, and the objective is to find a maximum

profitable subset that can be packed into a unit capacity knapsack. Both bin packing and

knapsack find numerous applications; however, both turn out to be NP-Hard. Hence, it is

natural to seek approximation algorithms for these problems. Ibarra and Kim, and Lawler

settled the knapsack problem by giving an FPTAS, whereas the progressive works of de la Vega

and Lueker, Karmarkar and Karp, and Rothvoss have given improved approximation schemes

for the bin packing problem. However, many variants of these problems (e.g. multidimensional,

geometric, stochastic) also find wide applicability, but haven’t been settled. We make progress

on this front by providing new and improved algorithms for several such variants.

First, we study online bin packing under the i.i.d. model, where item sizes are sampled

independently and identically from a distribution in (0,1]. Both the distribution and the total

number of items are unknown. The items arrive one by one and their sizes are revealed upon

their arrival and they must be packed immediately and irrevocably in bins of size 1. We

provide a simple meta-algorithm that takes an offline α-asymptotic approximation algorithm

and provides a polynomial-time (α+ ε)-competitive algorithm for online bin packing under the

i.i.d. model, where ε > 0 is a small constant. Using the AFPTAS for offline bin packing, we

thus provide a linear time (1 + ε)-competitive algorithm for online bin packing under the i.i.d.

model, thus settling the problem.

Then we study a well-known geometric generalization of the knapsack problem, the 3-D

Knapsack problem. In this problem, the items are cuboids in three dimensions and the knapsack

is a unit cube. The objective is to pack a maximum profitable subset of the input set in a non-

overlapping, axis-parallel manner inside the knapsack. Depending on whether rotations around

axes (by ninety degrees) are allowed or not, we obtain two further variants. [DHJ+07] gave

iii

Page 9 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

Abstract

a (7 + ε) (resp. (5 + ε)) approximation algorithm for the 3-D Knapsack problem without

rotations (resp. with rotations). Despite the importance of the problem, there has been no

improvement in the ratios for fifteen years. First, we give alternate algorithms that achieve the

same approximation ratios (7 + ε, 5 + ε). These algorithms and their analyses are far simpler.

Then, in the case when rotations are allowed, we give an improved
(
31
7

+ ε
)

approximation

algorithm in the general setting, and a (3 + ε) approximation algorithm in the special setting

where each item has a profit equal to its volume.

We also introduce and study a generalization of the knapsack problem with geometric and

vector constraints. The input is a set of rectangular items, each with an associated profit

and d nonnegative weights (d-D vector), and a square knapsack. The goal is to find a non-

overlapping, axis-parallel packing of a subset of items into the given knapsack such that the

vector constraints are not violated, i.e., the sum of weights of all the packed items in any of the

d dimensions does not exceed one. Two variants are defined: rotations allowed by 90◦, rotations

not allowed. We give (2 + ε) approximation algorithms for both the variants.

Finally, we consider the problem of packing d-D hypercubes into a knapsack defined by

the region [0, 1]d. Each hypercube has an associated profit, and the goal is to find a maximum

profitable non-overlapping, axis-parallel packing. We consider two special cases of this problem:

(i) cardinality case, where each item has unit profit, (ii) bounded profit-volume ratio case, where

the profit-to-volume ratio of each item lies in the range [1, r] for some fixed constant r. We give

near-optimal algorithms for both the cases.

iv

Page 10 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only
Publications based on this Thesis

1. Near-Optimal Algorithms for Stochastic Online Bin Packing

Joint work with Nikhil Ayyadevara, Rajni Dabas, and Arindam Khan.

The 49th EATCS International Colloquium on Automata, Languages and Programming

(ICALP 2022)

2. A PTAS for Packing Hypercubes into a Knapsack

Joint work with Klaus Jansen, Arindam Khan, and Marvin Lira.

The 49th EATCS International Colloquium on Automata, Languages and Programming

(ICALP 2022)

3. Approximation Algorithms for Generalized Multidimensional Knapsack

Joint work with Arindam Khan, and Eklavya Sharma.

https://arxiv.org/abs/2102.05854

4. Improved Approximation Algorithms for 3-D Knapsack

Joint work with Arindam Khan.

Manuscript (to be submitted)

Other Related Publications

1. Geometry Meets Vectors: Approximation Algorithms for Multidimensional

Packing

Joint work with Arindam Khan, and Eklavya Sharma.

https://arxiv.org/abs/2106.13951

Under Submission

v

Page 11 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

https://arxiv.org/abs/2102.05854
https://arxiv.org/abs/2106.13951

For Review Only
Contents

Acknowledgements i

Abstract iii

Publications based on this Thesis v

Contents vi

List of Figures x

1 Introduction 1

1.1 Approximation and Online Algorithms . 1

1.1.1 Approximation Algorithms . 2

1.1.2 Online Algorithms . 3

1.1.3 Stochastic Models . 3

1.1.3.1 The i.i.d. Model . 4

1.1.3.2 The Random-order Model . 4

1.2 Bin Packing, Knapsack, and their Variants . 5

1.2.1 Classical Bin Packing . 5

1.2.2 Online Bin Packing . 5

1.2.3 Classical Knapsack . 6

1.2.4 Geometric Knapsack . 7

1.2.5 Vector Knapsack . 9

1.3 Contribution of this Thesis . 10

1.3.1 Stochastic Online Bin Packing . 10

1.3.1.1 Online Bin Packing under the i.i.d. Model 10

1.3.1.2 Online Bin Packing under the Random-order Model 11

1.3.2 3-D Geometric Knapsack . 11

vi

Page 12 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

CONTENTS

1.3.3 Generalized Multidimensional Knapsack 12

1.3.4 d-D Hypercube Knapsack . 13

2 Notations and Preliminaries 14

2.1 General Notations . 14

2.2 Performance Measures of Algorithms . 14

2.2.1 Approximation Ratio . 15

2.2.2 Asymptotic Approximation Ratio . 15

2.2.3 Competitive Ratio . 16

2.2.4 Expected Competitive Ratio . 17

2.2.4.1 ECR in the i.i.d. Model . 17

2.2.4.2 ECR in the Random-order Model 18

2.3 Special Approximation Schemes . 18

2.4 Greedy Packing Algorithms . 20

2.4.1 Next-Fit and Best-Fit . 20

2.4.1.1 Next-Fit . 20

2.4.1.2 Best-Fit . 21

2.4.2 Next-Fit Decreasing Height . 21

2.4.2.1 NFDH in Higher Dimensions 22

3 Near-optimal Algorithms for Stochastic Online Bin Packing 23

3.1 Related Work . 23

3.2 Overview of Results and Techniques . 25

3.3 Online Bin Packing Problem under the i.i.d. Model 29

3.3.1 Algorithm Assuming that the Value of n is Known 29

3.3.1.1 Analysis of Case 1: |L0| ≤ δ3 ·W(T0) 35

3.3.1.2 Analysis of Case 2: |L0| > δ3 ·W(T0) 37

3.3.2 Getting Rid of the Assumption on the Knowledge of the Input Size . . . 42

3.3.2.1 Analysis . 43

3.4 Best-Fit under the Random-Order Model . 50

3.4.1 When Item Sizes are Larger than 1/3 . 50

3.4.2 The 3-Partition Problem under Random-Order Model 52

3.4.2.1 Deferred Proof of Claim 3.19 55

3.5 Online Vector Packing Problem under i.i.d. model 57

3.5.1 Algorithm . 58

vii

Page 13 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

CONTENTS

3.5.2 Analysis . 58

4 3-D Knapsack Problem and its Variants 60

4.1 Notations and Preliminaries . 60

4.1.1 Steinberg’s Algorithm . 61

4.1.2 Packing Large Items . 61

4.2 A simpler (7 + ε)-approximation Algorithm (without Rotations) 62

4.2.1 Algorithm for the Cardinality case . 62

4.2.1.1 Analysis . 65

4.2.2 Extending to General Case . 67

4.3 A simpler (5 + ε)-approximation Algorithm (with Rotations) 68

4.3.1 Algorithm for the Cardinality Case . 68

4.3.2 Extending to General Case . 71

4.4 A (31/7 + ε)-approximation Algorithm (with Rotations) 71

4.4.1 Algorithm for the Cardinality Case . 72

4.4.1.1 Analysis of the Algorithm . 73

4.4.2 Extending to the General Case . 75

4.5 A (3 + ε)-approximation Algorithm for Maximizing the Packed Volume (with

Rotations) . 76

4.5.1 The Algorithm . 76

5 Generalized Multidimensional Knapsack 80

5.1 Preliminaries and Notations . 80

5.1.1 Prior Work . 80

5.1.2 Notations and Definitions . 81

5.1.3 Organization of the Chapter . 81

5.2 Vector-Max-GAP problem and a PTAS . 82

5.2.1 Dynamic-Programming Algorithm for Integral Input 83

5.2.2 Optimal Solution with Resource Augmentation 83

5.2.3 Packing Small Items . 85

5.2.3.1 Trimming . 85

5.2.3.2 Near-optimal Packing of Small Items 85

5.2.4 A Structural Result . 86

5.2.5 PTAS for Vector-Max-GAP . 86

5.3 Algorithm for (2, d) Knapsack Problem . 88

viii

Page 14 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

CONTENTS

5.3.1 A Structural Result . 88

5.3.2 Proof of the Structural Result . 89

5.3.2.1 Corridors . 90

5.3.2.2 Corridor Decomposition . 91

5.3.2.3 Reorganizing Boxes into Containers 92

5.3.2.4 Packing Small Items . 94

5.3.2.5 Shifting Argumentation . 96

5.3.3 Container Packing Problem and Vector-Max-GAP 102

5.3.4 Reduction of Container Packing Problem to Vector-Max-GAP 103

5.3.5 Algorithm . 105

6 The d-D Hypercube Knapsack Problem 107

6.1 Prior Work . 107

6.2 PTAS for the Bounded-density Case . 108

6.2.1 NFDH for Small Items . 109

6.2.2 Algorithm . 109

6.2.3 Analysis . 111

6.3 PTAS for the Cardinality Case . 113

7 Conclusion 115

7.1 Open Problems . 116

Bibliography 118

ix

Page 15 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only
List of Figures

1.1 An example instance of bin packing. The sizes of the items are labeled below.

An optimal packing requires 4 bins. 6

1.2 The sizes are labeled below the items and the profits are labeled on the items.

An optimal packing into a knapsack is shown. 7

1.3 Three invalid packings and one valid packing. (i) An item protrudes from the

knapsack, so it’s invalid. (ii) Two items intersect among themselves, so it’s

invalid. (iii) An example of a non-axis-parallel packing. (iv) A valid packing. . . 8

1.4 At the top, we have the input items with profits labeled below. The left figure

shows an optimal packing when rotations are forbidden. The right figure shows

an optimal packing when rotations are allowed. 9

2.1 Example run of the Next-Fit algorithm into 5 bins. The items are processed

from left to right. 20

2.2 Example run of the Best-Fit algorithm into 4 bins. The difference between

Next-Fit and Best-Fit can be seen while packing the sixth item. Both the first

and the second bins can accommodate this item, but we will pack it in the first

bin since it is the fullest. 21

2.3 The NFDH Algorithm. After packing the first two items on the base of the bin,

the third item can’t be packed on the same level. Hence, we close the shelf and

create a new shelf and continue. 22

3.1 The division of input into super-stages to get rid of the assumption on the knowl-

edge of n. The (j+1)th super-stage is denoted by Γj. Stage Γ0 contains n0 = 1/δ3

items, Γ0 ∪ Γ1 contains (1 + µ)n0 items, Γ0 ∪ Γ1 ∪ Γ2 contains (1 + µ)2n0 items

and so on. The last super-stage may not be full, but since it is very small in size

compared to the entire input, it doesn’t affect the performance of the algorithm. 43

x

Page 16 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

LIST OF FIGURES

4.1 (The second dimension which is into the paper or the screen is ignored) The

layers of items in B′ are indicated in red. After packing B′, the items in A′

are packed as follows: First, they are ordered in non-increasing order of lengths.

Then they are stacked up one on top of each other as much as possible (shown

in green). Then they are rotated and packed side-by-side as shown in orange. . . 73

4.2 Packing rectangles long in one dimension and short in other dimension. The blue

rectangle indicates the first rectangle that couldn’t be packed without overlapping. 77

5.1 A corridor which is just a union of 9 subcorridors. 90

5.2 Skewed items in corridors. Dark items indicate the set Scorr. Red items indicate

the set Snice
cross. They are constant in number. Blue items indicate the set Sbad

cross.

They carry very marginal profit. Orange items which indicate Sfree are not

contained in any corridor. They are constant in number. 92

5.3 Obtaining containers from a box in two steps. First, we remove the strip (shaded

in light grey) with least profit of items completely contained in it (shown in

red). We also remove the items partially intersecting that strip (shown in blue.

These will be constant in number). Then in the second step, we apply resource

augmentation lemma to obtain constant number of containers. 94

5.4 Division of box into smaller boxes: The dark item is the item in K(t) that

overlaps with the box. The dashed lines are the extended edges and the red

items are those that will be included in K(t + 1). The blue items are the small

items that intersect the extended edges. They will be added to TempSmall.

This leads to three smaller boxes. 99

5.5 The item (red) will be assigned to the cell that is shaded darker. 101

5.6 Green boxes contribute to a free area of at least 2ε fraction of their intersection

with the cell. Red boxes on the other hand may not contribute any empty space. 102

xi

Page 17 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only
Chapter 1

Introduction

Bin Packing and Knapsack are two closely related combinatorial optimization problems that

have served as the cornerstones of approximation algorithms. In the Bin Packing (BP) problem,

we are given a set of n items each with size in the range (0, 1], and the objective is to pack all

the items in the minimum number of unit capacity bins. On the other hand, in the Knapsack

(KS) problem, each item, while having a size, further has an associated profit and the goal is

to choose a maximum profitable subset whose total size is at most one.

Both bin packing and knapsack find several applications in the real-life world. Bin packing

appears in cutting stock [GG63], container loading, and job scheduling. On the other hand,

knapsack appears in various resource allocation problems with budget limitations. Interestingly,

knapsack solutions have also been explored to design encryption protocols [DH76]. Skiena

[Ski99], in his survey on WWW traffic, found out that bin packing and knapsack were among

the top five problems whose implementations were needed the most. However, both bin packing

and knapsack turn out to be NP-hard (see below). Hence, if we need practical run-time, we

can only hope for some good approximation algorithms.

1.1 Approximation and Online Algorithms

The complexity class P is the class of decision problems which can be answered “yes” or “no”

in time polynomial in the size of input. On the other hand, the class NP contains the decision

problems for which a potential solution can be verified to be valid or not in polynomial time.

A decision problem P is said to be NP-Hard if every problem in NP can be reduced to P in

polynomial time. A problem is said to NP-Complete if it lies in NP and is NP-Hard as well.

The famous Cook-Levin theorem shows that the boolean satisfiability problem is NP-Complete.

Later, Richard Karp in his seminal paper [Kar72] showed that a set of 21 problems, including

1

Page 18 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

Set Cover, Hamiltonian Cycle, Steiner Tree, Knapsack, are NP-Complete. Many other prob-

lems such as bin packing, travelling salesman, vehicle routing have also been proven to be

NP-Complete. [GJ79]’s compendium shows several such problems. All these problems are of

high practical relevance and several attempts have been made to design efficient algorithms.

Yet, no polynomial-time algorithm has been found for any of these problems. Thus, it is widely

believed that P 6= NP.

Combinatorial optimization problems are those where the goal is to optimize (minimize or

maximize) a certain objective function while satisfying certain constraints. Both bin packing

and knapsack are combinatorial optimization problems. It turns out that polynomial-time

algorithms for bin packing and knapsack would imply polynomial-time algorithms for their

decision versions too. But since the decision versions are NP-Hard, it is believed that there do

not exist polynomial-time algorithms for the optimization versions too.

1.1.1 Approximation Algorithms

Since P 6= NP is conjectured to be true, it is widely believed that for problems like bin packing

and knapsack, there do not exist algorithms which are exact while simultaneously being fast

(polynomial runtime). If an algorithm compromises exactness for polynomial runtime, then it

is called an Approximation Algorithm.

Once an algorithm is designed, the next natural step is to ‘measure’ how good it is. Just to

give an introduction, we will define these measures slightly informally here. In Section 2.2, we

will redefine them more formally. Consider an algorithm A for some optimization problem and

let Opt denote the optimal algorithm. If it is a minimization (resp. maximization) problem, we

define the approximation ratio (AR) of A as the maximum value of A(I)
Opt(I)

(
resp. Opt(I)

A(I)

)
over

all the input instances I. The asymptotic approximation ratio (AAR) is just the approximation

ratio when we confine ourselves to instances I whose optimal value, Opt(I), is sufficiently large.

We generally assume that a constant accuracy parameter ε ∈ (0, 1) is given as a part of

the problem description. Some approximation algorithms, which are the best possible in some

sense, are given special names.

• A Polynomial Time Approximation Scheme (PTAS) is an approximation algorithm which

runs in polynomial time (assuming ε is a constant) and which has an AR of at most

(1 + ε).

• Similarly, an Asymptotic Polynomial Time Approximation Scheme (APTAS) is an approx-

imation algorithm which runs in polynomial time (assuming ε is a constant) and which

has an AAR of at most (1 + ε).

2

Page 19 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

• A Fully Polynomial Time Approximation Scheme (FPTAS) is a PTAS which runs in time

polynomial in both input size as well as 1/ε.

• An Asymptotic Fully Polynomial Time Approximation Scheme (AFPTAS) is an APTAS

which runs in time polynomial in both input size as well as 1/ε.

1.1.2 Online Algorithms

When we talk about a combinatorial optimization problem like bin packing, we implicitly

assume that we are in the offline model, i.e., the entire input is known to the algorithm before

it starts so that we can do some preprocessing. For example, in the (offline) bin packing problem,

we assume that the set of input items are given to us beforehand. While this is a reasonable

assumption, there also exist several scenarios where the input arrives in parts. Consider, for

example, an assembly line in a factory where items of varying sizes arrive on conveyor belts,

and each item has to be loaded into a container as soon as it arrives. This is called the online

model.

Note that computing exact optimal algorithms may not be possible in the online setting

even if we allow for exponential runtime. This is because of lack of information beforehand and

not because of computational intractability.

To measure the performance of an online algorithm, we use the term Competitive Ratio

(CR) instead of AAR (the formal definitions of CR and AAR are the same).

1.1.3 Stochastic Models

Above, we introduced the online model where items arrive one by one. We can think of this

model as one in which an adversary reveals the input each at a time. When we confine to real-

life scenarios though, this model turns out to be very restrictive. To give an idea, it has been

proved by [BBG10] that no online algorithm for bin packing can have a competitive ratio lesser

than 1.54. However, even simple and almost-linear time greedy algorithms seem to perform

fairly well in practice. The reason for this discrepancy is that in the online model, the adversary

has too much power, and gets to control both the input set as well as the arrival order. Real-life

instances, however, aren’t generated by such all-powerful adversaries. One way to weaken the

adversary is to include randomness in the model. In this work, we will discuss two stochastic

models for online bin packing.

• The i.i.d. model.

• The random-order model.

3

Page 20 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

1.1.3.1 The i.i.d. Model

In the i.i.d. model, the elements of the input are chosen independently from an arbitrary but

fixed probability distribution. For example, in the online bin packing problem, the item sizes

are sampled from some probability distribution (say, the normal distribution).

The i.i.d. model is of high practical relevance. For example, consider a sequence of files

to be processed on a set of servers. In real-life, the file sizes are not entirely arbitrary; rather

they follow what is called a power law distribution. Similarly, distributions such as Gaussian

and Poisson are widespread in practice. In general, when we confine ourselves to practical

scenarios, we can assume that the elements of the input to an algorithm are sampled from a

distribution. Thus, the i.i.d. model is well motivated, and a number of classical and important

problems such as k-server [DEH+17], knapsack [BGK11], and bin packing [RT93a] have been

studied under this model. A variant of the online knapsack problem under the i.i.d. model is

the budgeted multi-armed bandits problem [MLG04] which has gained a lot of attention in the

past few years.

For an online algorithm in the i.i.d. model, we use the term Expected Competitive Ratio

(ECR) to measure its performance. A slightly informal definition of ECR is as follows. Let

A denote an algorithm for a problem, and let Opt denote the optimal algorithm. If it is a

minimization (resp. maximization) problem, the ECR of A is defined as the maximum ratio
E[A(I)]

E[Opt(I)]

(
resp. E[Opt(I)]

E[A(I)]

)
over all instances I whose optimal solutions are sufficiently large.

1.1.3.2 The Random-order Model

The random-order model also weakens the adversary to a certain extent. In this model, the

adversary is free to specify the input set, but the order in which the input elements arrive is

chosen uniformly randomly from all the permutations of the input elements. For instance, in

the random-order model for online bin packing, the items sizes are chosen by the adversary but

the order in which they arrive is according to a uniform random permutation.

Again, this is an important relaxation since the order of arrival crucially affects an algo-

rithm’s performance, and worst-case arrival orders seldom occur in practice. This model has also

been helpful in designing randomized algorithms with good guarantees for problems for which

it is difficult to design efficient deterministic algorithms. One such problem is the prototypical

Secretary Problem. Many classical problems such as Convex Hulls [CS88], Set Cover [GKL22],

Adwords [DH09], Bin Packing [AKL21a], and Generalized Assignment Problem [KTRV14] have

been studied under this model. See the chapter by Gupta and Singla [GS21] for a primer.

For an online algorithm in the random-order model, we use the notion of random-order

ratio (RR) to measure the performance. A slightly informal definition of RR is as follows. Let

4

Page 21 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

A denote an algorithm for a problem, and let Opt denote the optimal algorithm. If it is a

minimization problem (resp. maximization problem), the RR of A is defined as the maximum

ratio E[A(Iσ)]
Opt(I)

(
resp. Opt(I)

E[A(Iσ)]

)
over all instances I whose optimal solutions are sufficiently large.

Here Iσ denotes a uniform random permutation of the input list I.

1.2 Bin Packing, Knapsack, and their Variants

In this section, we will formally discuss the classical bin packing and knapsack problems, and

some well-studied variants on which this thesis is built.

1.2.1 Classical Bin Packing

In the classical bin packing problem, we are given a set of n reals (items) s1, s2, . . . , sn such

that for each i ∈ {1, 2, . . . , n}, si ∈ (0, 1]. The goal is to partition these reals into minimum

number of subsets (bins) such that in any bin B,
∑

s∈B s ≤ 1.

It can also be stated as an integer program as follows: We define a configuration to be

any subset of the input set whose total size is at most 1. Let C denote the set of all the

configurations. Then, the bin packing problem asks to find a minimum cardinality subset of

C such that each item is contained in at least one of the subsets. An integer program for this

formulation is as follows.

min
∑
C∈C

xC

s.t.
∑
C3si

xC ≥ 1 for all i ∈ {1, 2, . . . , n}

xC ∈ {0, 1} for all C ∈ C

An example instance of bin packing and its optimal packing is shown in Fig. 1.1.

1.2.2 Online Bin Packing

In online bin packing, the items arrive one-by-one. As soon as an item arrives, it must be

packed into a bin immediately and irrevocably. Typically, we assume that in a completely

online setting, even the number of items n is unknown. If we assume the knowledge of n, it is

known as a semi-online setting.

A very folklore online algorithm for bin packing is Next-Fit: we keep exactly one bin open.

If an item fits in this open bin, we pack it there. Otherwise, we open a new bin and con-

tinue (see Section 2.4.1 for more details on Next-Fit). A non-example of online algorithms is

5

Page 22 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

Figure 1.1: An example instance of bin packing. The sizes of the items are labeled below. An
optimal packing requires 4 bins.

Next-Fit-Decreasing, which first sorts the items in decreasing order of sizes (we don’t have this

luxury in the online setting!) and then applies Next-Fit.

A simple online algorithm which gained a lot of importance due to its excellent performance

in practice is Best-Fit. In this algorithm, we keep all the bins open. Whenever an item arrives,

we look at all the bins that can accommodate this item. Among these feasible bins, we choose

the one with the least empty space (breaking ties arbitrarily). If no bin can accommodate the

item, we open a new bin. We will study more about the Best-Fit algorithm when we deal with

online bin packing under the random-order model in Section 3.4.

Another simple and practical algorithm is First-Fit, which packs an item in the oldest

feasible bin, opening a new bin if required. There exist several other online algorithms such as

Worst-Fit, Harmonic algorithm [LL85a].

1.2.3 Classical Knapsack

A closely related problem to bin packing is the Knapsack problem. In this problem, we are

given a set of n items. The ith item has a size given by s(i) ∈ [0, 1] and profit given by p(i) > 0.

The objective is to choose a subset B ⊆ {1, 2, . . . , n} such that
∑

j∈B p(j) is maximized while

satisfying the condition
∑

j∈B s(j) ≤ 1.

Like bin packing, the knapsack problem also can be formulated as an integer program as

6

Page 23 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

follows.

max
n∑
i=1

p(i)xi

s.t.
n∑
i=1

s(i)xi ≤ 1

xi ∈ {0, 1} for all i ∈ {1, 2, . . . , n}

An example instance of knapsack is shown in Fig. 1.2.

Figure 1.2: The sizes are labeled below the items and the profits are labeled on the items. An
optimal packing into a knapsack is shown.

1.2.4 Geometric Knapsack

The d-D Geometric Knapsack problem is an important generalization of the classical knapsack

problem. Let d be a positive integer fixed beforehand (say d = 2 or 3 or 100). In the d-D

geometric knapsack problem, we are given a set of d-D (read “d dimensional”) hypercuboids

(items), each associated with a positive profit. The objective is to pack a subset of these items

in an axis-parallel, non-overlapping fashion into a unit d-D hypercube (knapsack) such that the

packed profit is maximized. By an axis-parallel packing, we mean that each facet of a packed

item must be parallel to some facet of the knapsack. An non-overlapping packing is in which

no two items intersect so that their common volume is non-zero. We also require all the packed

7

Page 24 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

items to be completely contained inside the knapsack. See Fig. 1.3 for an illustration of valid

and invalid packings in 3 dimensions.

(i) (ii) (iii)

(iv)

Figure 1.3: Three invalid packings and one valid packing. (i) An item protrudes from the
knapsack, so it’s invalid. (ii) Two items intersect among themselves, so it’s invalid. (iii) An
example of a non-axis-parallel packing. (iv) A valid packing.

There are two well-studied variants of the d-D geometric knapsack problem depending on

whether or not we can rotate the items. In the first variant, the orientations of the items

are fixed as a part of the input, and hence rotations are not allowed. In the second variant,

rotations are allowed as long as the items remain axis-parallel. Note that in this variant any

item can be placed in at most d! orientations. Other variants such as “this-side-up” have been

studied in heuristic designs.

When rotations are not allowed, the assumption that the knapsack is a unit hypercube

holds without loss of generality because we can scale the knapsack and the items appropriately.

However, in the case when rotations are allowed, this assumption is explicit.

Apart from the case of d = 1, d-D geometric knapsack is well-studied for the cases of

d = 2, 3 because of their practical relevance. When d = 2, the problem is also called as

Rectangle Knapsack. See Fig. 1.4 for an illustration of rectangle knapsack.

8

Page 25 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only
200 20 5 5 11 6 50

Figure 1.4: At the top, we have the input items with profits labeled below. The left figure
shows an optimal packing when rotations are forbidden. The right figure shows an optimal
packing when rotations are allowed.

1.2.5 Vector Knapsack

The d-D Vector Knapsack problem is also an important generalization of classical knapsack.

Consider a scenario where we are to load a maximum profitable subset of items into a knapsack.

However, the knapsack might have several other constraints in addition to capacity constraint

such as volume constraint. Then, we will have to take into account both mass and volume of

each input item.

Let d be a positive integer fixed beforehand. In the d-D vector knapsack problem, each

input item is a vector (a tuple) with weights in d dimensions and a profit. The objective is to

choose a maximum profitable subset such that the total weight in any of the d dimensions is

at most 1. Just like classical knapsack, the vector packing problem also can be stated as an

integer program. Let the input set of vectors be denoted by I and let n = |I|. For an item

i ∈ I, let vj(i) denote the weight of the ith item in the jth dimension (j ∈ {1, 2, . . . , d}). As

9

Page 26 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

usual, let p(i) denote the profit of the ith item. Then the integer program formulation is

max
n∑
i=1

p(i)xi

s.t.
n∑
i=1

vj(i)xi ≤ 1 for all j ∈ {1, 2, . . . , d}

xi ∈ {0, 1} for all i ∈ {1, 2, . . . , n}

The d-D vector knapsack problem is also known as multidimensional knapsack.

1.3 Contribution of this Thesis

This thesis mainly focuses on the following four problems related to bin packing and knapsack.

1. Stochastic Online Bin Packing (Joint work with Nikhil Ayyadevara, Rajni Dabas, Arindam

Khan).

2. 3-D Geometric Knapsack (Joint work with Arindam Khan).

3. Generalized Multidimensional Knapsack (Joint work with Arindam Khan, Eklavya Sharma).

4. d-D Hypercube Knapsack (Joint work with Klaus Jansen, Arindam Khan, Marvin Lira).

1.3.1 Stochastic Online Bin Packing

We consider two stochastic models of online bin packing: (i) The i.i.d. model (ii) The random-

order model.

1.3.1.1 Online Bin Packing under the i.i.d. Model

We achieve near-optimal performance guarantee for the online bin packing problem under the

i.i.d. model, thus settling the problem. For any arbitrary unknown distribution D on (0, 1]

and an accuracy parameter ε, we devise an online meta-algorithm that takes an α-asymptotic

approximation algorithm as input and provides a polynomial-time (α+ε)-competitive algorithm.

Note that both the distribution D as well as the number of items are unknown in this case.

Theorem 1.1. Let ε ∈ (0, 1) be a constant parameter. For online bin packing under the

i.i.d. model, where n items are sampled from an unknown distribution D, given an offline

algorithm Aα with an AAR of α and runtime β(n), there exists an online (meta-)algorithm

which returns a solution with an ECR of (α + ε) and runtime O(β(n)). 1

1The O(·) notation hides some constants depending on ε here.

10

Page 27 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

Using an AFPTAS for bin packing (e.g. [dlVL81]) as Aα, we obtain the following corollary.

Corollary 1.1.1. There exists an algorithm for online bin packing under the i.i.d. model with

an ECR of (1 + ε) for any ε ∈ (0, 1).

1.3.1.2 Online Bin Packing under the Random-order Model

We also study online bin packing under the random-order model. Specifically, we analyze the

well-known Best-Fit algorithm in the random-order model. Best-Fit is very well-studied due

to its excellent performance in practice while being simple. Back in 1996, Kenyon proved that

Best-Fit has a random-order ratio (RR) of at most 3/2. Since then, no progress has been

made until only recently, when [AKL21a] showed that if all the item sizes are greater than 1/3,

Best-Fit has an RR of at most 5/4. We show that, somewhat surprisingly, in this case, Best-Fit

actually has an RR of exactly 1.

Theorem 1.2. For online bin packing under the random-order model, Best-Fit achieves a

random-order ratio of 1 when all the item sizes are in (1/3, 1].

Next, we study the 3-partition problem, a special case of bin packing when all the item sizes

are in (1/4, 1/2]. This is known to be an extremely hard case [HR17a]. We break the barrier

of 3/2 in this special case, by showing that Best-Fit attains a random-order ratio of at most

1.4941.

Theorem 1.3. For online bin packing under the random-order model, Best-Fit achieves an

random-order ratio of ≤ 1.4941 when all the item sizes are in (1/4, 1/2].

As 3-partition instances are believed to be the hardest instances for bin packing, our result

gives a strong indication that the RR of Best-Fit might be strictly less than 3/2.

1.3.2 3-D Geometric Knapsack

For the 3-D Geometric Knapsack problem, the best approximation ratios known prior to this

work are (7 + ε) when rotations of items are not allowed, and (5 + ε) if we are allowed to rotate

the items. Both the results have been given by [DHJ+07].

In this work, we first show alternate algorithms which achieve the same approximation ratios

((7+ε), (5+ε) respectively). The algorithms and their analyses are far simpler when compared

to [DHJ+07]. Then, we improve the approximation ratio in the case when rotations are allowed

to (31/7 + ε).

We also consider two special cases of this problem: The cardinality case and the profit-

equals-volume case. In the cardinality case, each item has unit profit. Hence, in this case,

11

Page 28 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

the problem boils down to packing the maximum number of items in the knapsack. In the

profit-equals-volume case, the profit of an item is just given by its volume. So, solving the 3-D

knapsack problem in this case is equivalent to maximizing the packed volume in a knapsack.

In the cardinality case, when rotations are not allowed, we give a (6 + ε) approximation

algorithm. When rotations are allowed, this factor is improved to (4 + ε). In the profit-equals-

volume case, when rotations are allowed, we give a (3+ε)-approximate algorithm. See Table 1.1

for a summary of our results for the 3-D Knapsack problem.

With Rotations Without Rotations

General 31
7

+ ε 7 + ε
Cardinality 24

7
+ ε 6 + ε

Profit=Volume 3 + ε 7 + ε

Table 1.1: Our results for the 3-D Knapsack problem

1.3.3 Generalized Multidimensional Knapsack

We also introduce the theoretical study of a variant of knapsack with both geometric and vector

constraints. In practice, while packing objects, in addition to geometric constraints, we also

need to consider vector constraints such as weight, volume etc. For instance, while packing

items into a cargo, we need to ensure that the total weight of the items packed doesn’t exceed

the capacity of the cargo. We also need to ensure that the volume of the items that we intend

to pack doesn’t exceed the cargo’s volume. Hence, it is natural to assume that each item, along

with its geometric dimensions, also has some weights associated with it.

With this as the motivation, we study the Rectangle knapsack problem with vector con-

straints. In this problem, each item is a rectangle with d weights each lying in range [0, 1],

where d is a constant fixed beforehand. We will denote this problem as (2, d)-Knapsack. Each

input item i has a width given by w(i), height given by h(i), and profit denoted as p(i). Its

weight in the jth dimension is given by vj(i). The objective is to pack a maximum profit subset

of items J into a unit square knapsack in an axis-parallel, non-overlapping manner such that

for any j ∈ [d],
∑

i∈J vj(i) ≤ 1.

For this problem, we devise a (2+ε)-approximation algorithm. En route, we study a variant

of the well-known Maximum Generalized Assignment Problem (Max-GAP). In the Max-GAP

problem, we are provided with a set of machines with designated capacities, and a set of items;

an item’s size and value depends on the machine to which it is going to be assigned. The

objective is to assign a subset of items to machines such that the obtained value is maximized

while making sure that no machine’s capacity is breached. We define a variant of the Max-GAP

12

Page 29 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

problem called Vector-Max-GAP. In this problem, we additionally have a d-dimensional weight

vector associated with every item and a d-dimensional global weight constraint vector on the

whole setup of machines. The objective is to find the maximum value obtainable so that no

machine’s capacity is breached and the overall weight of items does not cross the global weight

constraint in any of the d dimensions. For the Vector-Max-GAP problem, we achieve a PTAS.

1.3.4 d-D Hypercube Knapsack

The d-D Hypercube Knapsack problem is a special case of the d-D Geometric Knapsack problem

where each item, instead of being a d-D hypercuboid, is a d-D hypercube.

Note that for d ≥ 2, this problem is not (necessarily) a generalization of the classical

knapsack. To see this, note that an optimal algorithm for 2-D hypercube knapsack wouldn’t

directly imply an optimal algorithm for the classical knapsack problem. Hence, the NP-Hardness

of the classical knapsack doesn’t trivially imply that d-D Hypercube Knapsack (d ≥ 2) is

NP-Hard. Back in 1990, [LTW+90] proved that the Square Knapsack problem (the special case

when d = 2) is NP-Hard. But the NP-Hardness for d ≥ 3 has only been proved recently in 2015

by [LCC15].

We consider two special cases of this problem, namely the cardinality case and the bounded-

density case. In the cardinality case, each input item has unit profit. Hence, the objective

of the problem is to maximize the number of items packed. In the bounded-density case, the

profit/volume value (which is also called profit density) of each item lies in the range [1, r] where

r is a constant. In the special case of r = 1, i.e., when the profit of an item equals its volume,

the objective is to pack as much volume as possible. For both the cases, we devise PTASes.

13

Page 30 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only
Chapter 2

Notations and Preliminaries

In this chapter, we will introduce some notations and discuss some preliminaries that will be

used throughout the thesis.

2.1 General Notations

For any positive integer n, we will denote the set {1, 2, . . . , n} by [n].

Given an instance I for an optimization problem and an algorithm A for that problem, we

denote by A(I) the value of the objective function obtained by running the algorithm A on the

instance I.

Functions depending on ε. Generally, for any NP-Hard optimization problem, we assume

that a constant accuracy parameter ε ∈ (0, 1) is given as a part of the problem description.

So, if an algorithm runs in time n1/ε for a problem, where n is the input size, we consider it

to be polynomial runtime unless otherwise specified. Similarly, functions of ε like 1/ε, (1/ε)1/ε

are considered constants. However, at some places, for clarity, we make this dependence on ε

explicit as follows. The notation Oε(f(n)) (where n is the input size, and f is some function)

is shorthand for a function of the form g(ε)f(n). In the entire thesis, g(ε) increases with

decreasing ε (e.g., g(ε) = 1/ε or g(ε) = (1/ε)!). Similarly, suppose ε1, ε2 are two parameters

which in turn depend only on ε. Then the notation Oε1,ε2(f(n)) is a shorthand for a function

of the form g1(ε1, ε2)f(n).

2.2 Performance Measures of Algorithms

All the problems that we discuss in this thesis are NP-Hard. Hence, if we wish to design

polynomial-time algorithms, we can only approximately solve these problems unless P = NP.

There are multiple ways to quantitatively measure the performance of approximation algo-

14

Page 31 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

rithms. Two of the most common measures are Approximation Ratio and Asymptotic Approx-

imation Ratio. For online algorithms, we use the notion of Competitive Ratio to measure the

performance. We will formally define these notions in the following subsections.

2.2.1 Approximation Ratio

Consider a combinatorial optimization problem P. Let I denote the set of all the input instances

of the problem. Let A denote an (approximation) algorithm to P and let Opt denote an optimal

algorithm to P.

If P is a maximization problem (e.g., Knapsack where we try to maximize the profit), then

the Approximation Ratio (AR) of the algorithm A is defined as follows:

AR(A) := sup
I∈I

{
Opt(I)

A(I)

}
On the other hand, if P is a minimization problem (e.g., Bin packing where we try to

minimize the number of bins), then the Approximation Ratio (AR) of the algorithm A is

defined as follows:

AR(A) := sup
I∈I

{
A(I)

Opt(I)

}
An equivalent definition of AR is as follows: it is the minimum constant α for which for every

instance I ∈ I,

A(I) ≥ 1

α
Opt(I) (in case of maximization problems)

A(I) ≤ αOpt(I) (in case of minimization problems)

Remark 2.1. Be it a minimization problem or a maximization problem, the AR of an algorithm

is always at least 1. If we confine ourselves to polynomial-time algorithms, unless P = NP, the

AR can’t be equal to 1. The lesser the AR of an algorithm, the better it is.

2.2.2 Asymptotic Approximation Ratio

Besides approximation ratio, another commonly used notion to measure the performance of

an algorithm is asymptotic approximation ratio. Consider, for example, the problem of bin

packing. Using a reduction from the partition problem, it can be proved that it is NP-Hard to

decide if a given input set can be packed in at most two bins or not. Hence, no polynomial-

time algorithm for bin packing can have an AR strictly better than 3/2. However, such hard

15

Page 32 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

instances typically have very small optimal value and don’t occur in practice. Hence, we define

measures that are only concerned about instances for which the optimal values are large. One

such measure is asymptotic approximation ratio.

As before, let P be an optimization problem, I be the set of all input instances, A be an

(approximation) algorithm, and Opt be an optimal algorithm.

If P is a maximization problem, then the Asymptotic Approximation Ratio (AAR) of the

algorithm A is defined as follows:

AAR(A) := lim sup
m→∞

(
sup
I∈I

{
Opt(I)

A(I)

∣∣∣Opt(I) = m

})
On the other hand, if P is a minimization problem, then the Asymptotic Approximation

Ratio (AAR) of the algorithm A is defined as follows:

AAR(A) := lim sup
m→∞

(
sup
I∈I

{
A(I)

Opt(I)

∣∣∣Opt(I) = m

})
Equivalently, AAR can be defined as the minimum α such that for every instance I whose

optimal value is sufficiently large,

A(I) ≥ 1

α
Opt(I)− o(Opt(I)) (in case of maximization problems)

A(I) ≤ αOpt(I) + o(Opt(I)) (in case of minimization problems)

Remark 2.2. Just like AR, the AAR of any algorithm is always at least 1 and the lesser the

AAR of an algorithm, the better it is. However, unlike AR, the AAR of an algorithm can be

exactly 1.

2.2.3 Competitive Ratio

For an online algorithm, we use the term Competitive Ratio (CR) instead of Asymptotic Approx-

imation Ratio (AAR). The definition is exactly the same, i.e., the CR of an online algorithm

A is defined as

CR(A) := lim sup
m→∞

(
sup
I∈I

{
Opt(I)

A(I)

∣∣∣Opt(I) = m

})
for a maximization problem, and

16

Page 33 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only
CR(A) := lim sup

m→∞

(
sup
I∈I

{
A(I)

Opt(I)

∣∣∣Opt(I) = m

})
for a minimization problem.

Note that we defined competitive ratio only in the asymptotic case and not for all the

instances. Also, here we compare the objective value of an online algorithm to that of the

optimal algorithm which is offline, i.e., it has apriori knowledge of the input set.

2.2.4 Expected Competitive Ratio

In Section 1.1.3, we discussed that the online model is too pessimistic, and one way to counter

it is to somehow include randomness into the model. Hence, in stochastic models, to measure

the performance of an algorithm, we define the notion of Expected Competitive Ratio (ECR).

We will confine ourselves to stochastic online bin packing while defining ECR as we do not use

it elsewhere in this thesis. Let A be an online algorithm for bin packing and let Opt denote the

optimal algorithm.

2.2.4.1 ECR in the i.i.d. Model

Consider the online bin packing problem under the i.i.d. model. Suppose the item sizes arrive

from a distribution D. Let In denote a random sequence of n items sampled from D. Then the

ECR of A is defined as

ECR(A) := lim sup
n→∞

(
E [A(In)]

E [Opt(In)]

)
We can equivalently define ECR in the i.i.d. model as the least α such that for sufficiently large

n,

E [A(In)] ≤ αE [Opt(In)] + o(E [Opt(In)])

In the above definition we could use o(E [Opt(In)]) because n → ∞ directly implies that

E [Opt(In)] → ∞ given that the support1 of D is non-empty. This is because D is fixed

beforehand and not a part of the input.

1Support of a distribution is defined as the set of values which occur with non-zero probability.

17

Page 34 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

2.2.4.2 ECR in the Random-order Model

Let I denote the set of all input instances of bin packing. For an input list I, let Iσ denote the

list obtained by permuting I according to a permutation σ chosen uniformly at random. Just

to avoid the confusion with ECR in the i.i.d. model, we use the term random-order ratio. The

random-order ratio of the algorithm A is denoted by RR∞A and is defined as

RR∞A := lim sup
m→∞

(
sup
I∈I

{
E [A(Iσ)]

Opt(I)

∣∣∣Opt(I) = m

})
Remark 2.3. For any permutation σ, Opt(Iσ) = Opt(I) as for the optimal offline algorithm,

the input order doesn’t matter.

Equivalently, RR∞A can be defined as the minimum α such that for every instance I whose

optimal value is sufficiently large,

E [A(Iσ)] ≤ αOpt(I) + o(Opt(I))

2.3 Special Approximation Schemes

Let ε be a constant accuracy parameter. Consider an optimization problem P. As before, let

P be an optimization problem, I be the set of all input instances, A be an (approximation)

algorithm, and Opt be an optimal algorithm.

Approximation algorithms are given special names if they satisfy certain efficiency con-

straints.

Definition 2.1 (Polynomial Time Approximation Scheme (PTAS)). The algorithm A is said

to be a PTAS iff it runs in polynomial time, and for all input instances I ∈ I,

A(I) ≤ (1 + ε)Opt(I) (If P is a minimization problem)

A(I) ≥ (1− ε)Opt(I) (If P is a maximization problem)

In other words, PTAS is a polynomial-time approximation algorithm if its approximation

factor can be made arbitrarily close to 1.

Definition 2.2 (Asymptotic Polynomial Time Approximation Scheme (APTAS)). The algo-

rithm A is said to be an APTAS iff it runs in polynomial time, and for all input instances I ∈ I

18

Page 35 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

such that Opt(I) is sufficiently large,

A(I) ≤ (1 + ε)Opt(I) + o(Opt(I)) (If P is a minimization problem)

A(I) ≥ (1− ε)Opt(I)− o(Opt(I)) (If P is a maximization problem)

Informally speaking, an APTAS is a polynomial-time approximation algorithm if its asymp-

totic approximation factor can be made arbitrarily close to 1.

Definition 2.3 (Fully Polynomial Time Approximation Scheme (FPTAS)). An FPTAS is a

PTAS whose runtime is polynomial in both the input size and 1/ε where ε is the accuracy

parameter, i.e., its runtime must be of the form O
(
nc1
(
1
ε

)c2) for some absolute constants c1, c2,

where n is the input size.

For example, a PTAS which runs in time O
(
n2

ε3

)
is an FPTAS, but not one which runs in

time, say, O
(
n

1
ε

)
.

Definition 2.4 (Asymptotic Fully Polynomial Time Approximation Scheme (AFPTAS)). An

AFPTAS is an APTAS whose runtime is polynomial in both the input size and 1/ε where ε is

the accuracy parameter.

Definition 2.5 (Efficient Polynomial Time Approximation Scheme (EPTAS)). An EPTAS is a

PTAS whose runtime is of the form O
(
nc1f

(
1
ε

))
for some absolute constant c1 and a real-valued

function f .

For example, a PTAS which runs in time O
(

n2

ε1/ε

)
is also an EPTAS.

Definition 2.6 (Quasi Polynomial Time Approximation Scheme (QPTAS)). The algorithm A

is said to be a QPTAS iff for all input instances I ∈ I,

A(I) ≤ (1 + ε)Opt(I) (If P is a minimization problem)

A(I) ≥ (1− ε)Opt(I) (If P is a maximization problem)

However, its runtime can be of the form O
(
n(logn)c1f(1/ε)

)
for some absolute constant c1 and

real valued function f .

Note that a QPTAS need not be a PTAS.

19

Page 36 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

2.4 Greedy Packing Algorithms

In this section, we will discuss some simple packing algorithms. First, we will review two well-

known greedy online algorithms for bin packing, namely Next-Fit and Best-Fit. Then, we will

discuss Next-Fit Decreasing Height (NFDH), a greedy geometric packing algorithm.

2.4.1 Next-Fit and Best-Fit

2.4.1.1 Next-Fit

Next-Fit is one of the simplest algorithms for bin packing. It works as follows: we keep exactly

one bin in the working memory (we call this an open bin). When an item arrives, we check if

it fits in the open bin. If it fits, we pack it there; otherwise, we close this bin, open a new bin,

and pack it there. An illustration of Next-Fit is given in Fig. 2.1.

Figure 2.1: Example run of the Next-Fit algorithm into 5 bins. The items are processed from
left to right.

It can be easily shown that the AAR of Next-Fit is 2.

Lemma 2.4. For any bin packing instance I, Next-Fit uses at most 2Opt(I) + 1 number of

bins.

Proof. Let W(I) denote the total size of items in I. Say B1, B2, . . . , Bm are the bins opened

by Next-Fit. For any i ∈ [m− 1], Bi+1 has been opened since Bi can’t accommodate the first

item packed in Bi+1. Therefore, W(Bi) + W(Bi+1) > 1. Noting that W(I) is a lower bound on

20

Page 37 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

Opt(I),

Opt(I) ≥W(B1) + W(B2) + · · ·+ W(Bm) >
m− 1

2

Hence, the number of bins used by Next-Fit is at most 2Opt(I) + 1.

2.4.1.2 Best-Fit

Best-Fit is another greedy algorithm widely used in practice for bin packing. Unlike Next-Fit,

we keep all the bins open in Best-Fit. Once an item arrives, we check if there are any of the bins

can accommodate this item. If such a bin exists, we pack the item in the fullest feasible bin.

Otherwise, we open a new bin and pack it there. More formally, suppose the current item has

size x and the bins used by Best-Fit up till now are B1, B2, . . . , Bk. If there exists i ∈ [k] such

that W(Bi) + x ≤ 1, then we pack x in the bin Bj where j = arg maxi{W(Bi)|W(Bi) + x ≤ 1}.
If no such i exists, we open a new bin Bk+1 and pack x there. An illustration of Best-Fit is

given in Fig. 2.2.

Figure 2.2: Example run of the Best-Fit algorithm into 4 bins. The difference between Next-Fit
and Best-Fit can be seen while packing the sixth item. Both the first and the second bins can
accommodate this item, but we will pack it in the first bin since it is the fullest.

2.4.2 Next-Fit Decreasing Height

Next-Fit Decreasing Height (NFDH) introduced in [CGJT80] is a widely used algorithm to

pack rectangles in a bigger rectangular bin. It works as follows. First we order the rectangles

in the decreasing order of their heights. We then place the rectangles greedily on the base of

21

Page 38 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

the bin until we do not cross the boundaries of the bin. At this point, we “close” the shelf and

shift the base to top edge of the first rectangle and continue the process (see Fig. 2.3).

Figure 2.3: The NFDH Algorithm. After packing the first two items on the base of the bin,
the third item can’t be packed on the same level. Hence, we close the shelf and create a new
shelf and continue.

Now, we state a well-known and important lemma about NFDH. The proof can be found

in [BCJ+09].

Lemma 2.5. Let S be a set of rectangles and let w, h respectively denote the largest width and

largest height in S. Consider a rectangular bin of dimensions W × H. Then if the area of

rectangles in S is at most (W − w)(H − h), NFDH packs all the rectangles into the bin.

The above lemma informally says that NFDH works very well if all the rectangles are small

in both the dimensions as compared to the dimensions of the bin.

2.4.2.1 NFDH in Higher Dimensions

We can also recursively define NFDH for packing hypercuboids. For simplicity, let’s consider

the three dimensional case. We initialize the current level of the bin to 0. We first ignore the

third dimension (say, the height), and use NFDH (two-dimensional) to pack as many items as

possible on the base of the bin. Then we close the shelf by updating the current level to the

height of the tallest item packed in this shelf. We iterate with this current level as our new

base.

In general, NFDH turns out to be an inefficient algorithm to pack hypercuboids, even if

they are very small in volume when compared to the bin. But when we restrict ourselves to

small hypercubes, NFDH again turns out to be a very good algorithm. This is formalized in

the following lemma which is a restatement from [BCKS06].

Lemma 2.6. Let S be a set of d-D hypercubes each with side length at most δ. Consider a d-D

hypercuboidal region R with side lengths r1, r2, . . . , rd (with each ri at most 1). Suppose we try

to pack S into R using NFDH. Then we either pack all the items, or the wasted space in R is

at most δ(r1 + r2 + · · ·+ rd).

22

Page 39 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only
Chapter 3

Near-optimal Algorithms for Stochastic

Online Bin Packing

Recall the Bin Packing (BP) problem. In BP, we are given a set of items I := (x1, x2, . . . , xn)

with their associated weights (also called sizes) xi’s in (0, 1] and the goal is to partition them

into the minimum number of sets (bins) such that the total weight of each set is at most 1.

In this chapter, we will study online BP under two stochastic models, namely the i.i.d.

model, and the random-order model and we will prove Theorems 1.1 to 1.3.

3.1 Related Work

Being one of the cornerstones of approximation and online algorithms, BP has been very well-

studied.

Best-Fit (BF), First-Fit (FF), and Next-Fit (NF) are the three most commonly used simple

algorithms for BP. Given xi as the present item to be packed, they work as follows:

• NF: Pack xi into the most recently opened bin; open a new bin if necessary.

• BF: Pack xi into the fullest possible bin; open a new bin if necessary.

• FF: Pack xi into the first possible bin; open a new bin if necessary.

The formal definitions of NF, BF have been given in Section 2.4.1. We also proved in

Lemma 2.4 that the asymptotic approximation ratio of NF is 2. Johnson et al. [JDU+74] an-

alyzed several heuristics like BF, FF, Best-Fit-Decreasing (BFD), First-Fit-Decreasing (FFD)

and showed their asymptotic approximation guarantees to be 17/10, 17/10, 11/9, 11/9, respec-

tively. Bekesi et al. [BGK00] gave an O(n) time 5/4-asymptotic approximation algorithm. An-

other O(n log n) time algorithm is Modified-First-Fit-Decreasing (MFFD) [JG85] which attains

23

Page 40 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

an AAR of 71/60 ≈ 1.1834. Vega and Lueker [dlVL81] gave an asymptotic fully polynomial-

time approximation scheme (AFPTAS) for BP: For any 1/2 > ε > 0, it returns a solution with

at most (1 + ε)Opt(I) + O(1) 1 bins in time Cε + Cn log 1/ε, where C is an absolute constant

and Cε depends only on ε. Karmarkar and Karp [KK82] gave an algorithm that returns a

solution using Opt(I) +O(log2 Opt(I)) bins. The present best approximation is due to Hoberg

and Rothvoss [HR17a] which returns a solution using Opt(I) +O(log Opt(I)) bins.

3-Partition problem is a notoriously hard special case of BP where all item sizes are larger

than 1/4. Eisenbrand et al. [EPR11] mentioned that “much of the hardness of bin packing seems

to appear already in the special case of 3-Partition when all item sizes are in (1/4, 1/2]”. This

problem has deep connections with Beck’s conjecture in discrepancy theory [Spe94, NNN12].

In fact, Rothvoss [HR17a] conjectured that these 3-Partition instances are indeed the hardest

instances for bin packing and the additive integrality gap of the bin packing configuration LP

for these 3-Parition instances is already Θ(log n).

In online BP, items appear one by one and are required to be packed immediately and

irrevocably. Lee and Lee [LL85b] presented the Harmonic algorithm with competitive ratio

T∞ ≈ 1.691, which is optimal for O(1) space algorithms. For general online BP, the present

best upper and lower bounds for the competitive ratio (CR) are 1.57829 [BBD+18] and 1.54278

[BBD+19], respectively.

In the i.i.d. model (see Section 1.1.3.1), bin packing has mainly been studied under contin-

uous uniform (denoted by U [a, b], 0 ≤ a < b ≤ 1, where item sizes are chosen uniformly from

[a, b]) or discrete uniform distributions (denoted by U{j, k}, 1 ≤ j ≤ k, where item sizes are

chosen uniformly from {1/k, 2/k, . . . , j/k}). For U [0, 1], Coffman et al. [CJSHY80] showed that

NF has an expected competitive ratio (ECR) of 4/3 and Lee and Lee [LL87] showed that the

Harmonic algorithm has an ECR of π2/3 − 2 ≈ 1.2899. Interestingly, Bentley et al. [BJL+84]

showed that the ECR of FF as well as BF converges to 1 for U [0, 1]. It was later shown that the

expected wasted space (i.e., the number of needed bins minus the total size of items) is Θ(n2/3)

for First-Fit [Sho86, CJJSW97] and Θ(
√
n log3/4 n) for Best-Fit [Sho86, LS89]. Rhee and Tala-

grand [RT93b] exhibited an algorithm that w.h.p. achieves a packing in Opt + O(
√
n log3/4 n)

bins for any distribution F on (0, 1]. However, note that their competitive ratio can be quite

bad when Opt � n. A distribution F is said to be perfectly packable if the expected wasted

space in the optimal solution is o(n) (i.e., nearly all bins in an optimal packing are almost

fully packed). Csirik et al. [CJK+06] studied the Sum-of-Squares (SS) algorithm and showed

that for any perfectly packable distribution, the expected wasted space is O(
√
n). However, for

1As mentioned in Section 2.1, in bin packing and related problems, the accuracy parameter ε is assumed to
be a constant. Here, the term O(1) hides some constants depending on ε.

24

Page 41 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

distributions that are not perfectly packable, the SS algorithm has an ECR of at most 3 and

can have an ECR of 3/2 in the worst-case [CJK+06]. For any discrete distribution, they gave

an algorithm with an ECR of 1 that runs in pseudo-polynomial time in expectation. Gupta

et al. [GS20] also obtained similar o(n) expected wasted space guarantee by using an algo-

rithm inspired by the interior-point (primal-dual) solution of the bin packing LP. However, it

remains an open problem to obtain a polynomial-time (1 + ε)-competitive algorithm for online

bin packing under the i.i.d. model for arbitrary general distributions. In fact, the present best

polynomial-time algorithm for bin packing under the i.i.d. model is BF which has an ECR of at

most 3/2. However, Albers et al. [AKL21a] showed that BF has an ECR ≥ 1.1 even for a simple

distribution: when each item has size 1/4 with probability 3/5 and size 1/3 with probability

2/5.

We also study bin packing under random-order model (see Section 1.1.3.2). Recall that the

performance of an algorithm A is measured using random-order ratio (RR∞A) in this model.

Random-order model generalizes the i.i.d. model [AKL21a], thus the lower bounds in the

random-order model can be obtained from the i.i.d. model. Kenyon in her seminal paper

[Ken96] studied Best-Fit under random-order and showed that 1.08 ≤ RR∞BF ≤ 3/2. She con-

jectured that RR∞BF ≈ 1.15. The conjecture, if true, raises the possibility of a better alternate

practical offline algorithm: first shuffle the items randomly, then apply Best-Fit. This then

beats the AAR of 71/60 of the present best practical algorithm MFFD. The conjecture has

received a lot of attention in the past two decades and yet, no other polynomial-time algorithm

is known with a better random-order ratio than BF. Coffman et al. [JCRZ08] showed that

RR∞NF = 2. Fischer and Röglin [FR18] achieved analogous results for Worst-Fit [Joh74] and

Smart-Next-Fit [Ram89]. Recently, Fischer [Car19] presented an exponential-time algorithm,

claiming a random-order ratio of (1 + ε).

Monotonicity is a natural property of BP algorithms, which holds if the algorithm never

uses fewer bins to pack Î when compared I, where Î is obtained from I by increasing the item

sizes. Murgolo [Mur88] showed that while NF is monotone, BF and FF are not.

Several other problems have been studied under the i.i.d. model and the random-order model

[DGV08, GKNS21, FMMM09, GKR12, Fer89, AKL21b, FR16, MY11, GS20].

3.2 Overview of Results and Techniques

Bin packing under the i.i.d. model: We achieve near-optimal performance guarantee for

the bin packing problem under the i.i.d. model, thus settling the problem. For any arbi-

trary unknown distribution D on (0, 1], we give a meta-algorithm (see Algorithm 1) that takes

an α-asymptotic approximation algorithm as input and provides a polynomial-time (α + ε)-

25

Page 42 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

competitive algorithm. Note that both the distribution D as well as the number of items n are

unknown in this case.

Theorem 3.1. Let ε ∈ (0, 1) be a constant parameter. For online bin packing under the

i.i.d. model, where n items are sampled from an unknown distribution D, given an offline

algorithm Aα with an AAR of α and runtime β(n), there exists a meta-algorithm (Algorithm 1)

which returns a solution with an ECR of (α + ε) and runtime O(β(n)). 2

Using an AFPTAS for bin packing (e.g. [dlVL81]) as Aα, we obtain the following corollary.

Corollary 3.1.1. Using an AFPTAS for bin packing as Aα in Theorem 3.1, we obtain an

algorithm for online bin packing under the i.i.d. model with an ECR of (1 + ε) for any ε ∈
(0, 1/2).

Most algorithms for bin packing under the i.i.d. model are based on the following idea.

Consider a sequence of 2k items where each item is independently drawn from an unknown

distribution D, and let A be a packing algorithm. Pack the first k items using A; denote the

packing by P′. Similarly, let P′′ be the packing of the next k items using A. Since each item

is drawn independently from D, both P′ and P′′ have the same properties in expectation; in

particular, the expected number of bins used in P′ and P′′ are the same. Thus, intuitively, we

want to use the packing P′ as a proxy for the packing P′′. However, there are two problems.

First, we do not know n, which means that there is no way to know what a good sample size is.

Second, we need to show the stronger statement that w.h.p. P′ ≈ P′′. Note that the items in P′

and P′′ are expected to be similar, but they may not be the same. So, it is not clear which item

in P′ is to be used as a proxy for a newly arrived item in the second half. Due to the online

nature, erroneous choice of proxy items can be quite costly. Different algorithms handle this

problem in different ways. Some algorithms exploit the properties of particular distributions,

some use exponential or pseudo-polynomial time, etc.

Rhee and Talagrand [RT88, RT93b] used upright matching to decide which item can be

considered as a proxy for a newly arrived item.

They consider the model packing Pk of the first k items (let’s call these the proxy items)

using an offline algorithm. With the arrival of each of the next k items, they take a proxy item

at random and pack it according to the model packing. Then, they try to fit in the real item

using upright matching. They repeat this process until the last item is packed. However, they

could only show a guarantee of Opt + O(
√
n log3/4 n). The main drawback of [RT93b] is that

their ECR can be quite bad if Opt� n (say, Opt =
√
n). One of the reasons for this drawback

2As mentioned in an earlier footnote, the O(·) notation hides some constants depending on ε here.

26

Page 43 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

is that they don’t distinguish between small and large items; when there are too many small

items, the ECR blows up.

Using a similar approach, Fischer [Car19] obtained a (1 + ε)-competitive randomized al-

gorithm for the random-order model, but it takes exponential time, and the analysis is quite

complicated. The exponential time was crucial in finding the optimal packing which was then

used as a good proxy packing. However, prior to our work, no polynomial-time algorithm

existed which achieves a (1 + ε) competitive ratio.

To circumvent these issues, we treat large and small items separately. However, a straight-

forward adaptation faces several technical obstacles. Thus our analysis required intricate ap-

plications of concentration inequalities and sophisticated use of upright matching. First, we

consider the semi-random case when we know n. Our algorithm works in stages. For a small

constant δ ∈ (0, 1], the first stage contains only δ2n items. These items give us an estimate

of the distribution. If the packing does not contain too many large items, we show that the

simple Next-Fit algorithm suffices for the entire input. Otherwise, we use a proxy packing of

the set of first δ2n items to pack the next δ2n items. In the process, the small and large items

are packed in a different manner. The third set of δ2n number of items are packed using the

proxy packing of the second set of δ2n number of items. This process continues until all the

items arrive.

Finally, we get rid of the assumption that we know n by first guessing the value of n and

then refining our guess if it is incorrect. First, we guess the value of n to be a constant n0. If

it is incorrect, we increase our guess by multiplying n0 with a small factor greater than 1. We

continue this process of improving our guess until all the items arrive.

Our algorithm is simple, polynomial-time (in fact, O(n) time), and achieves essentially the

best possible competitive ratio. It is relatively simpler to analyze when compared to Fischer’s

algorithm [Car19]. Also, unlike the algorithms of Rhee and Talagrand [RT93b] as well as Fischer

[Car19], our algorithm is deterministic. This is because, unlike their algorithms, instead of

taking proxy items at random, we pack all the proxy items before the start of a stage and try

to fit in the real items as they come. This makes our algorithm deterministic. Our algorithm

is explained in detail in Section 3.3.1. The nature of the meta-algorithm provides flexibility

and ease of application. See Table 3.1 for the performance guarantees obtained using different

offline algorithms.

27

Page 44 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

Aα Time Complexity Expected Competitive Ratio

AFPTAS [dlVL81] O(Cε + Cn log 1/ε) (1 + ε)

Modified-First-Fit-Decreasing [JG85] O(n log n) (71/60 + ε)

Best-Fit-Decreasing [Joh73] O(n log n) (11/9 + ε)

First-Fit-Decreasing [Joh73] O(n log n) (11/9 + ε)

Next-Fit-Decreasing [BC81] O(n log n) (T∞ + ε)

Harmonic [LL85b] O(n) (T∞ + ε)

Next-Fit O(n) (2 + ε)

Table 3.1: Analysis of Algorithm 1 depending on Aα. In the first row, C is an absolute constant

and Cε is a constant that depends on ε.

See Section 3.3 for the details of the proof and the description of our algorithm. In fact,

our algorithm can easily be generalized to d-dimensional online vector packing [BEK16], a

multidimensional generalization of bin packing. See Section 3.5 for a d(α + ε) competitive

algorithm for d-dimensional online vector packing where the ith item Xi can be seen as a tuple(
X

(1)
i , X

(2)
i , . . . , X

(d)
i

)
where each X

(j)
i is independently sampled from an unknown distribution

D(j).

Bin packing under the random-order model: Next, we study BP under the random-order

model. Recently, Albers et al. [AKL21a] showed that BF is monotone if all the item sizes are

greater than 1/3. Using this result, they showed that in this special case, BF has a random-

order ratio of at most 5/4. We show that, somewhat surprisingly, in this case, BF actually has

a random-order ratio of 1 (see Section 3.4.1 for the detailed proof).

Theorem 3.2. For online bin packing under the random-order model, Best-Fit achieves a

random-order ratio of 1 when all the item sizes are in (1/3, 1].

Next, we study the 3-partition problem, a special case of bin packing when all the item sizes

are in (1/4, 1/2]. This is known to be an extremely hard case [HR17a]. Albers et al. [AKL21a]

mentioned that “it is sufficient to have one item in (1/4, 1/3] to force Best-Fit into anomalous

behavior.” E.g., BF is non-monotone in the presence of items of size less than 1/3. Thus the

techniques of [AKL21a] do not extend to the 3-Partition problem. We break the barrier of 3/2

in this special case, by showing that BF attains a random-order ratio of ≈ 1.4941.

Theorem 3.3. For online bin packing under the random-order model, Best-Fit achieves a

random-order ratio of at most ≈ 1.4941 when all the item sizes are in (1/4, 1/2].

28

Page 45 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

We prove Theorem 3.3 in Section 3.4.2. As 3-partition instances are believed to be the

hardest instances for bin packing, our result gives a strong indication that the random-order

ratio of BF might be strictly less than 3/2.

3.3 Online Bin Packing Problem under the i.i.d. Model

In this section, we provide the meta algorithm as described in Theorem 3.1. For the ease of

presentation, we split this into two parts. In Section 3.3.1, we assume a semi-random model,

i.e., we assume that the number of items n is known beforehand and design an algorithm. Later,

in Section 3.3.2, we get rid of this assumption.

Let the underlying distribution be D. Without loss of generality, we assume that the support

set of D is a subset of (0, 1]. For any set of items J , we define W(J) as the sum of weights of

all the items in J . For any k ∈ N+, we denote the set {1, 2, . . . , k} by [k]. Let ε ∈ (0, 1) be

a constant parameter and let 0 < δ < ε/8 be a constant such that 1/δ is an integer. Let Aα

be an offline algorithm for bin packing with an AAR of α > 1 and let Opt denote the optimal

algorithm. For any i ∈ [n], we call xi to be a large item if xi ≥ δ and a small item otherwise.

Let I` and Is denote the set of large and small items in I, respectively.

3.3.1 Algorithm Assuming that the Value of n is Known

We now describe our algorithm which assumes the knowledge of the number of items. For

simplicity, in this section we assume that 1/δ2 is a divisor of n; we will anyway get rid of the

assumption on the knowledge of n in the next subsection. First, we give a high level idea of the

algorithm. We divide the entire input into stages as follows: we partition the input set I into

m := 1/δ2 stages T0, T1, . . . , Tm−1. The zeroth stage T0, called the sampling stage, contains the

first δ2n items, i.e., x1, x2, . . . , xδ2n. For j ∈ [m− 1], Tj contains the items with index starting

from jδ2n + 1 till (j + 1)δ2n. In essence, T0 contains the first δ2n items, T1 contains the next

δ2n items, T2 contains the next δ2n items, and so on. Note that the number of stages m is

a constant. In any stage Tj, we denote the set of large items and small items by Lj and Sj,

respectively. Note that for any j ∈ [m − 1], |Tj| = |Tj−1| and since all the items are sampled

independently from the same distribution, we know that with high probability, the optimal

solutions of Tj and Tj−1 are quite similar. Since Tj−1 would have arrived before Tj, we compute

an almost optimal packing (resp. a packing within α factor of the optimal packing) of Tj−1 (in

an offline manner) and use it as a blueprint to pack Tj almost optimally (resp. within α factor

of the optimum).

The algorithm is as follows: first, we pack T0, the sampling stage using Next-Fit. The

sampling stage contains only a small but a constant fraction of the entire input set; hence

29

Page 46 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

it uses only a few number of bins when compared to the final packing but at the same time

provides a good estimate of the underlying distribution. If the number of large items in the

sampling stage is at most δ3W(T0), then we continue using Next-Fit for the rest of the entire

input too. Intuitively, NF performs well in this case as most of the items are small. Thus, from

now on, let us assume otherwise. Now assume that we are at an intermediate point where Tj−1

has arrived and Tj is about to arrive (j ≥ 1). We create Dj, the set of proxy items, which is

just a copy of Tj−1. We pack Dj using Aα. Let this packing be denoted by Pj. Let B
(k)
j denote

the kth bin in the packing Pj. We iterate over k and remove all the small items in the bin B
(k)
j

and create a slot in the free space of B
(k)
j .

We call this slot to be an S-slot. When an item xi ∈ Tj arrives, we check if xi is small or

large

• If xi is small, we pack it in one of the S-slots greedily, using Next-Fit. If it doesn’t fit in

any of the S-slots, then we create a new bin with only one S-slot spanning the entire bin

(so, this bin will only be used to pack small items), and pack it there.

• If xi is large, we remove the smallest proxy item with a size more than xi in the packing

Pj and pack it there. If no such proxy item exists, we open a new bin, pack xi in there

and close it, meaning that it will not be used to pack any further items.

After Tj is packed completely, we just discard the proxy items in the packing that haven’t been

replaced and move to the next stage. For more formal details and pseudocode for the algorithm,

please refer to Algorithm 1.

We will proceed to analyze the algorithm. But first, we will discuss stochastic upright

matching and a standard result on it. Using a standard probabilistic concentration inequality,

we will formulate a few lemmas which are going to be very important for the analysis of the

algorithm.

Stochastic Upright Matching. Rhee and Talagrand [RT93c] studied the stochastic up-

right matching problem in the context of analysis of bin packing algorithms. Consider a

set P = {(xi, yi)}i∈[2n] of 2n points where each xi is either +1 or −1 with equal probabil-

ity and y1, y2, . . . , y2n are sampled according to an i.i.d. distribution. We can define a bipartite

graph G as follows: the vertex set is P , viewed as a set of points in R × R. Two points

P1 = (x1, y1), P2 = (x2, y2) share an edge iff x1 = 1, x2 = −1 and y1 ≥ y2.

The objective of the problem is to find a maximum matching in G or, in other words,

minimize the number of unmatched points which we denote by U(P).

We denote the stochastic upright matching problem by M. The following lemma shows that

w.h.p., the number of unmatched points is O(
√
n(log n)3/4). The proof of the lemma follows

30

Page 47 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

Algorithm 1 Alg(x1, x2, . . . , xn): A nearly optimal algorithm for online bin packing assuming
that the number of items n is known before-hand

1: Input: In(D) = {x1, x2, ..., xn}.
2: m := 1

δ2
. Number of stages

3: for j in {0, 1, . . . ,m− 1} do
4: Tj = {xjδ2n+1, xjδ2n+2, . . . , x(j+1)δ2n} . The jth stage
5: end for
6: Pack the sampling stage T0 using Next-Fit.
7: if |L0| ≤ δ3W(T0) then . Very few large items in the sampling stage
8: Use Next-Fit for all the remaining stages.
9: else

10: for j= 1 to m− 1 do
11: Dj ← Tj−1;L(Dj)← set of large items in Dj.
12: Pack Dj using Aα.
13: Let the packing be denoted by Pj. . Packing of proxy items
14: Sj ← φ. . the set of S-slots
15: for bin B in Pj do
16: Remove the small items in B.
17: Create an S-slot H of size equal to (1−weight of all the large items in B).
18: Sj ← Sj ∪H.
19: end for
20: for xi ∈ Tj do
21: if xi is large then
22: if ∃d ∈ L(Dj) such that d ≥ xi then
23: Find smallest such d.
24: L(Dj)← L(Dj) \ {d}.
25: Pack xi in place of d in the packing Pj.
26: else
27: Open a new bin and pack xi and close the bin.
28: end if
29: else
30: Try packing xi in Sj using Next-Fit.
31: if xi couldn’t be packed then
32: Open a new bin B′ with a single S-slot of unit capacity.
33: Sj ← Sj ∪B′.
34: Pack xi in B′.
35: end if
36: end if
37: end for
38: end for
39: end if

31

Page 48 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

from Lemma 3.1 in [RT93c].

Lemma 3.4. [RT93c] Let P be an instance for M. Then there exist constants a, C,K > 0 such

that,

P
[
U(P) ≥ K

√
n(log n)3/4

]
≤ C exp

(
−a(log n)3/2

)
Concentration Inequalities. Now we state the concentration inequalities. The following

observation will be used extensively.

Observation 3.5. For any instance I, W(I) ≤ Opt(I) ≤ 2W(I).

Lemma 3.6 (Bernstein’s Inequality). Let X1, X2, . . . , Xn be independent random variables such

that each Xi ∈ [0, 1]. Then, for any λ > 0, the following inequality holds.

P

[∣∣∣∣∣
n∑
i=1

Xi −
n∑
i=1

E [Xi]

∣∣∣∣∣ ≥ λ

]
≤ 2 exp

(
− λ2

2 (
∑n

i=1 E [Xi] + λ/3)

)
.

The following lemma is a direct implication of the results of [RT93b, Rhe94]. It intuitively

states that the optimal solution for a part of the input is almost a linear function of the length

of the part. This makes sense because each item comes from the same distribution.

Lemma 3.7. For any t ∈ [n], let I(1, t) denote the first t items of the input set I. Then there

exist constants K, a > 0 such that,

P
[
Opt(I(1, t)) ≥ t

n
E [Opt(I)] +K

√
n(log n)3/4

]
≤ exp

(
−a(log n)3/2

)
Proof. The following claim follows directly from Theorem 2.1 in [RT93b].

Claim 3.8. Let I be a list of n items sampled independently from a distribution and let I(1, t)

denote the first t items. Then there exist constants K1, a1 > 0 such that

P
[
Opt(I(1, t)) ≥ t

n
Opt(I) +K1

√
n(log n)3/4

]
≤ exp

(
−a1(log n)3/2

)
The next claim is a direct implication of the main result of [Rhe94].

Claim 3.9. Let I be a list of n items sampled independently from a distribution. Then there

exist constants K2, a2 > 0 such that

P
[
E [Opt(I)] ≥ Opt(I) +K2

√
n(log n)3/4

]
≤ exp

(
−a2(log n)3/2

)
32

Page 49 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

Combining both the claims, we obtain that there exist constants K, a > 0 such that

P
[
Opt(I(1, t)) ≥ t

n
E [Opt(I)] +K

√
n(log n)3/4

]
≤ exp

(
−a(log n)3/2

)

The next lemma states that the weight of the items of a part of the input is almost a linear

function of the length of the part.

Lemma 3.10. For an input set I of n items drawn from a distribution independently, for any

arbitrary but fixed 3 set J ⊆ I we have,

P
[∣∣∣∣W(J)− |J |

n
E [W(I)]

∣∣∣∣ ≥ E [W(I)]2/3
]
≤ 2 exp

(
−1

3
E [W(I)]1/3

)
Proof. We can assume that W(I) goes to infinity since we know that Opt(I) ≤ 2W(I) + 1. Let

K := E [W(I)] and W(x) be the weight of item x. Using Bernstein’s inequality (Lemma 3.6),

P

[∣∣∣∣∣∑
x∈J

W(x)−
∑
x∈J

E [W(x)]

∣∣∣∣∣ ≥ K2/3

]

≤ 2 exp

(
− K4/3

2
(∑

x∈J E [W(x)] +K2/3/3
))

≤ 2 exp

(
− K4/3

2 (K +K2/3/3)

)
≤ 2 exp

(
− K4/3

2 (K +K/3)

)
(since K goes to infinity, K2/3 ≤ K)

≤ 2 exp

(
−1

3
K1/3

)
.

Since
∑

x∈J W(x) = W(J) and since E [W(J)] = |J |
n
E [W(I)], the lemma follows.

The lemma below states that the number of large items in a part of the input is almost a

linear function of the length of the part.

Lemma 3.11. Let I be an input set of n items drawn from a distribution independently and

let J be any arbitrary but fixed subset of I. Suppose J` (resp. I`) denote the set of large items

3the indices of J must be fixed beforehand

33

Page 50 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

in J (resp. I). Then we have,

P
[∣∣∣∣|J`| − |J |n E [|I`|]

∣∣∣∣ ≥ E [W(I)]2/3
]
≤ 2 exp

(
−δ

3
E [W(I)]1/3

)
Proof. We can assume that W(I) goes to infinity. Let K := E [W(I)]. For any item x, let

Lx be the indicator random variable which denotes if the item x is a large item or not. Using

Bernstein’s inequality (Lemma 3.6),

P

[∣∣∣∣∣∑
x∈J

Lx −
∑
x∈J

E [Lx]

∣∣∣∣∣ ≥ K2/3

]

≤ 2 exp

(
− K4/3

2
(∑

x∈J E [Lx] +K2/3/3
))

= 2 exp

(
− K4/3

2 (E [|J`|] +K2/3/3)

)
(since

∑
x∈J Lx = |J`|)

≤ 2 exp

(
− K4/3

2 (K/δ +K2/3/3)

)
(since K = E [W(I)] ≥ δE [|J`|])

≤ 2 exp

(
−δ

3
K1/3

)
.

Since
∑

x∈J Lx = |J`| and since E [|J`|] = |J |
n
E [|I`|], the lemma follows.

Lemma 3.12 further tries to improve on Lemma 3.7 by bounding the lower order terms in

terms of E [Opt(I)] instead of n while losing only a small factor of 1 + 2δ. This is crucial since

we need to bound the number of additional bins used by our algorithm in terms of E [Opt(I)]

and not in terms of n.

Lemma 3.12. For any t ∈ {1, 2, . . . , n}, Suppose I(1, t) denote the first t items of the

input set I. Then there exist constants C, a > 0 such that with probability at least

1− exp
(
−a (logE [Opt(I)])1/3

)
, we have

Opt(I(1, t)) ≤ (1 + 2δ)
t

n
E [Opt(I)] + CE [Opt(I)]2/3

Proof. Let’s denote the set of large items in I(1, t) by I`(1, t) and denote the set of small items

by Is(1, t). Consider any optimal packing of I`(1, t). Start packing Is(1, t) in the spaces left in

the bins greedily using Next-Fit while opening new bins whenever necessary. This gives us a

valid packing of I(1, t).

34

Page 51 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

If we don’t open any new bins to pack Is(1, t), then by Lemma 3.7 for some constants

C1, C2 > 0,

Opt(I(1, t)) ≤ Opt (I`(1, t))

≤ |I`(1, t)|
|I`|

E [Opt(I`)] + C1

√
E [|I`|](logE [|I`|])3/4 (using Lemma 3.7)

≤ |I`(1, t)|
|I`|

E [Opt(I`)] + E [|I`|]2/3

≤
t
n
|E [|I`|]|+ E [W(I)]2/3

|I`|
E [Opt(I`)] + E [|I`|]2/3 (using Lemma 3.11)

≤
t
n

(
|I`|+ E [W(I)]2/3

)
+ E [W(I)]2/3

|I`|
E [Opt(I`)] + E [|I`|]2/3

(using Lemma 3.11)

≤ t

n
E [Opt(I)] + C1E [Opt(I)]2/3 (using W(I) ≥ δ |I`|)

with probability at least 1− exp
(
−a(logE [Opt(I)])1/3

)
for some constants a, C1 > 0.

On the other hand, if we open new bins while packing Is(1, t), then after the final packing,

every bin (except possibly one) is filled to a level of at least 1− δ. Hence, in this case,

Opt(I(1, t)) ≤ 1

1− δ
W(I(1, t)) + 1

≤ (1 + 2δ)
t

n
E [W(I)] + (1 + 2δ)E [W(I)]2/3 + 1

≤ (1 + 2δ)
t

n
E [Opt(I)] + C2E [Opt(I)]2/3

(using Opt(I) ≥W(I) and (1− δ)(1 + 2δ) ≥ 1 for δ < 1/2)

with probability at least 1−exp
(
−bE [Opt(I)]1/3

)
for some constants b, C2 > 0. This completes

the proof.

With these helpful lemmas, we now proceed to analyze the algorithm. We split the analysis

into the following two cases: when |L0| ≤ δ3 ·W(T0) and when |L0| > δ3 ·W(T0).

3.3.1.1 Analysis of Case 1: |L0| ≤ δ3 ·W(T0)

Recall that in this case, we just continue with Next-Fit for all the remaining items. To bound

the Next-Fit solution, we first consider the number of bins that contain at least one large item.

For this, we bound the value of |I`|. Then we consider the bins that contain only small items

and bound this value in terms of weight of all items W(I).

35

Page 52 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

Claim 3.13. Let K := E [Opt(I)]. For some positive constants C1, C2, a, we have that

P
[
|I`| ≤ δ ·W(T0) + C1K

2/3
]
≥ 1− C2 exp

(
−aK1/3

)
Proof. As the sampling stage contains δ2n items, E [|L0|] = δ2E [|I`|]. From Lemma 3.11, we

have

P
[
|L0| ≤ δ2E [|I`|]− E [W(I)]2/3

]
≤ 2 exp

(
−(δ/3) · (E [W(I)])1/3

)
, and

P
[
|I`| ≥ E [|I`|] + E [W(I)]2/3

]
≤ 2 exp

(
−(δ/3) · E [W(I)]1/3

)
From the above inequalities we have,

|I`| ≤
1

δ2
|L0|+

(
1 +

1

δ2

)
E [W(I)]2/3

with probability at least 1− 4 exp
(
− δ

3
E [W(I)]1/3

)
. We can use the inequalities E [Opt(I)] ≥

E [W(I)] and |L0| ≤ δ3 ·W(T0) to conclude the proof of this claim.

Now we bound the number of bins that are closed by small items. Note that Next-Fit fills

each such bin up to a capacity at least (1− δ). So, the number of such bins is at most 1
1−δW(I)

when all items are packed by Next-Fit. Also, there can be at most one bin that can be open.

Thus combining all these results, (and using inequality 1
1−δ ≤ 1 + 2δ for δ < 1

2
) with high

probability,

NF(I) ≤ |I`|+ (1 + 2δ)W(I) + 1 ≤ δ ·W(T0) + (1 + 2δ)W(I) +KE [Opt(I)]2/3

for some constant K.

Using Lemma 3.10, we get that with high probability, W(I) ≤ E [W(I)]+E [W(I)]2/3. Using

the facts W(I) ≥W(T0) and E [Opt(I)] /2 ≤ E [W(I)] ≤ E [Opt(I)], we get,

NF(I) ≤ (1 + 3δ)E [Opt(I)] + C3E [Opt(I)]2/3 (3.1)

with probability of at least 1 − C4 exp
(
−a1E [Opt(I)]1/3

)
for some constants C3, C4, a1 > 0.

When the low probability event occurs, we can use the upper bound of NF(I) ≤ 2Opt(I) − 1

36

Page 53 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

to obtain the competitive ratio. Let p = C4 exp
(
−a1E [Opt(I)]1/3

)
.

E [NF(I)] ≤ (1− p)
(

(1 + 3δ)E [Opt(I)] +KE [Opt(I)]2/3 + 1
)

+ p(2E [Opt(I)]− 1)

= (1 + 3δ + 2p)E [Opt(I)] + o(E [Opt(I)])

Since p = o(1) when E [Opt(I)] tends to infinity, we obtain that the expected competitive ratio

tends to at most 1 + 3δ < 1 + ε.

3.3.1.2 Analysis of Case 2: |L0| > δ3 ·W(T0)

We split our analysis in this case into two parts. We first analyze the number of bins used in

the sampling stage T0 and then analyze the number of bins used in the remaining stages.

Using Lemma 3.11, we obtain w.h.p. that |L0| ≤ δ2E [|I`|] + E [W(I)]2/3. Hence,

E [|I`|] ≥
1

δ2
|L0| −

1

δ2
E [W(I)]2/3

≥ δW(T0)−
1

δ2
E [W(I)]2/3 (since |L0| > δ3 ·W(T0))

≥ δ3E [W(I)]−
(
δ +

1

δ2

)
E [W(I)]2/3 (3.2)

The last inequality follows from Lemma 3.10. For any j ≥ 1, using |Tj|/n ≥ δ2 and using

Lemma 3.11, we get,

|Lj| ≥ δ5E [W(I)]− (2 + δ3)E [W(I)]2/3 (3.3)

Each of the Eqs. (3.2),(3.3) holds with a probability of at least 1− C exp
(
−aE [W(I)]1/3

)
for some constants C, a > 0.

Note that W(I) ≥ Opt(I)/2. So from now on, we assume that there exist constants C1, C2 >

0 which depend on δ such that w.h.p. both the following inequalities hold.

E [|I`|] ≥ C1 · E [Opt(I)] (3.4)

|Lj| ≥ C2 · E [Opt(I)] (3.5)

• Analysis of the Sampling Stage: Recall that the number of items considered in the

sampling stage is δ2n. We will bound the number of large items and the weight of items

in this stage using Bernstein’s inequality.

1. Since sampling stage has δ2n items, E [|L0|] = δ2E [|I`|]. By applying Bernstein’s

37

Page 54 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

inequality for X1, X2, . . . , X|T0| where Xi takes value 1 is xi is large and 0 otherwise,

we get,

P
[
|L0| ≥ 2δ2E [|I`|]

]
= P

[
|L0| ≥ E [|L0|] + δ2E [|I`|]

]
≤ 2 exp

(
− δ4E [|I`|]2

2E [|L0|] + 2
3
δ2E [|I`|]

)
≤ 2 exp

(
−1

3
δ2E [|I`|]

)
≤ 2 exp (−a1 · E [Opt(I)]) (from Eq. (3.4))

for some constant a1 > 0. So, with high probability, |L0| ≤ 2δ2E [|I`|] ≤
2δE [Opt(I)].

2. Similarly, E [W(T0)] = δ2E [W(I)]. By applying Bernstein’s inequality for

X1, X2, . . . , X|T0| where Xi takes value xi, we get,

P
[
W(T0) ≥ 2δ2E [W(I)]

]
= P

[
W(T0) ≥ E [W(S0)] + δ2E [W(I)]

]
≤ 2 exp

(
−δ4E [W(I)]2

2δ2E [W(T0)] + 2
3
δ2E [W(I)]

)

≤ 2 exp

(
−δ2

3
E [W(I)]

)
≤ 2 exp

(
−δ2E [Opt(I)]

6

)
So, with high probability we have, W(T0) ≤ 2δ2E [W(I)]≤ 2δ2E [Opt(I)].

Since the number of bins opened by Next-Fit NF(T0) is at most |L0| + 1
1−δW(T0) + 1,

using the bounds on the number of large items and weight of small items in sampling

stage, w.h.p. we have,

NF(T0) ≤ 2δE [Opt(I)] +
2δ2

1− δ
E [Opt(I)] ≤ 4δE [Opt(I)] (3.6)

• Analysis of the Remaining Stages: Consider any stage Tj (j > 0) after the sampling

stage. Note that |Tj−1| = |Tj|. A bin can be opened in three different ways.

1. When a new bin is opened while packing the set of proxy items Dj using Aα (see

the algorithm description in Section 3.3.1, and line 12 in Algorithm 1).

2. When a large item can’t replace a proxy item and hence a new bin is opened for it

(line 27 in Algorithm 1).

38

Page 55 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

3. When a small item can’t fit in the set of S-slots and hence a new bin is opened with

a single S-slot spanning the entire bin (line 32 in Algorithm 1).

In our analysis, first we bound the number of bins opened by Aα for proxy items; we use

Lemma 3.12 to obtain this bound. Then we show that the number of large items which

cannot replace a proxy item would be very small by using upright matching arguments

(Lemma 3.4). For small items, we bound the number of new bins opened by using the fact

that W(Sj) and W(Sj−1) are very close which will be proved using Bernstein’s inequality.

Now we analyze the number of bins opened in the first way (say Ajproxy). This is nothing

but the number of bins opened by Aα to pack Dj (which is nothing but Tj−1). Since, Aα

has an AAR of α, by using Lemma 3.12, we have,

Ajproxy = Aα(Tj−1)

≤ αOpt(Tj−1) + o(Opt(Tj−1))

≤ α(1 + 2δ)
|Tj−1|
n

E [Opt(I)] + C3E [Opt(I)]2/3 + o(Opt(I)) (3.7)

with probability at least 1− exp
(
−a2 log(E [Opt(I)])1/3

)
, for some constants C3, a2 > 0.

We now bound the number of bins opened in the second way. Using Lemma 3.11, we get

that w.h.p., |Lj−1| ≥ |Tj−1|
n

E [|I`|] − E [W(I)]2/3, and |Lj−1| ≤ |Tj−1|
n

E [|I`|] + E [W(I)]2/3.

Since |Tj−1| = |Tj| we have w.h.p,

|Lj| ≤ |Lj−1|+ 2E [W(I)]2/3 . (3.8)

So, w.h.p. the number of large items in stage Tj doesn’t exceed that of those in stage Tj−1

by a large number. Now consider the number of bins opened because there is no feasible

proxy item that can be replaced i.e., when the if condition at line 22 of Algorithm 1

fails and hence we execute line 27. Let this number be Ajunmatch. We can interpret

this number as the number of unmatched items when we use the stochastic matching

variant M from [RT93c] as follows. We can interpret each item t ∈ Lj−1 as a point

Pt := (+1, t) and each point t ∈ Lj as a point Pt := (−1, t). For simplicity, let’s call

the points with +1 as their first coordinate as plus points and the points with −1 as

their first coordinate as minus points. We match a point Pt with Pt iff t replaced t in

our algorithm. It is shown in [Sho86] that such matching is always maximum. Hence

39

Page 56 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

the number of items that open new bins is at most the number of unmatched points

in this maximum matching. There are two differences though. First, |Lj−1| may not be

greater than |Lj|; but as we have shown, w.h.p, the difference can at most be 2E [W(I)]2/3.

Secondly, in the matching variant M, every point has equal chance to be a plus point or

minus point. However, this is also inconsequential, since using concentration bounds for

binomial random variables, we can show that the number of plus points/minus points

lie in the range
(
E [|Lj−1|]± E [|Lj−1|]2/3

)
w.h.p. Hence by Lemma 3.4, we obtain that

there exist constants a3, C4, K1 s.t.

P
[
Ajunmatch ≥ K1

√
|Lj−1| (log |Lj−1|)3/4 + 2E [W(I)]2/3 + 2E [|Lj−1|]2/3

]
≤ C4 exp

(
−a3(log |Lj−1|)3/2

)
We can simplify the above inequality using Eqs. (3.5) and (3.8) and the fact that Opt(I) ≤
2W(I) to obtain that there exist constants a4, C4, K2 > 0 such that,

P
[
Ajunmatch ≥ K2E [Opt(I)]2/3

]
≤ C4 exp

(
−a4(logE [Opt(I)])3/2

)
(3.9)

The only part left is to bound the number of bins opened by small items in third way.

Let this number be Ajsmall. We will bound this by using the concentration of weights of

small items in Tj−1 and Tj. Consider the random variables X1, X2 . . . Xn where Xi = 0 if

xi is large, and Xi = xi otherwise. We have that

W(Sj) =
∑

Xi:xi∈Tj

Xi and W(Sj−1) =
∑

Xi:xi∈Tj−1

Xi

By applying Bernstein’s inequality (similar to Lemma 3.10) we get,

W(Sj) ≤
|Tj|
n

W(Is) + E [W(I)]2/3 , and

W(Sj−1) ≥
|Tj−1|
n

W(Is)− E [W(I)]2/3

with a probability of at least 1−C5 exp
(
−a5E [W(I)]1/3

)
for some constants C5, a5 > 0.

Combining both, we get,

W(Sj) ≤W(Sj−1) + 2E [W(I)]2/3 (3.10)

40

Page 57 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

The initial allocated space for small items at the start of stage j in the proxy packing

Pj (i.e., the total size of all the S-slots in Pj) is W(Sj−1). Recall that B
(k)
j denotes the

kth bin in the packing of Pj. While packing the small items, if the S-slot in B
(k)
j cannot

accommodate a small item, this means that the remaining space in this S-slot is at most δ.

So, the weight of small items which overflow the space allocated in packing Pj is at most

W(Sj)−W(Sj−1)+δ |Pj| and this entire weight is packed in new bins opened exclusively for

small items. Each of these bins (except possibly one) have an occupancy of at least (1−δ).
Since Aα is α-approximation algorithm, |Pj| = Aα(Tj−1) ≤ αOpt(Tj−1) + o(Opt(I)).

Using Eqs. (3.7) and (3.10) we get,

Ajsmall ≤
1

1− δ
(W(Sj)−W(Sj−1) + δ · αOpt(Tj−1) + o(Opt(I))) + 1

≤ 2δ · α |Tj−1|
n

E [Opt(I)] + C3E [Opt(I)]2/3 + o(Opt(I)) (3.11)

with high probability. Combining Eqs. (3.7), (3.9) and (3.11), the number of bins, Aj,

opened in the stage j is bounded as,

Aj = Ajproxy + Ajunmatch + Ajsmall

≤ α(1 + 4δ)
|Tj−1|
n

E [Opt(I)] + C6E [Opt(I)]2/3 + o(Opt(I))

≤ α(1 + 4δ)
|Tj|
n

E [Opt(I)] + C6E [Opt(I)]2/3 + o(Opt(I)) (3.12)

w.h.p., for some constant C6. To bound the sum of all Ajs, first note that the number

of “remaining stages” is m− 1 which is a constant dependent on δ. Hence, with high

probability,

m−1∑
j=1

Aj ≤ α(1 + 4δ)
m−1∑
j=1

|Tj−1|
n

E [Opt(I)] + (m− 1) · C6E [Opt(I)]2/3 + o(Opt(I))

≤ α(1 + 4δ)E [Opt(I)] + C7E [Opt(I)]2/3 + o(Opt(I)) (3.13)

for some constant C7 > 0 dependent on δ.

For the sampling stage, from Eq. (3.6), we have NF(T0) ≤ 4δE [Opt(I)] with high probability

and in all the remaining phases we have

m−1∑
j=1

Aj ≤ α(1 + 4δ)E [Opt(I)] + C7E [Opt(I)]2/3 + o(Opt(I))

41

Page 58 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

Combining both the results we get that w.h.p. the number of bins opened by Alg is,

Alg(I) ≤ α(1 + 8δ)E [Opt(I)] + C7E [Opt(I)]2/3 + o(Opt(I))

≤ α(1 + ε)E [Opt(I)] + C7E [Opt(I)]2/3 + o(Opt(I)) (3.14)

In the low probability event when Eq. (3.14) may not hold, we can bound Alg(I) as follows.

In the sampling stage, we have that NF(T0) ≤ 2Opt(I)−1. For the remaining stages, we bound

the number of bins containing at least one large item and the number of bins containing only

small items. Each large item is considered at most twice in the packing: first - when it arrives in

the input list, second - when it takes the role of a proxy item. So, the number of bins containing

at least one large item is at most 2 |I`|. In each stage, with one possible exception, every bin

opened which has only small items has an occupancy of at least (1− δ). Combining over all the

stages, the number of bins which contain only small items is at most 1
1−δW(Is) +m. Thus, we

can bound the total number of bins used by Alg to be at most 2Opt(I) + 2 |I`|+ 1
1−δW(Is) +m.

On the other hand, we know that Opt(I) ≥ W(I) ≥ δ |I`| + W(Is). Hence, we obtain that

2 |I`|+ 1
1−δW(Is) ≤ 2

δ(1−δ)Opt(I). Combining all these, we obtain that

Alg(I) ≤
(

2 +
2

δ(1− δ)

)
Opt(I) +m (3.15)

Now, to obtain the competitive ratio, suppose Eq. (3.14) holds with probability p (= 1− o(1)).

We combine Eqs. (3.14) and (3.15) similar to the case when |L0| ≤ δ3 ·W(T0).

E [Alg(I)] ≤ p(α(1 + 8δ)E [Opt(I)] + o(E [Opt(I)]))

+ (1− p)
((

2 +
2

δ(1− δ)

)
E [Opt(I)] +m

)
≤ α(1 + ε)E [Opt(I)] + o(E [Opt(I)]) (since 1− p = o(1) and δ ≤ ε/8)

Scaling the initial value ε to ε/α before the start of the algorithm, we obtain a competitive

ratio of α + ε.

3.3.2 Getting Rid of the Assumption on the Knowledge of the Input

Size

In this subsection, we will extend Alg to devise an algorithm for online bin packing with i.i.d.

items that guarantees essentially the same competitive ratio without knowing the value of n.

We denote this algorithm by ImpAlg.

42

Page 59 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

Let µ := δ2. We first guess the value of n to be a constant n0 := 1/δ3. Then, we run Alg

until min{n, n0} items arrive (here, if min{n, n0} = n, then it means that the input stream

has ended before n0 items have arrived). If n > n0, i.e., if there are more items to arrive, then

we revise our estimate of n by multiplying it with (1 + µ), i.e., the new value of n is set as

n1 := (1 + µ)n0. We start Alg afresh on the next min{n, n1} − n0 items. If n > (1 + µ)n0,

then we set the new guess of n to be n2 := (1 + µ)n1 = (1 + µ)2n0 and start Alg afresh on the

next min{n, n2} − n1 number of items. We continue this process of multiplying our estimate

of n with (1 + µ) until all the items arrive. See Fig. 3.1 for an illustration. The pseudocode is

provided in Algorithm 2.

Figure 3.1: The division of input into super-stages to get rid of the assumption on the

knowledge of n. The (j+ 1)th super-stage is denoted by Γj. Stage Γ0 contains n0 = 1/δ3 items,

Γ0 ∪ Γ1 contains (1 + µ)n0 items, Γ0 ∪ Γ1 ∪ Γ2 contains (1 + µ)2n0 items and so on. The last

super-stage may not be full, but since it is very small in size compared to the entire input, it

doesn’t affect the performance of the algorithm.

We consider the following partition of the entire input into super-stages as follows: The

first super-stage, Γ0, contains the first n0 items. The second super-stage, Γ1, contains the next

n1 − n0 items. In general, for i > 0, the (i + 1)th super-stage, Γi, contains min{ni, n} − ni−1
items which are given by xni−1+1, xni−1+2, . . . , xmin{n,ni}. So, essentially, ImpAlg can be thought

of running Alg on each super-stage separately. The number of super-stages is given by κ :=⌈
log(1+µ)(n/n0)

⌉
.

Note that |Γ0| = n0, |Γ1| = µn0, |Γ2| = µ(1 + µ)n0 and so on. In general, for j ∈ [κ − 2],

|Γj| = µ(1 + µ)j−1n0. Now consider the last super-stage Γκ−1 and note that it may not be full,

i.e., it can be the case that |Γκ−1| < µ(1 + µ)κ−2n0. So, Alg may pack the last super-stage

inefficiently. However, note that |Γκ−1| can be at most µ(1 + µ)κ−2n0 ≤ µn. Hence the last

super-stage contains only a tiny fraction of the input and so, this will have very little effect on

the packing of the entire input.

3.3.2.1 Analysis

When n was known we only had O(1) number of stages. However, now we can have κ =⌈
log(1+µ)(n/n0)

⌉
number of super-stages. There can arise two problems:

• We can not analyze each super-stage individually and then sum up the performance guar-

43

Page 60 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

Algorithm 2 ImpAlg: Improving Alg to get rid of the assumption on the knowledge of the
number of items

1: Input: In(D) = {x1, x2, ..., xn}.
2: n−1 ← 0;n0 ← 1

δ3
; for j ≥ 1, nj = (1 + µ)nj−1

3: i← 0
4: while true do
5: Run Alg(xni−1+1, xni−1+2, . . . , xmin{ni,n})
6: if the input stream has ended then
7: return the packing
8: else
9: i← i+ 1

10: end if
11: end while

antees, as we can not use union bound for a super-constant number of events. Moreover,

we can’t even use the analysis of Alg for the first few super-stages since they might only

have a constant number of items. So, we consider the κ1 :=
⌈
log(1+µ)(δ

7n)
⌉

number of the

initial super-stages at a time. We show that these initial super-stages contain only a small

fraction of the entire input. Each of the final (κ − κ1) super-stages can be individually

analyzed using the analysis of Alg.

• For each super-stage, we can have a constant number of S-bins (bins which contain

only small items) with less occupancy. However, since the number of super-stages itself

is a super-constant, this can result in a lot of wasted space. For this, we exploit the

monotonicity of Next-Fit to ensure that we can pack small items from a super-stage into

empty slots for small items from the previous stages.

We will now proceed to analyze ImpAlg. Recall that the number of super-stages is given by

κ =
⌈
log(1+µ)(n/n0)

⌉
where n0 was defined to be 1/δ3. We will split the analysis into two parts.

First, we will analyze the number of bins used by our algorithm in the first κ1 :=
⌈
log(1+µ)(δ

7n)
⌉

super-stages as a whole. Then, we will analyze the final κ2 := κ− κ1 super-stages considering

each one at a time. We call the first κ1 super-stages as initial super-stages and the remaining

κ2 super-stages as final super-stages.

Analysis of the initial super-stages: The basic intuition of the analysis of our algorithm in

the initial super-stages is as follows: Since only a small fraction of the entire input is present in

these κ1 super-stages, our algorithm uses only a small fraction of bins compared to the optimal

packing of the entire input. So, we bound the number of large items and the weight of small

items and thus bound the number of bins used.

44

Page 61 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

Lemma 3.14. Let A be an algorithm for online bin packing such that in the packing output

by A, every bin (except possibly a constant number of bins τ) which contains only small items

has an occupancy of at least (1 − δ). Let I be a sequence of n i.i.d. items and let J be any

contiguous subsequence of I having size βn (0 < β ≤ 1). Suppose A works in a way such that it

packs at most ν copies of any large item where ν is a constant4. Then the following inequality

holds with high probability.

A(J) ≤ 2βν

δ(1− δ)
E [Opt(I)] + o(E [Opt(I)])

Proof. Let J`, I` respectively denote the set of large items in J, I and let Js, Is respectively

denote the set of small items in J, I. We prove the lemma considering two cases.

First, we consider the case when |J`| ≤ δOpt(J). The number of bins in the packing of J by

A which contain at least one large item is upper bounded by ν |J`|. The number of bins which

contain only small items is upper bounded by W(Js)/(1− δ) + τ . Hence,

A(J) ≤ ν |J`|+
W(Js)

1− δ
+ τ

≤ νδOpt(J) +
Opt(J)

1− δ
+ τ

=
1 + ν(1− δ)δ

1− δ
Opt(J) + τ

≤ 2ν(1 + δ)Opt(J) + τ (since 0 < δ < 1/2 and ν ≥ 1)

≤ 2βν(1 + δ)(1 + 2δ)E [Opt(I)] + C0E [Opt(I)]2/3 w.h.p. for some constant C0

(using Lemma 3.12)

≤ 2βν

δ(1− δ)
E [Opt(I)] + o(E [Opt(I)]) (since δ < 1/2, 1 + δ < 1

1−δ and 1 + 2δ < 1
δ
)

Next, we consider the case when |J`| > δOpt(J). We will again bound the quantity ν |J`| +
W(Js)
1−δ + τ . To bound |J`|, we use Bernstein’s inequality (Lemma 3.6). Let X1, X2, . . . , X|J | be

random variables where Xi takes value 1 if the ith item in J is large and 0 otherwise. Then,

clearly, |J`| =
∑|J |

i=1Xj. Also, note that E [|J`|] = βE [|I`|]. Moreover, we can derive the

4For example, Alg does this. For each stage, it computes the proxy packing of the previous stage. Hence,
every large item is potentially packed twice. In the worst case, these copies may not get replaced, thus resulting
in wasted space.

45

Page 62 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

following inequalities that hold with high probability.

E [|I`|] ≥
1

β
|J`| −

1

β
E [W(I)]2/3 (using Lemma 3.11)

≥ δ

β
Opt(J)− 1

β
E [W(I)]2/3

≥ δ

β
W(J)− 1

β
E [W(I)]2/3

≥ δ

β

(
βE [W(I)]− E [W(I)]2/3

)
− 1

β
E [W(I)]2/3 (using Lemma 3.10)

≥ δ

2
E [Opt(I)]− o(E [Opt(I)]) (since W(I) ≤ Opt(I) ≤ 2W(I))

Hence, from now on, we will assume that there exists a constant a1 > 0 such that

E [|I`|] ≥ a1E [Opt(I)] (3.16)

holds with high probability. Using Bernstein’s inequality (Lemma 3.6),

P [|J`| ≥ 2βE [|I`|]] = P [|J`| ≥ E [|J`|] + βE [I`]]

≤ 2 exp

(
− β2E [|I`|]2

2E [|J`|] + 2
3
βE [|I`|]

)

= 2 exp

(
−3

8
βE [|I`|]

)
≤ 2 exp

(
−3

8
βa1 · E [Opt(I)]

)
(from Eq. (3.16))

Now to bound W(Js), we will again use Bernstein’s inequality on a new set of random variables

X1, X2, . . . , X|J | where Xi equals the weight of the ith item in J if it is small and 0 otherwise.

Clearly,
∑|J |

i=1Xi = W(Js) and E [W(Js)] = βE [W(Is)] ≤ βE [W(I)]. Thus,

P [W(Js) ≥ 2βE [W(I)]] ≤ P [W(Js) ≥ E [W(Js)] + βE [W(I)]]

≤ 2 exp

(
−β2E [W(I)]2

2E [W(Js)] + 2
3
βE [W(I)]

)

= 2 exp

(
−3β

8
E [W(I)]

)
≤ 2 exp

(
−3βE [Opt(I)]

16

)
(since 2W(I) ≥ Opt(I))

46

Page 63 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

Thus, with high probability, we have that |J`| ≤ 2βE [|I`|] and W(Js) ≤ 2βE [W(I)]. Hence,

A(J) ≤ ν |J`|+
W(Js)

1− δ
+ τ

≤ 2νβE [|I`|] +
2βE [W(I)]

1− δ
+ τ

≤ 2νβ

δ
E [Opt(I)] +

2βE [Opt(I)]

1− δ
+ τ

=
2νβ

δ(1− δ)
E [Opt(I)] + o(E [Opt(I)])

This completes the proof.

With the help of the above lemma, we proceed to analyze ImpAlg for the initial (first κ1)

super-stages. Note that the number of items in the initial super-stages is given by (1+ε)κ1−1n0 ≤
(δ7n)n0 = δ4n. Since Alg satisfies the properties of A in Lemma 3.14 and ImpAlg just applies

Alg multiple times, we can use Lemma 3.14 to analyze ImpAlg.

There is one difficulty though. Let’s call a bin which contains only small items to be an

S-bin. Although in a super-stage the number of S-bins not filled up to a level of at least (1− δ)
is a constant, the number of initial super-stages itself is not a constant. We can work around

this problem by continuing (Next-Fit) NF to pack the small items in the S-slots created during

the previous stages and the previous super-stages as well. In other words, instead of packing

the small items of a stage in S-slots created only during that stage, we keep a global set of

S-slots and pack the small items in them using NF. We now have to show that our algorithm

doesn’t increase the number of bins with this change. Since the way in which the large items

are packed hasn’t changed, the number of bins that contain large items does not change. Since

NF is monotone (even with varying bin sizes, [Mur88]), the number of bins containing only the

small items will either decrease or stays the same.

Using Lemma 3.14 with β = δ4 and ν = 2 (since in each super-stage, a large item is packed

at most twice – once when it arrives as a real item, and once when it is used as a proxy item),

we obtain that with high probability,

Alg(Γ0) + Alg(Γ1) + · · ·+ Alg(Γκ1−1) ≤
2(2)δ4

δ(1− δ)
E [Opt(I)] + o(E [Opt(I)])

≤ 8δ3E [Opt(I)] + o(E [Opt(I)])

≤ 8δE [Opt(I)] + o(E [Opt(I)]) (3.17)

Analysis of the final super-stages: For this part, the important thing to note is that

47

Page 64 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

κ2 ≤
⌈
log(1+µ)(1/(δ

7n0))
⌉

is a constant. Moreover, since the number of items in the initial

super-stages is at least δ4n/(1 + µ), each of the final super-stages has at least µδ4n/(1 + µ)

items (which tends to infinity in the limiting case). Thus, we can use the analysis of Alg for

each of these final super-stages. As mentioned, since the last super-stage might not be full, we

analyze the last super-stage differently. All the other super-stages are full. So, we can directly

use the analysis of Alg. For all κ1 ≤ i < κ− 1, from the analysis of Alg (Eq. (3.14)), we have

that with high probability

Alg(Γi) ≤ α(1 + 8δ)E [Opt(Γi)] + CE [Opt(Γi)]
2/3 + o(Opt(Γi))

for some constant C.

Now, to bound Opt(Γi) in terms of Opt(I), we can use Lemma 3.12. Thus, the above

inequality transforms into

Alg(Γi) ≤ α(1 + 8δ)(1 + 2δ)
|Γi|
n

E [Opt(I)] + C1E [Opt(Γi)]
2/3 + o(Opt(Γi))

≤ α(1 + 8δ)(1 + 2δ)
|Γi|
n

E [Opt(I)] + C1E [Opt(I)]2/3 + o(Opt(I))

for some constant C1. Summing over all i (κ1 ≤ i < κ − 1), and observing that κ − κ1 is a

constant, we obtain that with high probability,

Alg(Γκ1) + Alg(Γκ1+1) + · · ·+ Alg(Γκ−2)

≤α(1 + 8δ)(1 + 2δ)
κ−2∑
i=κ1

|Γi|
n

E [Opt(I)] + C2E [Opt(I)]2/3 + o(Opt(I))

≤α(1 + 26δ)
κ−2∑
i=κ1

|Γi|
n

E [Opt(I)] + C2E [Opt(I)]2/3 + o(Opt(I))

≤α(1 + 26δ)E [Opt(I)] + C2E [Opt(I)]2/3 + o(Opt(I)) (3.18)

for some constant C2.

Now consider the last super-stage Γκ−1. If |Γκ−1| is exactly equal to nκ−1 − nκ−2, then we

can obtain the same bound as Eq. (3.18). However, this might not be the case. The last

48

Page 65 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

super-stage contains n− nκ−2 items.

n− nκ−2 ≤ nκ−1 − nκ−2 = (1 + µ)κ−1n0 − (1 + µ)κ−2n0 = µ(1 + µ)κ−2n0

= µnκ−2

≤ µn

Hence, the size of the last super-stage is at most µ fraction of the entire input size. We will

again use Lemma 3.14 with β = µ and ν = 2 for the last super-stage. We thus obtain that

Alg(Γκ−1) ≤
(2)(2)(|Γκ−1| /n)

nδ(1− δ)
E [Opt(I)] + o(E [Opt(I)])

≤ 4µ

δ(1− δ)
E [Opt(I)] + o(E [Opt(I)])

≤ 8δE [Opt(I)] + o(E [Opt(I)]) (3.19)

with high probability. The last inequality follows since µ = δ2 and δ < 1/2.

Summing Eqs. (3.17) to (3.19), we obtain that with high probability, for some constant C4,

ImpAlg (I) =

κ1−1∑
j=0

Alg(Γj) +
κ−2∑
j=κ1

Alg(Γj) + Alg(Γκ−1)

≤ (α(1 + 26δ) + 16δ)E [Opt(I)] + C2E [Opt(I)]2/3 + o(E [Opt(I)]) + o(Opt(I))

≤ α(1 + 42δ)E [Opt(I)] + C2E [Opt(I)]2/3 + o(E [Opt(I)]) + o(Opt(I)) (3.20)

Eq. (3.20) holds with high probability, say p = 1 − o(1). In the scenario where the low

probability event occurs, we can bound the number of bins used by ImpAlg using Lemma 3.14

with β = 1 and ν = 2:

ImpAlg(I) ≤ 2 · 2
δ(1− δ)

E [Opt(I)] + o(E [Opt(I)])

49

Page 66 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

Let E be the event when Eq. (3.20) holds. Then

E [ImpAlg(I)] = E [ImpAlg(I)|E]P [E] + E
[
ImpAlg(I)|E

]
P
[
E
]

≤
(

(α (1 + 42δ))E [Opt(I)] + o(E [Opt(I)])
)

(1− o(1))

+

(
4

δ(1− δ)
E [Opt(I)] + 1

)
o(1)

= (α (1 + 42δ))E [Opt(I)] + o(E [Opt(I)]

Choosing δ = ε
42α

ensures that the competitive ratio of ImpAlg is α + ε.

3.4 Best-Fit under the Random-Order Model

In this section, we will prove Theorems 3.2 and 3.3.

3.4.1 When Item Sizes are Larger than 1/3

First, let us recall upright matching and a related result that we will be using.

Upright Matching Problem. For a positive integer k, let Sk denote the set of all permuta-

tions of [k]. Consider a set of points P in the two-dimensional coordinate system. Suppose each

item is marked as a plus point or a minus point. Let P+ denote the set of plus points and let P−

denote the set of minus points. An edge exists between two points p+, p− iff p+ ∈ P+, p− ∈ P−

and iff p+ lies above and to the right of p−, i.e., both the coordinates of p+ are greater than or

equal to the corresponding coordinates of p−. The objective is to find a maximum matching

in this graph or, in other words, minimize the number of unmatched points. We denote the

number of unmatched points by U(P).

We will use the following variant of upright matching to prove the final result. Refer to

[Car19] for the proof of the following lemma.

Lemma 3.15. [Car19] Let k ∈ N and let A = {a1, a2, . . . , a2k} such that ai ≥ ak+i for all

i ∈ [k]. Define a set of plus points P+ = {(i, ai) : i ∈ [k]} and a set of minus points

P− = {(i, ai) : k < i ≤ 2k}. Suppose we randomly permute the x-coordinates of P+ ∪ P−, i.e.,

for a uniform random permutation π ∈ S2k, we redefine P+ and P− as P+ = {(π(i), ai) : i ∈ [k]}
and P− = {(π(i), ai) : k < i ≤ 2k}. Let P = P+ ∪ P−. Then, there exist universal constants

a, C,K > 0 such that

P
[
U(P) ≥ K

√
k(log k)3/4

]
≤ C exp(−a(log k)3/2) (3.21)

Remark 3.16. In the above lemma, if we change the definitions of P+, P− to be P+
new =

50

Page 67 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

{(−π(i), ai) : i ∈ [k]}, P−new = {(−π(i), ai) : k < i ≤ 2k}, the guarantee given by Eq. (3.21)

doesn’t change since the new set P+
new ∪P−new can be constructed by taking a mirror image of the

original set P+ ∪ P− with respect to the y-axis. Since we consider random permutations, the

probability of a set and its mirror image is the same.

With the above lemma and remark at hand, we now proceed to prove Theorem 3.2. Albers

et al. [AKL21a] showed that the random-order ratio of the Best-Fit algorithm is at most 1.25

when all the item sizes are more than 1/3. In this section, we improve it further and show that,

Best-Fit for this special case under the random-order model is nearly optimal. We first show

that the Modified Best-Fit algorithm [CJJLS93] is nearly optimal and we analyze this using the

above variant of stochastic upright matching. The Modified Best-Fit (MBF) algorithm is the

same as BF except that it closes a bin if it receives an item of size less than 1/2. Shor[Sho86]

showed that MBF dominates BF, i.e., for any instance I, BF(I) ≤ MBF(I). MBF can be

easily reduced to upright matching as follows. Given an instance I = {x1, . . . , xn}, for any item

xi ∈ I, xi ∈ P− if xi ≤ 1/2 with x-coordinate as −i and y-coordinate as xi, and xi ∈ P+ if

xi > 1/2 with x-coordinate as −i and y-coordinate as 1− xi. So, any item xs of size ≤ 1/2 can

be matched with an item x` of size > 1/2 if and only if, x` arrives before xs and the remaining

space in the bin occupied by x` is more than the size of xs.

Define an item xi as a large item (L) if xi > 1/2; otherwise, as a medium item (M) if

xi ∈ (1/3, 1/2]. We define a bin as LM -bin if it contains one large item and one medium item.

We use the following lemma which was proved in [AKL21a] using the monotonicity property of

BF when all item sizes are more than 1/3.

Lemma 3.17. [AKL21a] Let I be any list that can be packed into Opt(I) number of LM-bins.

If Best-Fit has an AAR of α for I, then it has an AAR of α for any list of items larger than

1/3 as well.

Consider an input instance which has an optimal packing containing only LM -bins. Con-

sider the number of bins opened by MBF for such instances. Each large item definitely opens

a new bin, and a medium item opens a new bin if and only if it can not be placed along with

a large item, i.e., it is “unmatched”. So, the number of bins opened by MBF equals (number

of large items+number of unmatched medium items). Now, we will prove our result.

Theorem 3.18. For any list I of items larger than 1/3, the random-order ratio RR∞BF = 1.

Proof. From Lemma 3.17, it is enough to prove the theorem for any list I that can be packed

in Opt(I) LM -bins. So, we can assume that I has k large items and k medium items where

Opt(I) = k. Now consider the packing of MBF for a randomly permuted list Iσ. We have,

51

Page 68 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

MBF(Iσ) = (k + number of unmatched medium items). Since the optimal packing has all the

items matched, we can reduce the following case into the matching variant in Lemma 3.15: Let

`i,mi denote the sizes of the large item and the medium item respectively in the ith bin of the

optimal solution. For i ∈ [k], we let ai = 1 − `i and ak+i = mi and let A = {a1, a2, . . . , a2k}.
Note that the required condition in Lemma 3.15, i.e., ai ≥ ak+i is satisfied.

The arrival order is randomly sampled from S2k. So, we have

MBF(Iσ) = k +
U(P)

2
≤ k +K

√
k(log k)3/4

with probability of at least 1 − C exp(−a(log k)3/2) for some universal constants a, C,K > 0.

Since MBF dominates BF we have

P
[
BF(Iσ) ≤ k +K

√
k(log k)3/4

]
≥ 1− C exp(−a(log k)3/2).

In case the high probability event does not occur, we can use the bound of BF(I) ≤ 1.7Opt(I)+

2. Let p := C exp(−a(log k)3/2). Then

E [BF(Iσ)] ≤ p(1.7E [k] + 2) + (1− p)(E [k] +K
√

E [k](logE [k])3/4)

≤ E [Opt(I)] + o(E [Opt(I)]) (since p = o(1))

So, we get: RR∞BF = lim sup
k→∞

(
sup

I:Opt(I)=k

(E[BF(Iσ)]/Opt(I))

)
= 1. This completes the proof.

3.4.2 The 3-Partition Problem under Random-Order Model

In this section, we analyze the Best-Fit algorithm under the random-order model given that

the item sizes lie in the range (1/4, 1/2], and thus prove Theorem 3.3. We call an item small if

its size lies in the range (1/4, 1/3] and medium if its size lies in the range (1/3, 1/2]. Let I be

the input list of items and let n := |I|. Recall that given σ, a uniform random permutation of

[n], Iσ denotes the list I permuted according to σ. We denote by Opt(Iσ), the number of bins

used in the optimal packing of Iσ and by BF(Iσ), the number of bins used by Best-Fit to pack

Iσ. Note that Opt(Iσ) = Opt(I).

If there exists a set of three small items in Iσ such that they arrive as three consecutive

items, we call that set to be an S-triplet. We call a bin to be a k-bin if it contains exactly k

items, for k ∈ {1, 2, 3}. We sometimes refer to a bin by mentioning its contents more specifically

as follows: An MS-bin is a 2-bin which contains a medium item and a small item. Similarly, an

SSS-bin is a 3-bin which contains three small items. Likewise, we can define an M -bin, S-bin,

52

Page 69 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

MM -bin, SS-bin, MMS-bin, and MSS-bin.

Since the item sizes lie in (1/4, 1/2], any bin in the optimal packing contains at most three

items. For the same reason, in the packing by Best-Fit, every bin (with one possible exception)

contains at least two items. This trivially shows that the ECR of Best-Fit is at most 3/2. To

break the barrier of 3/2, we use the following observations.

• Any 3-bin must contain a small item.

• So, if the optimal solution contains a lot of 3-bins, then it means that the input set

contains a lot of small items.

We will prove that if there exist many small items in the input, then with high probability,

in a random permutation of the input, there exist many disjoint S-triplets.

Claim 3.19. Let m be the number of small items in the input set I, and let Xσ denote the

maximum number of mutually disjoint S-triplets in Iσ. Suppose m ≥ cn where c = 0.00033,

then the following statements hold true:

1. E [Xσ] ≥ m3/(3n2)≥ c3n/3.

2. Xσ ≥ c3n/3− o(n) with high probability.

We defer the proof of the above claim to Section 3.4.2.1. Then, we prove that Best-Fit packs

at least one small item from an S-triplet in a 3-bin or in an SS-bin.

Claim 3.20. Let {S1, S2, S3} be an S-triplet in I such that S3 follows S2 which in turn follows

S1. Then, in the final packing of Best-Fit of I, at least one of S1, S2, S3 is packed in a 3-bin or

in an SS-bin.

Proof. There are three cases we need to consider.

• If S1 is going to be packed in a 2-bin. Then after packing S1, this bin becomes a 3-bin

and hence the claim holds.

• Suppose S1 is going to be packed in a 1-bin B. Then just before the arrival of S1, B must

have been the only 1-bin and hence, after packing S1, each bin is either a 2-bin or a 3-bin.

– Now, if one of S2, S3 is packed into a 2-bin, then the bin becomes a 3-bin and the

claim follows.

– Otherwise, both S2, S3 are packed into a single new SS-bin and hence the claim

follows.

53

Page 70 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

• Suppose S1 is packed in a new bin. Then just prior to the arrival of S2, every bin is either

a 2-bin or 3-bin except the bin containing S1. Thus, S2 is either packed in a 2-bin (thus

becoming a 3-bin) or packed in the bin containing S1, resulting in an SS-bin.

But the number of SS-bins in the final packing of Best-Fit can be at most one. So, we

obtain that the number of 3-bins in the Best-Fit packing is significant. With these arguments,

we can prove Theorem 3.3 follows.

Proof of Theorem 3.3. Consider the final Best-Fit packing of Iσ. Let X3 be the number of

3-bins. The remaining (n− 3X3) items are packed in 2-bins and at most one 1-bin. Therefore,

BF(Iσ) ≤ X3 +
n− 3X3

2
+ 1 =

n−X3

2
+ 1 ≤ 3

2

(
1− X3

n

)
Opt(Iσ) + 1 (3.22)

The last inequality follows from the fact that any bin in the optimal solution can accommo-

date at most three items. Let z1(≤ 1), z2 and z3 be the number of 1-bins, 2-bins and 3-bins in

the optimal packing of Iσ, respectively. Then, Opt(Iσ) = z1 + z2 + z3 and n = z1 + 2z2 + 3z3.

Note that any two items can fit in a bin. Therefore,

BF(Iσ) ≤ n+ 1

2
=
z1 + 2z2 + 3z3 + 1

2
≤ 3Opt(Iσ)− z2 − 2z1 + 1

2
≤
(

3

2
− µ

2

)
Opt(Iσ) + 1

(3.23)

where µ := z2/Opt(Iσ) is the fraction of 2-bins in the optimal solution.

When µ is close to one (say µ > 0.999), we already obtain a competitive ratio very close

to 1 due to the above inequality. When µ ≤ 0.999, then m, the number of small items in the

input list is at least 0.00033n. This is because z3, the number of 3-bins in the optimal solution,

is at least 0.001Opt(Iσ)− 1 ≥ 0.001(n/3)− 1 ≥ 0.00033n and any 3-bin must contain at least

one small item.

Hence, assuming µ ≤ 0.999, let us analyze the Best-Fit packing of Iσ in a different way. Let

ns be the number of small items. Since a 3-bin contains at least one small item, we know that,

ns ≥ z3 ≥ (1 − µ)Opt(Iσ) − z1. Let Xσ be the random variable which denotes the maximum

number of S-triplets in the input sequence. By Claim 3.19,

Xσ ≥
((1− µ)Opt(Iσ)− z1)3

3n2
− o(n) ≈ (1− µ)3Opt(Iσ)3

3n2
− o(n) w.h.p., as z1 ≤ 1.

54

Page 71 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

In the Best-Fit solution, the number of SS-bins can at most be one. Hence, by Claim 3.20,

X3 ≥
Xσ

3
− 1 ≥ (1− µ)3Opt(Iσ)3

9n2
− o(n) ≥ (1− µ)3n

243
− o(n) w.h.p.

The last inequality follows from the fact that Opt(Iσ) ≥ n/3. Using Eq. (3.22), we get,

BF(Iσ) ≤ 3

2

(
1 +

o(n)

n
− (1− µ)3

243

)
Opt(Iσ) + 1

≤ 3

2

(
1− (1− µ)3

243

)
Opt(Iσ) + o(Opt(Iσ)) w.h.p. (3.24)

Eqs. (3.23) and (3.24) are the result of two different ways of analyzing the same algorithm.

Hence, the expected competitive ratio is given by min
{

3
2
− µ

2
, 3
2
− (1−µ)3

162

}
. When both the

above quantities are equal, we obtain the worst-case competitive ratio. This happens when

81µ = (1− µ)3, i.e., µ ≈ 0.01191; the approximation ratio, in this case, is roughly 1.494045.

We just proved that with high probability, say p = 1 − o(1), BF(I) ≤ 1.494045Opt(I) +

o(Opt(I)). The fact that BF(I) ≤ 1.7Opt(I) + 2 always holds due to [JDU+74]. Combining

both these, E [BF(I)] ≤ p(1.494045E [Opt(I)]+o(E [Opt(I)]))+(1−p)(1.7E [Opt(I)]+2). Thus

we obtain that E [Opt(I)] ≤ 1.494045E [Opt(I)] + o(E [Opt(I)]).

This completes the proof of Theorem 3.3.

3.4.2.1 Deferred Proof of Claim 3.19

One can construct a random permutation of the input list I by first placing the small items in

a random order and then inserting the remaining items among the small items randomly.

After placing the small items, we have m + 1 gaps to place the remaining items as shown

below in the form of empty squares.

�S�S�S︸ ︷︷ ︸
Triplet T1

�S�S�S︸ ︷︷ ︸
Triplet T2

�S�S�S︸ ︷︷ ︸
Triplet T3

· · · S�S�S︸ ︷︷ ︸
Triplet Tm/3

�

As shown above, we name the S-triplets as T1, T2, . . . , Tm/3 (Strictly speaking, the number of

S-triplets should be bm/3c, but we relax this since we are only interested in the asymptotic case

and m ≥ cn). Let us start inserting the non-small items into these empty squares. Consider

any S-triplet Ti. The probability that Ti continues to be an S-triplet after inserting the first

non-small item is (m− 1)/(m+ 1). The first non-small item thus occupies one of the squares,

but in this process, it creates two new squares on either side of itself, thereby increasing the

net number of squares by one. Hence, the probability that Ti continues to be an S-triplet

55

Page 72 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

after inserting the second non-small item (given it remains to be one after inserting the first

non-small item) is m/(m + 2). We continue this process of inserting the non-small items and

after they all have been inserted, let Y
(i)
σ be the indicator random variable denoting whether Ti

is consecutive or not. Then

E
[
Y (i)
σ

]
=
m− 1

m+ 1

m

m+ 2
· · · n− 2

n
=
m(m− 1)

n(n− 1)
.

Let Yσ = Y
(1)
σ + Y

(2)
σ + · · ·+ Y

(m/3)
σ , by linearity of expectations,

lim
n,m→∞

E [Yσ] = lim
n,m→∞

m

3

m(m− 1)

n(n− 1)
≈ m3

3n2
≥ c3n

3
.

Since Xσ ≥ Yσ, the first part of the claim follows.

To prove the second part of the claim, we will compute Var [Yσ] and use Chebyshev’s in-

equality. For any i,

Var
[
Y (i)
σ

]
= E

[
Y (i)
σ

]
− E

[
Y (i)
σ

]2
=
m(m− 1)

n(n− 1)
− m2(m− 1)2

n2(n− 1)2

=
m(m− 1)(n−m)(n+m− 1)

n2(n− 1)2

≤ 2 (3.25)

Now, consider any two S-triplets Tj, Tk. The probability that both Tj and Tk remain to be S-

triplets after inserting the first non-small item is (m− 3)/(m+ 1). Continuing in this manner,

after all the non-small items have been inserted,

E
[
Y (j)
σ Y (k)

σ

]
= P

[
Y (j)
σ = 1 ∧ Y (k)

σ = 1
]

=
m− 3

m+ 1

m

m+ 2
· · · n− 4

n
=
m(m− 1)(m− 2)(m− 3)

n(n− 1)(n− 2)(n− 3)

56

Page 73 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

The covariance of Y
(j)
σ , Y

(k)
σ is given by

Cov
[
Y (j)
σ , Y (k)

σ

]
= E

[
Y (j)
σ Y (k)

σ

]
− E

[
Y (j)
σ

]
E
[
Y (k)
σ

]
=
m(m− 1)(m− 2)(m− 3)

n(n− 1)(n− 2)(n− 3)
− m2(m− 1)2

n2(n− 1)2

=
m(n−m)(m− 1)(4nm− 6m− 6n+ 6)

n2(n− 1)2(n− 2)(n− 3)

≤ 4n3(n− 1)2

n2(n− 1)2(n− 2)(n− 3)

=
4n

(n− 2)(n− 3)

≤ 6

n
(3.26)

Combining all these, the variance of Yσ can be calculated as follows

Var [Yσ] =

m/3∑
i=1

Var
[
Y (i)
σ

]
+ 2

∑
1≤j<k≤m/3

Cov
[
Y (j)
σ , Y (k)

σ

]
≤ 2m

3
+
m

3

(m
3
− 1
) 6

n
(from Eqs. (3.25) and (3.26))

≤ 2n

Now using Chebyshev’s inequality,

P
[
Yσ ≤ E [Yσ]− (E [Yσ])2/3

]
≤ P

[
|Yσ − E [Yσ]| ≥ (E [Yσ])2/3

]
≤ Var [Yσ]

(E [Yσ])4/3

≤ 2n
c4

34/3
n4/3

= O

(
1

n1/3

)
, as c is a constant.

Since Xσ is the maximum number of S-triplets, Xσ ≥ Yσ ≥ c3n/3−o(n) with high probability.

3.5 Online Vector Packing Problem under i.i.d. model

In this section, we design an algorithm for d-dimensional online vector packing problem (d-

OVP) where d is a positive integer constant. In this entire section, we abbreviate a tuple with

d entries as just tuple. A tuple Y is represented as
(
Y (1), Y (2), . . . , Y (d)

)
. We define Y max to

57

Page 74 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

be max
{
Y (1), Y (2), . . . , Y (d)

}
In d-OVP, the input set I consists of n tuples X1, X2, . . . , Xn

which arrive in online fashion; we assume that n is known beforehand. Each X
(j)
i is sampled

independently from a distribution D(j). The objective is to partition the n tuples into a min-

imum number of bins such that for any bin B and any j ∈ [d], the sum of all the jth entries

of all the tuples in B does not exceed one. Formally, we require that for any bin B and any

j ∈ [d],
∑

x∈B x
(j) ≤ 1.

3.5.1 Algorithm

Given an offline α-asymptotic approximation algorithm Aα for bin packing, we obtain a (dα+ε)-

competitive algorithm for d-OVP as follows: For every input tuple Xi, we round each X
(j)
i , j ∈

[d] to Xmax
i . After rounding, since all the tuples have same values in each of the d entries, we

can treat each tuple Xi as an one-dimensional item of size Xmax
i .

It is easy to see that each Xmax
i is independently sampled from the same distribution: Let

F (j) be the cumulative distribution function (CDF) of D(j). Then the CDF, F , of Xmax
i (for

any i ∈ [n]) is given by

F (y) = P [Xmax
i ≤ y] =

d∏
j=1

P
[
X

(j)
i ≤ y

]
(By independence of X

(j)
i s)

=
d∏
j=1

F (j)(y)

Hence, the problem at hand reduces to solving an online bin packing problem where items are

independently sampled from a distribution whose CDF is given by the function
∏d

i=1 F
(j). So,

we can use the algorithm from Section 3.3.

3.5.2 Analysis

Let I denote the vector packing input instance and let I denote the rounded up one-dimensional

bin packing instance.

Lemma 3.21. Let Optv(I) denote the optimal number of bins used to pack I. Then Opt(I) ≤
dOptv(I).

Proof. Consider any optimal packing of I. We show how to construct a feasible packing of I

starting from the optimal packing of I. Consider any bin in the optimal packing of I and let

B denote the set of tuples packed inside it. Let B denote the rounded-up instance of B. Also,

58

Page 75 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

for j ∈ [d], let B(j) denote the set of tuples whose jth dimension has the largest weight, i.e.,

B(j) =
{
Y ∈ B : Y (j) = Y max

}
If any tuple belongs to B(j) as well as B(k) for some j 6= k, we break these ties arbitrarily and

assign it to one of B(j), B(k). For j ∈ [d], let B(j) denote the rounded instance of B(j). We can

pack B in at most d bins as follows: For any j ∈ [d], we know that∑
Y ∈B(j)

Y (j) ≤ 1

and since for all Y ∈ B(j), Y max = Y (j), it follows that∑
Z∈B(j)

Z ≤ 1

Hence, we can pack every B(j) in one bin and the lemma follows.

Now we are ready to prove our main theorem of this section.

Theorem 3.22. For any ε > 0 and a given polynomial-time α-approximation algorithm for

online bin packing, we can obtain a polynomial-time algorithm for d-OVP with an asymptotic

approximation ratio of (αd+ εd).

Proof. Let us denote our present algorithm by Algv. Then we get:

Algv(I) = Alg(I) (3.27)

≤ (α + ε)Opt(I) + o
(
Opt(I)

)
(3.28)

≤ (αd+ εd)Optv(I) + o(Optv(I)). (3.29)

Here, Equation (3.27) follows from the property of Algv, (3.28) follows from the results of

Section 3.3, and (3.29) follows from Lemma 3.21. This concludes the proof.

59

Page 76 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only
Chapter 4

3-D Knapsack Problem and its Variants

In this chapter, we will discuss some improved approximation algorithms for the 3-D Knapsack

problem. The main results are:

A simpler (7 + ε) approximation algorithm (without rotations). One of the main

results of [DHJ+07] is a (7 + ε) approximation algorithm for the case without rotations. Here,

we present an alternate and much simpler algorithm which achieves the same approximation

ratio.

A (31/7+ε) approximation algorithm (with rotations). Another main result of [DHJ+07]

is a (5+ε) approximate algorithm for the case with rotations. We improve upon their result and

give an algorithm with approximation factor (31/7 + ε) < 4.5. First, we give an alternate and

simpler (5 + ε) approximation algorithm. Then we use some technical adaptations to improve

this ratio to (31/7 + ε).

A (3+ε) approximation algorithm (with rotations) to maximize the volume packed.

Finally, we consider the special case where each item has a profit equal to its volume. When

rotations are allowed, we give an algorithm which has approximation ratio ≈ (3 + ε).

While proving the first two results, we obtain the following intermediate results.

• A (6 + ε) approximation algorithm for the cardinality case without rotations.

• A (24/7 + ε) approximation algorithm for the cardinality case with rotations.

4.1 Notations and Preliminaries

In the entire chapter, a “rectangle” is a cuboid in two dimensions and an “item” is a cuboid

in three dimensions. We assume that the knapsack given is just a unit cube. Note that this

assumption is without loss of generality if rotations are not allowed.

60

Page 77 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

Let I be the input set of n items where each item i ∈ I can be represented as (`i, bi, hi). We

call the length of an item i in the first (resp. second, third) dimension to be the length (resp.

breadth, height) of the item. We denote the profit of i by p(i), and its volume as vol(i) := `ibihi.

We define the profit density of i as p(i)/ vol(i) (assume without loss of generality that every

item has non-zero volume).

We define base area of an item i as `ibi. For any subset of items J ⊆ I, denote the total

profit of J by p(J) and total volume of J by vol(J).

4.1.1 Steinberg’s Algorithm

Steinberg [Ste97] gave the following lemma to pack a set of rectangles in a square. It has been

used extensively in many important packing papers like [JZ04, HJPvS14]. We too will use this

lemma in this chapter.

Lemma 4.1 (Steinberg’s Lemma without Rotations). Let J be a set of rectangles where each

rectangle j ∈ J is represented as (`j, bj) where `j is the length of the rectangle and bj is the

breadth of the rectangle. Suppose the total area of rectangles in J is at most 1/2 and the

following condition holds true:(
∀j ∈ J, `j ≤

1

2

)
∨
(
∀j ∈ J, bj ≤

1

2

)
Then the entire set J can be packed into a unit square.

The following is similar to the above lemma, except that rotations are not allowed.

Lemma 4.2 (Steinberg’s Lemma with Rotations). Let J be a set of rectangles such that their

total area is at most 1/2 and such that for no item j ∈ J , both length and breadth are greater

than 1/2. Then, if rotations are allowed, the entire set J can be packed in a unit square.

Note that Lemma 4.2 follows from Lemma 4.1 since none of the items have both breadth

and length more than 1/2. Hence, by rotating, we can make sure that either the length of every

item is at most 1/2 or the breadth of every item is at most 1/2.

4.1.2 Packing Large Items

Here, we will discuss how to pack items that are larger than a constant δ in all the three

dimensions. Suppose each input item i has `i ≥ δ, bi ≥ δ, hi ≥ δ. Then we can solve the

knapsack problem (exactly) optimally. Clearly, the number of items in the optimal solution can

61

Page 78 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

be at most 1/δ3. Hence, we can guess this optimal set in time at most

1

δ3

(
n

b1/δ3c

)
= Oδ

(
n1/δ3

)
which is just polynomial time in n.

Once we guess the optimal set, we can find a packing of the optimal set in Oδ(1) time. This

is because the optimal set has constant number of items.

Lemma 4.3. If every item has each of its sides to be at least δ, where δ > 0 is a constant,

then we can find an optimal packing in polynomial time (irrespective of whether rotations are

allowed or not).

4.2 A simpler (7 + ε)-approximation Algorithm (without

Rotations)

In this section we will discuss a simpler (7+ε)-approximation (compared to [DHJ+07]) algorithm

for 3-D Knapsack where rotations are not allowed.

First we will discuss a (6 + ε) approximation algorithm for the cardinality case, where each

item has unit profit. We will see that this algorithm can be generalized to a (7+ε) approximate

algorithm for the general case.

4.2.1 Algorithm for the Cardinality case

Let ε ∈ (0, 1) be an accuracy parameter. We first partition the input set into four categories

as follows. Let δ := ε/40.

• L: Items with all the three dimensions more than δ.

• A: Items in I − L with height at most δ.

• B: Items in I − (L ∪ A) with length at most δ.

• C: Items in I − (L ∪ A ∪B); note that these have breadth at most δ.

We call an item from set L to be large. Let Opt denote an optimal packing. We can safely

assume that the number of items in Opt is at least 1/δ4. Otherwise, we can find an optimal

packing in polynomial time similar to Section 4.1.2. Since the number of large items that can

fit in the knapsack is at most (1/δ)3, by losing at most δp(Opt) profit, we can assume that

62

Page 79 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

there are no large items in the optimal packing. Let AOpt (resp. BOpt, COpt), denote the items

of A (resp. B,C) that are in the optimal packing Opt. Therefore

p(AOpt ∪BOpt ∪ COpt) ≥ (1− δ)p(Opt)

Now we will describe our algorithm. The main idea is to pack subsets of each of A,B,C

into three bins separately and pick the most profitable of the three bins. We will design an

algorithm to pack a fairly profitable subset of A. The procedures to pack subsets of B,C are

similar.

Let Abig be the set of items in A with both length and breadth greater than 1/2. Let Along ⊆
A−Abig be the set of items whose length is greater than 1/2 and let Arem = A− (Abig ∪Along).

Note that every item in Along has breadth at most 1/2 and every item in Arem has length at

most 1/2.

Suppose the list A is sorted in decreasing order of profit density (or, in other words, increas-

ing order of volumes). Select the largest prefix A′ of A such that vol(A′) ≤ 1/4− δ.

Remark 4.4. If A′ 6= A, then vol(A′) > 1/4− 2δ since each item in A has volume at most δ.

We claim that the entire set A′ can be packed in a knapsack and we give an algorithm to

do this. Let A′big = A′ ∩ Abig and A′long = A′ ∩ Along and A′rem = A′ ∩ Arem.

First we pack A′big in the knapsack by just stacking them one on top of each other.

Then we pack A′long on top of the packing of A′big in the following way. Assume that the

items in A′long are sorted in decreasing order of their heights.

1. Select the largest prefix P of A′long whose total base area is at most 1/2.

2. Pack this set P in a layer using Steinberg’s algorithm (Lemma 4.1) and redefine A′long ←
A′long − P .

3. If A′long 6= φ go to step 1.

4. Stack up all the layers on top of each other.

We make an important remark here.

Remark 4.5. The total base area of items in any two consecutive layers is more than 1/2.

We pack A′rem into layers using the same procedure as that used to pack A′long and stack

these layers on top of the packing of A′big∪A′long. We will now prove that the layers thus stacked

up do not cross the height of the knapsack.

63

Page 80 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

Let kbig be the number of layers used to pack A′big and let klong be the number of layers used

to pack A′long and let krem be the number of layers used to pack A′rem. Let H1, H2, . . . , Hkbig be

the heights of the layers used to pack A′big and let X1, X2, . . . , Xklong be the heights of the layers

used to pack A′long and let Y1, Y2, . . . , Ykrem be the heights of the layers used to pack A′rem (we

will assume that klong, krem are even. It doesn’t make much of a difference if they are odd as

the height of a layer is at most δ). We know that in each layer used to pack A′big, one item of

type A is packed and it has a base area of at least 1/4. So, we can bound the total height of

the packing of A′big as

H1 +H2 + · · ·+Hkbig < 4 vol(A′big) (4.1)

Now let’s bound the height of packing of A′long. For the jth layer in the packing of A′long, let Aj

denote the sum of base areas of all the items in the jth layer and let xj denote the height of

the shortest item in the jth layer. Note that Xj equals the height of the tallest item in the jth

layer. We have the following inequality.

vol(A′long) ≥ A1x1 + A2x2 + · · ·+ Aklongxklong

≥ (A1 + A2)x2 + (A3 + A4)x4 + · · ·+ (Aklong−1 + Aklong)xklong
(since x1, x2, . . . would be in decreasing order)

>
1

2
(x2 + x4 + · · ·+ xklong)

(since the base area of any two consecutive layers is > 1/2 (Remark 4.5))

≥ 1

2
(X1 +X3 + · · ·+Xklong−1 −X1) (since xj ≥ Xj+1 for all j ∈ [klong − 1])

≥ 1

2

(
X1 +X2 + · · ·+Xklong

2
−X1

)
(since Xj ≥ Xj+1 for all j ∈ [klong − 1])

>
1

4
(X1 +X2 + · · ·+Xklong)−

δ

2
(since height of each item in A′long is less than δ)

Therefore, we have that

X1 +X2 + · · ·+Xklong < 4 vol(A′long) + 2δ (4.2)

Similarly, we also obtain that

Y1 + Y2 + · · ·+ Ykrem < 4 vol(A′rem) + 2δ (4.3)

64

Page 81 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

Combining Eqs. (4.1) to (4.3), we have

H1 + · · ·+Hkbig +X1 + · · ·+Xklong + Y1 + · · ·+ Ykrem < 4 vol(A′) + 4δ ≤ 1

Therefore, the entire packing of A′ fits in the knapsack.

Since A′ is the most profitable subset of A whose volume is equal to vol(A′), we have that

p(A′) ≥ min

{
p(AOpt),

vol(A′)

vol(AOpt)
p(AOpt)

}
(4.4)

Using similar ideas, we obtain algorithms to pack B′ ⊆ B,C ′ ⊆ C into separate bins such that

p(B′) ≥ min

{
p(BOpt),

vol(B′)

vol(BOpt)
p(BOpt)

}
(4.5)

p(C ′) ≥ min

{
p(COpt),

vol(C ′)

vol(COpt)
p(COpt)

}
(4.6)

4.2.1.1 Analysis

For the purpose of analysis, by appropriate scaling of the profit of items, let’s assume that

p(AOpt ∪ BOpt ∪ COpt) = 1. We will show that our algorithm is an 6 + ε approximation

algorithm. We will assume without loss of generality that

p(AOpt)

vol(AOpt)
≥ p(BOpt)

vol(BOpt)
≥ p(COpt)

vol(COpt)

We hence have that

p(AOpt)

vol(AOpt)
≥ p(AOpt) + p(BOpt) + p(COpt)

vol(AOpt) + vol(BOpt) + vol(COpt)
≥ 1

If p(AOpt) ≥ 1/6, then from Eq. (4.4), we obtain that

p(A′) ≥ 1/6 =
p(AOpt) + p(BOpt) + p(COpt)

6

≥
(

1

6
− δ

6

)
p(Opt)

≥
(

1

6
− ε
)
p(Opt)

65

Page 82 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

So, assume from now on that p(AOpt) < 1/6. This implies that

p(BOpt)

vol(BOpt)
≥ p(BOpt) + p(COpt)

vol(BOpt) + vol(COpt)
≥ 5/6 (since vol(BOpt) + vol(COpt) ≤ 1)

If p(BOpt) ≥ 1/6 and vol(BOpt) ≥ 1/4 − 2δ, then by Remark 4.4 we know that vol(B′) will at

least be 1/4− 2δ. Then from Eq. (4.5),

p(B′) ≥ min

{
p(BOpt), vol(B′)

p(BOpt)

vol(BOpt)

}
≥ min{1/6, (1/4− 2δ)(5/6)}

= 1/6 (for δ < 1/40)

≥
(

1

6
− ε
)
p(Opt)

If p(BOpt) ≥ 1/6 and vol(BOpt) < 1/4− 2δ, then we know that vol(B′) ≥ vol(BOpt). Hence

p(B′) ≥ min

{
p(BOpt),

vol(B′)

vol(BOpt)
p(BOpt)

}
= p(BOpt)

≥ 1/6

≥
(

1

6
− ε
)
p(Opt)

So, now assume that p(BOpt) is also less than 1/6. Then we have that

p(COpt)

vol(COpt)
=

1− p(AOpt)− p(BOpt)

vol(COpt)
> 2/3

66

Page 83 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

If vol(COpt) ≥ 1/4− 2δ, then using similar arguments as above,

p(C ′) ≥ min

{
2

3
,
2

3

(
1

4
− 2δ

)}
=

1

6
− 4δ

3

≥
(

1

6
− 4δ

3

)
(1− δ)p(Opt)

≥
(

1

6
− 3δ

2

)
p(Opt)

≥
(

1

6
− ε
)
p(Opt)

On the other hand, if vol(COpt) < 1/4− 2δ, we similarly obtain that p(C ′) ≥ 2/3.

Combining all the above arguments, we obtain that

max{p(A′), p(B′), p(C ′)} ≥
(

1

6
− ε
)
p(Opt)

Here, we make a useful remark that helps us extend this algorithm to the general case.

Remark 4.6. In the entire algorithm for packing A′, B′, C ′ we never used the fact that we are

in the cardinality case! We only used volume arguments. Hence, this algorithm also serves as

a (6 + ε) approximate algorithm in the case when none of the items are large (but can have

arbitrary profits.)

4.2.2 Extending to General Case

The above algorithm for the cardinality case can be easily extended to a (7 + ε) approximation

algorithm in the general case. Note that we can not ignore the set L, the set of large items, as

they can have a huge profit.

Again, let Opt denote the optimal packing. Let LOpt := L ∩ Opt. We can pack a profit of

at least p(LOpt) in a knapsack using Lemma 4.3.

If p(LOpt) ≥ (1/7)p(Opt), then the packing of large items suffices for a (7+ε) approximation

algorithm. So, let’s assume that p(LOpt) < (1/7)p(Opt). Then

p(AOpt ∪BOpt ∪ COpt) ≥
6

7
p(Opt)

Using the above algorithm, (in Remark 4.6 we noted that it works for non-large items with

67

Page 84 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

general profits), we can get a packing with profit at least(
1

6
− ε
)
p(AOpt ∪BOpt ∪ COpt) ≥

(
1

7
− 6ε

7

)
p(Opt)

Scaling ε appropriately before the start of the algorithm, we obtain the desired approximation

ratio of (7 + ε).

4.3 A simpler (5+ε)-approximation Algorithm (with Ro-

tations)

In this section we will discuss a simpler (5+ε)-approximation (compared to [DHJ+07]) algorithm

for 3-D Knapsack where rotations are allowed.

Similar to the section on the (7 + ε) approximate algorithm for the case without rotations,

we first devise a (4 + ε) approximation algorithm for the cardinality case, where each item has

unit profit. Then, we will extend it to a (5 + ε) approximate algorithm for the general case.

Since rotations are allowed, we can assume that for any item i, `i ≥ bi ≥ hi.

4.3.1 Algorithm for the Cardinality Case

We first partition the input set into three sets as follows. Let δ := ε/10.

• (L) Large items: Items of the form (≥ δ,≥ δ,≥ δ).

• (A) Items of the form (≥ 1/2,≥ 1/2, < δ).

• (B) All other items (these items have height less than δ and at least one of length and

breadth less than 1/2).

Let Opt denote the optimal packing. Like in the case without rotations, we can again

assume that the number of items in Opt is at least (1/δ)4. Let AOpt (resp. BOpt), denote the

items in A (resp. B) that are in the optimal solution. Hence

p(AOpt ∪BOpt) ≥ (1− δ)p(Opt)

Let C = A ∪ B and suppose the list C is sorted in decreasing order of profit density

(or, in other words, increasing order of volumes). Select the largest prefix C ′ of C such that

vol(C ′) ≤ 1/4− δ/2.

Remark 4.7. If C ′ 6= C, then vol(C ′) > 1
4
− 3δ

2
since each item in C has volume at most δ.

68

Page 85 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

We claim that the entire set C ′ can be packed in a knapsack and we give an algorithm to

do this. Let C ′A := C ′ ∩ A and C ′B = C ′ ∩B.

First we pack C ′A in the knapsack by just stacking them one on top of each other.

Then we pack C ′B on top of the packing of C ′A in the following way. Assume that the items

in C ′B are sorted in decreasing order of their heights.

1. Select the largest prefix P of C ′B whose total base area is at most 1/2.

2. Pack this set P in a layer using Steinberg’s algorithm (Lemma 4.2) and redefine C ′B ←
C ′B − P .

3. If C ′B 6= φ go to step 1.

4. Stack up all the layers on top of each other.

We will now prove that the layers thus stacked up do not cross the height of the knapsack.

Let kA be the number of layers used to pack C ′A and let kB be the number of layers

used to pack C ′B. Let X1, X2, . . . , XkA be the heights of the layers used to pack C ′A and let

H1, H2, . . . , HkB be the heights of the layers used to pack C ′B (we will assume that kB is even).

We know that in each layer used to pack C ′A, one item of type A is packed and it has a base

area of at least 1/4. So, we can bound the total height of the packing of C ′A as

X1 +X2 + · · ·+XkA < 4 vol(C ′A) (4.7)

Now let’s bound the height of packing of C ′B. For the jth layer in the packing of C ′B, we need

the following notations:

• Aj denotes the base area of all the items in the jth layer.

• hj denotes the height of the shortest item in the jth layer.

Note that Hj denotes the height of the tallest item in the jth layer. We have the following

69

Page 86 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

inequalities.

vol(C ′B) ≥ A1h1 + A2h2 + · · ·+ AkBhkB

≥ (A1 + A2)h2 + (A3 + A4)h4 + · · ·+ (AkB−1 + AkB)hKB
(since h1, h2, . . . would be in decreasing order)

>
1

2
(h2 + h4 + · · ·+ hkB)

(since the base area of any two consecutive layers is > 1/2)

≥ 1

2
(H1 +H3 +H5 + · · ·+HkB−1 −H1) (since hj ≥ Hj+1 for all j ∈ [kB − 1])

≥ 1

2

(
H1 +H2 + · · ·+HkB

2
−H1

)
(since Hj ≥ Hj+1 for all j ∈ [kB − 1])

>
1

4
(H1 +H2 + · · ·+HkB)− δ

2
(since height of each item in C ′B is less than δ)

Therefore, we have that

H1 +H2 + · · ·+HkB < 4 vol(C ′B) + 2δ (4.8)

Combining Eqs. (4.7) and (4.8), we have

X1 +X2 + · · ·+XkA +H1 +H2 + · · ·+HkB < 4 vol(C ′) + 2δ ≤ 1

Therefore, the entire packing of C ′ fits in the knapsack.

Since C ′ is the most profitable subset of C whose volume is equal to vol(C ′), we have that

p(C ′) ≥ vol(C ′)

vol(AOpt ∪BOpt)
p(AOpt ∪BOpt)

If vol(AOpt ∪BOpt) ≤ 1/4− 3δ/2, then our algorithm gives the exact optimal profit (minus the

profit of large items in the optimal solution which is very small). Otherwise, since vol(AOpt ∪

70

Page 87 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

BOpt) ≤ 1, by Remark 4.7, we obtain that

p(C ′) ≥
(

1

4
− 3δ

2

)
p(AOpt ∪BOpt)

≥
(

1

4
− 3δ

2

)
(1− δ)p(Opt)

≥
(

1

4
− 7

4
δ

)
p(Opt)

≥
(

1

4
− ε
)
p(Opt)

4.3.2 Extending to General Case

Similar to the case without rotations, the above algorithm for the cardinality case can be

extended to a (5 + ε) approximation algorithm in the general case.

Let Opt denote the optimal packing. Let LOpt := L∩Opt. We can pack a profit of at least

p(LOpt) in a knapsack using Lemma 4.3.

If p(LOpt) ≥ (1/5)p(Opt), then the packing of large items suffices for a (5+ε) approximation

algorithm. So, let’s assume that p(LOpt) < (1/5)p(Opt). Then

p(AOpt ∪BOpt) ≥
4

5
p(Opt)

Using the above algorithm (similar to the “no rotations” case, it works for non-large items

with general profits since we only use volume arguments), we can get a packing with profit at

least (
1

4
− ε
)
p(AOpt ∪BOpt) ≥

(
1

5
− 4ε

5

)
p(Opt)

Scaling ε appropriately before the start of the algorithm, we obtain the desired approximation

ratio of (5 + ε).

4.4 A (31/7 + ε)-approximation Algorithm (with Rota-

tions)

In this section, we will discuss a (31/7 + ε)-approximation algorithm for the 3-D Knapsack

problem with rotations allowed. This beats the current best (5 + ε)-approximation algorithm

by [DHJ+07].

71

Page 88 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

Since rotations are allowed, we can assume that for any item i, `i ≥ bi ≥ hi.

We first partition the input set into three sets as follows. Let δ := ε/40.

• (L) Large items: Items of the form (≥ δ,≥ δ,≥ δ).

• (A) Items of the form (≥ 1/2,≥ 1/2, < δ).

• (B) All other items (these items have height less than δ and at least one of length and

breadth less than 1/2). This category is further divided into two sub-categories.

– (B`) Items in B with base area at least 1/6.

– (Bs) Items in B with base area less than 1/6.

Before jumping to the general case, we will first discuss a (24/7 + ε) approximation algorithm

for the cardinality case. Then, we will extend this to the general case.

4.4.1 Algorithm for the Cardinality Case

Let ε ∈ (0, 1) be an accuracy parameter. Similar to the previous sections, we will assume that

the number of items in Opt is at least 1/δ4. Let AOpt (resp. BOpt), denote the items in A (resp.

B) that are in the optimal solution. Similar to the previous section, we have that

p(AOpt ∪BOpt) ≥ (1− δ)p(Opt)

Let C = A ∪ B and suppose the list C is sorted in decreasing order of profit density

(or, in other words, increasing order of volumes). Select the largest prefix C ′ of C such that

vol(C ′) ≤ 7/24 − 2δ. Note that if C ′ 6= C, then vol(C ′) > 7/24 − 3δ since each item in C has

volume at most δ.

We claim that the entire set C ′ can be packed in a knapsack and we give an algorithm to

do this. Let A′ := C ′ ∩ A and B′ = C ′ ∩B. Further, let B′` = C ′ ∩B` and B′s = C ′ ∩Bs.

Packing the Items in B′. We first pack B′` in layers and then we pack B′s in layers and

finally, we pack these layers on top of each other.

Note that since each item in B′` has a base area of at least 1/6 and has breadth at most 1/2,

we can pack two such items side by side in a layer making sure a base area guarantee of at least

1/3 in a layer. Thus, the algorithm to pack B′` is the following. Sort B′` in the non-increasing

order of heights. Pick the first two items and pack them in a layer. Then pick the next two

items and pack them in a layer. Stack these layers on top of each other.

On the other hand, each item in Bs has a base area less than 1/6 and has breadth at most

1/2. We can devise the following algorithm to pack Bs in layers. First, we order the items

72

Page 89 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

in Bs in non-increasing order of heights. Pick the largest prefix whose total base area doesn’t

exceed 1/2. This prefix can be packed in a layer using Steinberg’s algorithm. We then pack the

remaining items in layers following the same procedure. We stack these layers on top of each

other on the stack obtained in the procedure for packing B′`. Since each item has base area at

most 1/6 we obtain an area guarantee of at least 1/3 in each layer.

Let v := vol(B′). Using analysis similar to Eqs. (4.2) and (4.3) in Section 4.2,, we can prove

that the total height h of the thus stacked layers is at most 3v + 2δ.

Packing the Items in A′. We now want to pack the items in A′ in the remaining space left

above the stacked up layers of items in B′. See Fig. 4.1 below on how to pack these items.

x

y

h ≤ 3v + 2δ

Figure 4.1: (The second dimension which is into the paper or the screen is ignored) The layers

of items in B′ are indicated in red. After packing B′, the items in A′ are packed as follows:

First, they are ordered in non-increasing order of lengths. Then they are stacked up one on

top of each other as much as possible (shown in green). Then they are rotated and packed

side-by-side as shown in orange.

4.4.1.1 Analysis of the Algorithm

We will prove that the entire set A′ ∪B′ can be packed in the manner as shown in Fig. 4.1.

Recall that v = vol(B′) and the height h of the layers of B′ is at most 3v + 2δ. Suppose

v ≥ 1/6 − 2δ/3. Then, h can be close to 1/2 and so, we may not be able to pack any orange

items as in Fig. 4.1 since each item in A′ has length at least 1/2. However, we claim that there

will be no orange items left as follows. Assume contradiction. Then the total height of the stack

of green items is at least 1 − h − δ ≥ 1 − 3v − 3δ. Further, the stack has a length (horizontal

dimension) of at least 1/2 and a depth (ignored dimension into the paper/screen) of at least

73

Page 90 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

1/2. Hence, the total volume thus packed in the knapsack is at least

v +
1

4
(1− 3v − 3δ) =

v

4
+

1

4
(1− 3δ)

≥ 1

4

(
1

6
− 2δ

3

)
+

1

4
(1− 3δ)

=
7

24
− 11δ

12

>
7

24
− δ

= vol(A′ ∪B′)

which is a contradiction.

So, from now on, lets assume that v < 1/6 − 2δ/3. We again need to prove that we can

exhaustively pack all the items in A′ ∪ B′ as shown in Fig. 4.1. Suppose not, i.e., we are not

able to pack some items because the stack of green items blocks the space when packing the

orange items. Let x, y be as shown in Fig. 4.1. We would like to calculate the total area of the

green and orange items (not the base area but the area as shown in the figure). The stack of

green items below the dotted line has length at least x and height (1 − h − y). This amounts

to an area of at least (1 − h − y)x ≥ (1 − 3v − y − 2δ)x. The stack of green items above

the dotted line has length at least y and height at least (y − δ). This amounts to an area of

y(y − δ). The bundle of orange items has area at least (1− x− δ)y. Thus the total area is at

least (1− 3u− y − 2δ)x+ y(y − δ) + (1− x− δ)y.

Lemma 4.8. For a very small constant δ and for x, y ∈ (1/2, 1] and for v ∈ (0, 1/6− 2δ/3),

(1− 3v − y − 2δ)x+ y(y − δ) + (1− x− δ)y > 7

12
− 2v − 4δ

Proof. Let’s first look at the terms containing δ on both the sides. We have that−2δx−δy−δy >
−4δ because both x, y are at most 1. Now, we have to prove that

(1− 3v − y)x+ y2 + (1− x)y >
7

12
− 2v

Let f(x, y) = (1− 3v − y)x+ y2 + (1− x)y. We have that

∂f(x, y)

∂y
= 1 + 2(y − x) > 0 for (x, y) ∈ (1/2, 1]× (1/2, 1]

So, for a fixed x, the value of f(x, y) increases with y. Hence, the minimum of f(x, y) occurs

74

Page 91 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

when y = 1/2. But when y = 1/2, the function simplifies to

f(x, y) =
3

4
− 3vx

which attains it minimum value at x = 1. Finally, observe that 3/4 − 3v > 7/12 − 2v for

v ≤ 1/6 to complete the proof.

Then, using the above lemma, since each green and orange item has breadth more than

1/2, their total volume is strictly more than (7/24− v − 2δ). Thus the total volume packed in

Fig. 4.1 is strictly greater than 7/24− 2δ which is a contradiction.

This proves that our algorithm packs all the items in A′ ∪ B′. Since we selected the most

profitable subset of volume at least (7/24− 3δ), it follows that our algorithm is a (7/24− 3δ)-

approximation algorithm.

Remark 4.9. In the entire algorithm for packing A′, B′ we never used the fact that we are in

the cardinality case! Hence, this algorithm also serves as a (24/7 + ε) approximate algorithm

in the case when none of the items are large (but can have arbitrary profits.)

4.4.2 Extending to the General Case

The above algorithm for the cardinality case can be extended to a (31/7 + ε) approximation

algorithm in the general case.

Let Opt denote the optimal packing. Let LOpt := L∩Opt. We can pack a profit of at least

p(LOpt) in a knapsack using Lemma 4.3.

If p(LOpt) ≥ (7/31)p(Opt), then the packing of large items suffices for a (31/7 + ε) approx-

imation algorithm. So, let’s assume that p(LOpt) < (7/31)p(Opt). Then

p(AOpt ∪BOpt) ≥
24

31
p(Opt)

Using the above algorithm (and by Remark 4.9), we can get a packing with profit at least(
7

24
− ε
)
p(AOpt ∪BOpt) ≥

(
7

31
− 24ε

31

)
p(Opt)

Scaling ε appropriately before the start of the algorithm, we obtain the desired approximation

ratio of (31/7 + ε).

75

Page 92 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

4.5 A (3 + ε)-approximation Algorithm for Maximizing

the Packed Volume (with Rotations)

In this section, we will design a (3 + ε)-approximation algorithm for the 3-D Knapsack problem

with rotations allowed in the special case when the profit of each item is given by its volume.

4.5.1 The Algorithm

We need the following important lemma.

Lemma 4.10. Let S be a set of rectangles such that each rectangle has one dimension more

than 1/2 and the other dimension at most ε. Suppose that the total area of rectangles in S is

at most 3/4 − 3ε. Then, if rotations are allowed, we can pack the entire set S in a square of

unit dimensions.

Proof. Let’s call the size of a rectangle in the horizontal dimension as length, and the size in

the vertical dimension as height. Without loss of generality, we assume that each rectangle in

S has height at most ε and length more than 1/2. We first sort them in decreasing order of

lengths. Then we start stacking them one on top of each other to the maximum possible extent

as shown in the following figure.

Then we rotate the remaining items and align them vertically in the remaining space to the

maximum extent possible. These items are denoted in orange color in the figure below.

We claim that we exhaust the entire set S in this manner. Suppose not. Let the blue item

in the below diagram denote the first item that we couldn’t pack in this manner. The green

rectangle intersecting the dashed line and all the green rectangles below it have a length of

at least x. So, the total area of these rectangles is at least x(1 − y). Every green rectangle

above the blue dashed line have length at least y (since they have larger length compared to the

orange rectangles) and their total height is at least y−2ε. Hence, this amounts to an area of at

least y(y − 2ε). Finally, the total area of orange rectangles is at least y(1− x− ε). Therefore,

76

Page 93 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only
Figure 4.2: Packing rectangles long in one dimension and short in other dimension. The blue
rectangle indicates the first rectangle that couldn’t be packed without overlapping.

the total packed area of all the rectangles is at least

x(1− y) + y(y − 2ε) + y(1− x− ε) = x+ y + y2 − 2xy − 3yε

Claim 4.11. For x ∈ (1/2, 1] and y ∈ (1/2, 1], x+ y + y2 − 2xy > 3/4

Proof. When x = 1, x+ y + y2 − 2xy = 1 + y2 − y > 3/4 since y > 1/2.

Now suppose x < 1. Let f(x, y) = x+ y + y2 − 2xy. Then

∂f(x, y)

∂x
= 1− 2y and

∂f(x, y)

∂y
= 1 + 2y − 2x

In the range (x, y) ∈ [1/2, 1) × [1/2, 1], 1 + 2y − 2x > 0. Hence, for a fixed x and varying y,

the function is strictly increasing since the partial derivative of f with respect to y is always

positive. So, the minimum of the function f(x, y) in range [1/2, 1) × [1/2, 1] certainly occurs

when y = 1/2. But when y = 1/2, f(x, y) = 3/4. Hence x + y + y2 − 2xy > 3/4 in range

(1/2, 1]× (1/2, 1].

Thus the total area packed is strictly more than 3/4 − 3ε but this is a contradiction since

the total area of rectangles in S is at most 3/4− 3ε.

Lemma 4.12 ([DHJ+07]). Let J be a set of items such that each has height less than ε and at

least one of length, breadth at most 1/2. Assume rotations are allowed. Then we can pack J

in multiple layers such that every layer (except possibly two of them) has a base area of at least

1/3.

Proof. Assume without loss of generality that each item has length ≥ breadth. Partition J into

the following sets.

• J1: Items with base area less than 1/6.

77

Page 94 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

• J2: Items with base area at least 1/6.

On a square layer of unit dimensions, we can pack a maximal prefix of J1 whose total area

doesn’t exceed 1/2 using Steinberg’s algorithm (Lemma 4.2). The base area of this prefix

would at least be 1/2−1/6 = 1/3. Thus, using this method, we can pack J1 in layers such that

each layer, except possibly the last, has a base area of at least 1/3.

Packing J2 is simple: In each layer we can pack two of them since both have breadth at

most 1/2. Thus the base area of each layer except possibly the last is at least 1/3.

Using both the above lemmas, we obtain a (3 + ε)-approximation algorithm for the 3-D

knapsack problem with rotations allowed when profit of each item is equal to its volume.

Theorem 4.13. There exists a (3+ε)-approximation algorithm for 3-D Knapsack with rotations

allowed when profit of each item is equal to its volume.

Proof. Let I denote the set of input items. Without loss of generality, lets assume that for each

item i ∈ I, `i ≥ bi ≥ hi. Let us partition I into three sets I1, I2, I3 as follows.

I1 = {i ∈ I : `i > ε, bi > ε, hi > ε}

I2 = {i ∈ I : `i > 1/2, bi > 1/2, hi ≤ ε}

I3 = I − {I1 ∪ I2}

Let Opt denote an optimal packing of I. We also use the notation Opt to denote the set of

items in the optimal packing Opt. Note that p(Opt) ≤ 1. Let

Opt1 = I1 ∩Opt,Opt2 = I2 ∩Opt,Opt3 = I3 ∩Opt

Our algorithm Alg packs subsets of each of the sets I1, I2, I3 separately into three bins and

takes the maximum profitable bin of these three.

• Bin 1: We pack the maximum profitable subset (that can be validly packed) of I1 since

there are at most 1/ε3 items in any valid packing. This gives us a profit of at least

p(Opt1).

• Bin 2: We pack a subset of I2 using Lemma 4.10 as follows. Ignoring the second dimen-

sion, we obtain a set of rectangles with one dimension at most ε and the other dimension

more than 1/2. Thus, these rectangles can be packed either exhaustively or to an extent

such that the total area packed is at least 3/4 − 3ε. Then, since the length in the first

78

Page 95 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

dimension of each item is more than 1/2, we obtain that the total volume packed is at

least min{3/8− 3ε/2, p(I2)} ≥ min{3/8− 3ε/2, p(Opt2)}.

• Bin 3: We pack a subset of I3 using Lemma 4.12 as follows. We first partition the set

I3 into two sets I
(l)
3 and I

(s)
3 where I

(l)
3 contains the items with base area at least 1/6 and

I
(s)
3 contains the items with base area less than 1/6. First, we sort the items in I

(l)
3 in

decreasing order of heights and pack them into layers. Then we similarly order I
(s)
3 in

decreasing order of heights and pack them into layers. We first stack up the layers of I
(l)
3

to the maximum possible extent. If space is still available, we stack the layers of I
(s)
3 to

the maximum possible extent. If we exhaust all the layers, then we must have packed the

entire set I3. Otherwise, using a similar analysis to Eqs. (4.2) and (4.3) in Section 4.2,

we can prove that the total volume packed is at least 1/3− 2ε. Thus we pack a profit of

at least min{1/3− 2ε, p(I3)} ≥ min{1/3− 2ε, p(Opt3)}.

For a small value of ε, it follows that the maximum profitable bin among these three bins has

a profit of at least

min

{
1

3
− 2ε,

p(Opt1) + p(Opt2) + p(Opt3)

3

}
We finally scale the value of ε before the start of the algorithm to obtain a (3+ε) approximation

ratio.

79

Page 96 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only
Chapter 5

Generalized Multidimensional

Knapsack

In Sections 1.2.4 and 1.2.5, we introduced the geometric and vector variants of the classical

knapsack problem. Both the variants are very well studied. In this chapter, we study a gen-

eralization of the knapsack problem with geometric and vector constraints. The input is a set

of items which are rectangles (two-dimensional) with vector constraints in d dimensions along

with an associated profit. The goal is to pack a subset of items into a given knapsack in a

non-overlapping fashion so that the vector constraints are not violated i.e., the sum of vector

constraints of all the packed items in any of the d dimensions doesn’t exceed one.

We give a (2 + ε)-approximation algorithm for this problem for both the cases of ‘with

rotations’ and ‘without rotations’ using a technique called corridor decomposition. Note that

rotations are allowed only for the geometric dimensions. It isn’t all that meaningful to rotate

vector dimensions (swapping the weight and the volume of an item doesn’t make much sense).

In the process, we also introduce a variant of the Maximum Generalized Assignment Problem

(Max-GAP) called Vector-MAX-GAP and design a PTAS for it.

5.1 Preliminaries and Notations

5.1.1 Prior Work

For the knapsack problem, fully polynomial time approximation scheme (FPTAS) exists [IK75,

Law77]. The 2-D geometric knapsack problem is known to be strongly NP-Hard i.e., no FPTAS

can exist (under the assumption that P 6= NP). However, it is not known whether the problem

admits a PTAS or not. The current best approximation algorithm [GGH+17] for this problem

without rotations achieves an approximation ratio of 17/9 + ε. If rotations are allowed, the

80

Page 97 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

approximation ratio improves to 3/2 + ε. The d-D vector knapsack problem on the other hand

admits a PTAS [FC84], and it is known that for d ≥ 2, it doesn’t admit an FPTAS assuming

that P 6= NP.

5.1.2 Notations and Definitions

We denote the 2-D geometric knapsack problem with d-D vector constraints by (2, d) Knapsack

or (2, d) KS in short. Let poly(n) denote the set of all polynomial and sub-polynomial functions

of n.

In the (2, d) Knapsack problem, the input set I consists of n items. Each item is called a

(2, d)-dimensional item. For any item i ∈ I, let w(i), h(i), p(i) denote the width, height and the

profit of the item respectively and let a(i) = w(i)h(i) denote the area of the item. Also, for any

item i ∈ I, let vj(i) denote the weight of the item in the jth dimension. The objective is to pack

a maximum profit subset of items J ⊆ I into the knapsack in an axis-parallel, non-overlapping

manner such that for any j ∈ [d], ∑
i∈J

vj(i) ≤ 1

In the whole paper, we will assume without loss of generality that the knapsack is a unit square

and all items have width, height and weight constraints not exceeding one. If S is a set of

items, let a(S), p(S) denote the total profit and area of the items in S respectively.

Recall the Next-Fit Decreasing Height (NFDH) algorithm introduced in Section 2.4.2. The

following lemma will be crucial for our purposes.

Lemma 5.1. Consider a set of rectangles S with designated profits and a bin of dimensions

W × H and assume that that each item in S has width at most εW and height at most εH.

Suppose Opt denotes the optimal profit that can be packed in the bin. Then there exists a

polynomial time algorithm that packs at least (1− 2ε)Opt profit into the bin.

Proof. Lets first order the rectangles in the decreasing order of their profit/area ratio. Then

pick the largest prefix of rectangles T such that a(T) ≤ (1 − ε)2WH. By Lemma 2.5, NFDH

must be able to pack all the items in T into the bin. On the other hand, since each rectangle

has area at most ε2WH, it follows that a(T) ≥ (1 − 2ε)WH. Furthermore, since T contains

the highest profit density items, it follows that p(T) ≥ (1− 2ε)Opt.

5.1.3 Organization of the Chapter

In Section 5.2, we will formally define and design a PTAS for the Vector-Max-GAP problem.

Section 5.3 is dedicated to designing our (2+ε) approximation algorithm for the (2, d) Knapsack

81

Page 98 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

problem. Sections 5.3.1 and 5.3.2 are dedicated to proving a structural result using corridor

decomposition scheme and reduce our problem to what is called a container packing problem.

In Sections 5.3.3 and 5.3.4 we will discuss how to model the container packing problem as an

instance of the Vector-Max-GAP problem. Finally, in Section 5.3.5, we put everything together

to obtain the (2 + ε) approximation algorithm for the (2, d) Knapsack problem.

5.2 Vector-Max-GAP problem and a PTAS

The Vector-Max-GAP is a generalization of the well known Maximum Generalized Assignment

Problem (Max-GAP). In the Max-GAP problem, we are provided with a set of machines, with

designated capacities, and a set of items; an item’s size and value depends on the machine to

which it is going to be assigned. The objective is to assign a subset of items to machines such

that the obtained value is maximized while making sure that no machine’s capacity is breached.

In the Vector-Max-GAP problem, we additionally have a d-dimensional weight vector associated

with every item and a d-dimensional global weight constraint on the whole setup of machines.

The objective is to find the maximum value obtainable so that no machine’s capacity is breached

and the overall weight of items does not cross the global weight constraint.

Formally, let I be a set of n items numbered 1 to n and let M be a set of k machines, where

k is a constant. The jth machine has a capacity Mj. Each item i ∈ I has a size of sj(i), value

of valj(i) in the jth machine (j ∈ [k]). Additionally, each item i also has a weight wq(i) in

the qth dimension (q ∈ [d], d is a constant). Assume that for all j ∈ [k], q ∈ [d] and i ∈ [n],

Mj, wq(i), sj(i), valj(i) are all non-negative.

The objective is to assign a subset of items J ⊆ I to the machines such that for any machine

j, the size of all the items assigned to it does not exceed Mj. Further, the total weight of the

set J in any dimension q ∈ [d] must not exceed Wq, which is the global weight constraint of the

whole setup in the qth dimension. Respecting these constraints, we would like to maximize the

total value of the items in J .

Formally, let J be the subset of items picked and Jj be the items assigned to the jth machine

(j ∈ [k]). The assignment is feasible iff the following constraints are satisfied:

∀q ∈ [d],
∑
i∈J

wq(i) ≤ Wq (weight constraints)

∀j ∈ [k],
∑
i∈Jj

sj(i) ≤Mj (size constraints)

Let
−→
M = [M1,M2, . . . ,Mk],

−→w (i) = [w1(i), w2(i), . . . , wd(i)],
−→s (i) = [s1(i), s2(i), . . . , sk(i)],

82

Page 99 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

−→
val(i) = [val1(i), val2(i), . . . , valk(i)].

Let
−→
W = [W1,W2, . . . ,Wd],

−→s = [−→s (1),−→s (2), . . . ,−→s (n)], −→w = [−→w (1),−→w (2), . . . ,−→w (n)],
−→
val = [

−→
val(1),

−→
val(2), . . . ,

−→
val(n)].

An instance of this problem is given by (I,
−→
val,−→s ,−→w ,

−→
M,
−→
W). We say that the set of items

J is feasible for (−→s ,−→w ,
−→
M,
−→
W) iff J can fit in machines of capacity given by

−→
M and satisfy

the global weight constraint given by
−→
W where item sizes and weights are given by −→s and −→w

respectively.

5.2.1 Dynamic-Programming Algorithm for Integral Input

Consider the case where item sizes and weights are integers. Without loss of generality, we can

assume that the capacities of machines, Mj (j ∈ [k]) and weight constraints, Wq (q ∈ [d]), are

also integers (otherwise, we can round them down to the closest integers).

Arbitrarily order the items and number them from 1 onwards. Let VAL(n,
−→
M,
−→
W) be the

maximum value obtainable by assigning a subset of the first n items to k machines with capac-

ities given by
−→
M respecting the global weight constraint

−→
W . We can express VAL(n,

−→
M,
−→
W) as

a recurrence.

VAL(n,
−→
M,
−→
W) =

−∞ if ¬(

−→
W ≥ 0 ∧

−→
M ≥ 0)

0 if n = 0

max

 VAL(n− 1,
−→
M,
−→
W),

k
max
j=1

(
valj(n) + VAL

(
n− 1,

−→
M −−→s (n) · −→e j,

−→
W −−→w (n)

)) else

VAL(n,
−→
M,
−→
W) can be computed using dynamic programming. We can find the subset of

items that gives this much value and it is also easy to ensure that no item assigned to a machine

has value 0 in that machine. There are n
∏k

j=1(Mj + 1)
∏d

q=1(Wq + 1) items in the state space

and each iteration takes Θ(d + k) time. Therefore, time taken by the dynamic programming

solution is Θ
(
n(d+ k)

∏k
j=1(Mj + 1)

∏d
q=1(Wq + 1)

)
.

5.2.2 Optimal Solution with Resource Augmentation

Let −→µ = [µ1, µ2, . . . , µk] and
−→
δ = [δ1, δ2, . . . , δd] be vectors whose values will be decided

later. For j ∈ [k], define s′j(i) = dsj(i)/µje ,M ′
j = bMj/µjc + n. For q ∈ [d], define w′q(i) =

dwq(i)/δqe ,W ′
q = bWq/δqc+ n.

Lemma 5.2. Let J ⊆ I be feasible for (−→s ,−→w ,
−→
M,
−→
W). Then J is also feasible for (

−→
s′ ,
−→
w′,
−→
M ′,
−→
W ′).

83

Page 100 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

Proof. For any dimension q ∈ [d],
∑

i∈J w
′
q(i) =

∑
i∈J dwq(i)/δqe ≤

∑
i∈J (bwq(i)/δqc+ 1).

∑
i∈J

(bwq(i)/δqc+ 1) ≤ |J |+

⌊
(1/δq)

∑
i∈J

wq(i)

⌋
≤ n+ bWq/δqc = W ′

q

Let Jj be the items in J assigned to the jth machine. Then
∑

i∈Jj s
′
j(i) =

∑
i∈Jj dsj(i)/µje.

∑
i∈Jj

(bsj(i)/µjc+ 1) ≤ |Jj|+

(1/µj)
∑
i∈Jj

sj(i)

 ≤ n+ bMj/µjc = M ′
j

Lemma 5.3. Let J be feasible for (
−→
s′ ,
−→
w′,
−→
M ′,
−→
W ′). Then J is also feasible for (−→s ,−→w ,

−→
M +

n−→µ ,
−→
W + n

−→
δ).

Proof. For all q ∈ [d]∑
i∈J

wq(i) ≤
∑
i∈J

δqw
′
q(i) ≤ δqW

′
q = δq (bWq/δqc+ n) ≤ Wq + nδq

Let Jj be the items in J assigned to the jth machine.∑
i∈Jj

sj(i) ≤
∑
i∈Jj

µjs
′
j(i) ≤ µjM

′
j = µj (bMj/µjc+ n) ≤Mj + nµj

Let µj = εMj/n and δq = εWq/n for all q ∈ [d] and j ∈ [k]. Let J∗ be the optimal solution to

(I,
−→
val,−→s ,−→w ,

−→
M,
−→
W). Let Ĵ be the optimal solution to (I,

−→
val,
−→
s′ ,
−→
w′,
−→
M ′,
−→
W ′). By Lemma 5.2,

val(Ĵ) ≥ val(J∗). By Lemma 5.3, Ĵ is feasible for (−→s ,−→w , (1 + ε)
−→
M, (1 + ε)

−→
W). Also, observe

that |M ′
j| ≤ n+Mj/µj = n(1+1/ε) is a polynomial in n. Similarly, |W ′

q| ≤ n(1+1/ε) and hence

the optimal solution to (I,
−→
val,
−→
s′ ,
−→
w′,
−→
M ′,
−→
W ′) can be obtained using the dynamic-programming

algorithm in polynomial time. Therefore, the optimal solution to (I,
−→
val,
−→
s′ ,
−→
w′,
−→
M ′,
−→
W ′) can be

obtained using the dynamic-programming algorithm in time Θ
(
(d+ k)nd+k+1/εd+k

)
.

Let us define a subroutine assign-res-augε(I,
−→
val,−→s ,−→w ,

−→
M,
−→
W) which takes as input set I

with associated values,
−→
val, and gives as output the optimal feasible solution to (−→s ,−→w , (1 +

ε)
−→
M, (1 + ε)

−→
W).

84

Page 101 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

5.2.3 Packing Small Items

5.2.3.1 Trimming

Consider a set I of items where each item has length s(i) and profit p(i) (in this subsection, I

is an instance of the knapsack problem instead of the Vector-Max-GAP problem).

Suppose for all i ∈ I, s(i) ∈ (0, α] and s(I) ≤ 1 + β where α, β ∈ R+ such that α ≤ β. We’ll

show that there exists an R ⊆ I such that s(I − R) ≤ 1 and p(R) < (β + α)p(I). We call this

technique of removing a low-profit subset from I so that it fits in a bin of length 1 trimming.

Arbitrarily order the items and arrange them linearly in a bin of size 1 + β. Let k =

b1/(β + α)c. Create k+1 intervals of length β and k intervals of length α. Place β-intervals and

α-intervals alternately. They will fit in the bin because (k+1)β+kα = β+(β+α) b1/(β + α)c ≤
1 + β

Number the β-intervals from 0 to k and let Si be the set of items intersecting the ith β-

interval. Note that, all Si are mutually disjoint. Let i∗ = arg minki=0 p(Si).

p(Si∗) =
k

min
i=0

p(Si) ≤
1

k + 1

k∑
i=0

p(Si) ≤
p(I)

b1/(β + α)c+ 1
< (β + α)p(I)

Removing Si∗ will create an empty interval of length β in the bin, and the remaining items

can be shifted so that they fit in a bin of length 1.

5.2.3.2 Near-optimal Packing of Small Items

Consider a Vector-Max-GAP instance (I,
−→
val,−→s ,−→w ,

−→
M,
−→
W). Item i is said to be ε-small for this

instance iff −→w (i) ≤ ε
−→
W and for all j ∈ [k], (sj(i) ≤ εMj or valj(i) = 0). A set I of items is said

to be ε-small iff each item in I is ε-small.

Suppose I is ε-small. Let J ⊆ I be a feasible solution to (I,
−→
val,−→s ,−→w , (1 + ε)

−→
M, (1 + ε)

−→
W).

Let Jj be the items assigned to the jth machine.

For each j ∈ [k], use trimming on Jj for sizes sj and then for each q ∈ [d], use trimming

on J for weights wq. In both cases, use α := ε and β := ε. Let R be the removed items and

J ′ = J − R be the remaining items. Total value lost is less than 2ε(d + 1)val(J) and J ′ is

feasible for (−→s ,−→w ,
−→
M,
−→
W).

Therefore, any resource-augmented solution J of small items can be transformed to get a

feasible solution J ′ of value at least (1− 2(d+ 1)ε)val(J).

85

Page 102 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

5.2.4 A Structural Result

Theorem 5.4. Let J be a feasible solution to (I,
−→
val,−→s ,−→w ,

−→
M,
−→
W). Let Jj ⊆ J be the items

assigned to the jth machine. Then for all ε > 0, there exist sets X and Y such that |X| ≤
(d+ k)/(ε2) and val(Y) ≤ ε · val(J) and

∀j ∈ [k],∀i ∈ Jj −X − Y, sj(i) ≤ ε (Mj − sj (X ∩ Jj))

∀i ∈ J −X − Y, −→w (i) ≤ ε
(−→
W −−→w (X)

)
Proof. Let P1,j = {i ∈ Jj : sj(i) > εMj}, where j ∈ [k], and Q1,q = {i ∈ J : wq(i) > εWq},
where q ∈ [d]. We know that sj(P1,j) > εMj|P1,j|. Therefore, |P1,j| ≤ 1

ε
. Also, wq(Q1,q) >

εWq|Q1,q|. Therefore, |W1,q| ≤ 1
ε
. Let R1 =

(⋃k
j=1 P1,j

)
∪
(⋃d

q=1Q1,q

)
. R1 is therefore the set

of items in J that are in some sense ‘big’. Note that |R1| ≤ (d+ k)/ε.

If val(R1) ≤ ε · val(J), set Y = R1 and X = {} and we’re done. Otherwise, set P2,j =

{i ∈ Jj − R1 : sj(i) > ε(Mj − sj(R1 ∩ Jj))}, Q2,q = {i ∈ J − R1 : wq(i) > ε(Wq − wq(R1))},
and R2 =

(⋃k
j=1 P2,j

)
∪
(⋃d

q=1Q2,q

)
. If val(R2) ≤ ε · val(J), set Y = R2 and X = R1 and

we’re done. Otherwise, set P3,j = {i ∈ Jj − R1 − R2 : sj(i) > ε(Mj − sj((R1 ∪ R2) ∩ Jj))},
Q3,q = {i ∈ J−R1−R2 : wq(i) > ε(Wq−wq(R1)−wq(R2))}, andR3 =

(⋃k
j=1 P3,j

)
∪
(⋃d

q=1Q3,q

)
.

If val(R3) ≤ ε · val(J), set Y = R3 and X = R1 ∪ R2 and we’re done. Otherwise, similarly

compute R4 and check if val(R4) ≤ ε · val(J), and so on. Extending the similar arguments

about |R1|, it follows that for all t > 0, |Rt| ≤ (d+ k)/ε.

Since every Rt (t > 0) is disjoint, there will be some T ≤ 1/ε such that val(RT) ≤ ε ·val(J).

Now set Y = RT and X = R1∪. . .∪RT−1. We can see that |X| ≤
∑T

t=1 |RT | ≤ T (d+k)/ε ≤
(d+k)/ε2 and val(Y) = val(RT) ≤ ε ·val(J). Note that all items in J−X−Y are small because

of the way RT was constructed. Hence it follows that

∀j ∈ [k],∀i ∈ Jj −X − Y, sj(i) ≤ ε(Mj − sj(X ∩ Jj))

∀i ∈ J −X − Y,−→w (i) ≤ ε
(−→
W −−→w (X)

)
5.2.5 PTAS for Vector-Max-GAP

Let J∗ be an optimal assignment for (I,
−→
val,−→s ,−→w ,

−→
M,
−→
W). Let J∗j ⊆ J∗ be the items assigned

to the jth machine.

By Theorem 5.4, J∗ can be partitioned into sets X∗, Y ∗ and Z∗ such that |X∗| ≤ d+k
ε2

and

val(Y ∗) ≤ ε · val(J∗). Let
−→
W ∗ =

−→
W −−→w (X∗) and M∗

j = Mj − sj(X∗ ∩ J∗j). Then Z∗ is ε-small

86

Page 103 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

for (
−→
val,−→s ,−→w ,

−→
M∗,
−→
W ∗).

For a set S, define Πk(S) as the set of k-partitions of S.

Algorithm 3 Vector-Max-GAP(I,
−→
val,−→s ,−→w ,

−→
M,
−→
W): PTAS for Vector-Max-GAP

1: Jbest = {}.
2: for X ⊆ I such that |X| ≤ (d+ k)/ε2 do

3: for (X1, X2, . . . , Xk) ∈ Πk(X) do

4:
−→
W ′ =

−→
W −−→w (X)

5: M ′
j = Mj − sj(Xj) for each j ∈ [k].

6: val′j(i) =

valj(i) if sj(i) ≤ εM ′
j,∀q ∈ [d], wq(i) ≤ εW ′

q

0 otherwise
for each i ∈ I −X, j ∈ [k].

7: . I −X is ε-small for (
−→
val′,−→s ,−→w ,

−→
M ′,
−→
W ′)

8: Z ′ = assign-res-augε(I −X,
−→
val′,−→s ,−→w ,

−→
M ′,
−→
W ′).

9: Trim Z ′ to get Z so that Z is feasible for (−→s ,−→w ,
−→
M ′,
−→
W ′).

10: J = X ∪ Z
11: if val(J) > val(Jbest) then

12: Jbest = J

13: end if

14: end for

15: end for

16: return Jbest

Correctness: Since Z is feasible for (−→s ,−→w ,
−→
M ′,
−→
W ′), X ∪ Z is feasible for (−→s ,−→w ,

−→
M,
−→
W).

Approximation guarantee:

For some iteration of Algorithm 3, X = X∗ and Xj = X∗ ∩ J∗j for all j ∈ [k]. When that

happens,
−→
W ′ =

−→
W ∗ and

−→
M ′ =

−→
M∗. Let val∗ be the maximum value ε-small assignment of items

to the machines with capacities given by
−→
M ′ and over all weight constraints

−→
W ′. Therefore,

val∗ ≥ val(Z∗).

To try to find an optimal assignment of small items, we’ll forbid non-small items to be

assigned to a machine. We do this in line 6: if for item i, sj(i) > εM ′
j for any j ∈ [k] or

wq(i) > εW ′
q for any q ∈ [d], set valj(i) to 0. Using our resource-augmented Vector-Max-GAP

algorithm, we get val(Z ′) ≥ val∗. By the property of trimming, val(Z) ≥ (1−2(d+ 1)ε)val(Z ′).

val(Jbest) ≥ val(X∗) + val(Z) ≥ val(X∗) + (1− 2(d+ 1)ε)val(Z∗) ≥ (1− 2(d+ 1)ε)(1− ε)val(J∗)

87

Page 104 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

This gives us a (1 − (2d + 3)ε)-approx solution. The running time can be easily seen to be

polynomial as assign-res-aug runs in polynomial time and the number of iterations of the outer

loop in Algorithm 3 is polynomial in n and for one iteration of the outer loop, the inner loop

runs at most constant number of times.

5.3 Algorithm for (2, d) Knapsack Problem

In this section, we will obtain a (2+ε)-approximation algorithm for the (2, d) knapsack problem

for both the cases of ‘rotations allowed’ as well as ‘rotations not allowed’.

Let I be a set of n (2, d)-dimensional items. We are given a (2, d)-dimensional knapsack

and we would like to pack a high profit subset of I in the knapsack. Let us denote this optimal

profit by OPTGVKS(I). Let −→w = [w(1), . . . , w(n)],
−→
h = [h(1), . . . , h(n)], −→p = [p(1), . . . , p(n)].

For an item i ∈ I, let −→v (i) = [v1(i), . . . , vd(i)] and let −→v = [−→v (1), . . . ,−→v (n)].

In the whole section, a container is a rectangular region inside the knapsack. For our

purposes, every container can be one of the four types: large, wide, tall, area. A large container

can contain at most one item. An area container can only contain items that are ε-small for

the container, i.e., an item can be packed into an area container of width w and height h only

if the item has width at most εw and height at most εh. In a wide (resp. tall) container, items

must be stacked up one on top of another (resp. arranged side by side). We also require that

the containers do not overlap amongst themselves.

5.3.1 A Structural Result

Consider a set of items S that are packed in a knapsack. We now state a structural result,

inspired by [GGH+17], where a subset of items S ′ ⊆ S is packed into the knapsack. We may

lose some profit but the packing has a nice structure which can be searched for, efficiently.

Theorem 5.5. Let S denote a set of items that can be feasibly packed into a knapsack and

let 0 < ε < 1 be any small constant. Then there exists a subset S ′ ⊆ S such that p(S ′) ≥
(1/2−ε)·p(S). The items in S ′ are packed into the knapsack in containers. Further, the number

of containers formed is Oε(1) and their widths and heights belong to a set whose cardinality is

poly(|S|) and moreover, this set can be computed in time poly(|S|).

Now, let us go back to our original problem instance I. Let IOpt be the set of items packed

into the knapsack in an optimal packing P.

Let us apply Theorem 5.5 to the set of items IOpt with ε := εstruct (εstruct will be defined

later). Let I ′Opt be the resulting analog of S ′ in the theorem (there can be many candidates for

88

Page 105 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

I ′Opt but let us pick one). Therefore,

p(I ′Opt) ≥
(

1

2
− εstruct

)
· p(IOpt) =

(
1

2
− εstruct

)
·OPTGVKS (I) (5.1)

5.3.2 Proof of the Structural Result

In this subsection, we will prove Theorem 5.5.

The strategy to prove the theorem is to use the corridor decomposition scheme, introduced

by [AW15]. First, we assume that we can remove Oε(1) number of items at the cost of zero

profit loss from the originally packed items. Under this assumption, we show that we lose at

most half profit by our restructuring. Finally, we show how to get rid of this assumption by

using shifting argumentations.

Removing Medium items: Let εsmall, εbig be two fixed constants such that εbig > εsmall.

We partition the items in S based on the values of εsmall and εbig as follows:

• SS = {i ∈ S : w(i) ≤ εsmall and h(i) ≤ εsmall}

• SB = {i ∈ S : w(i) > εbig and h(i) > εbig}

• SW = {i ∈ S : w(i) > εbig and h(i) ≤ εsmall}

• ST = {i ∈ S : w(i) ≤ εsmall and h(i) > εbig}

• Smed = {i ∈ S : w(i) > εsmall and w(i) ≤ εbig OR h(i) ≤ εbig and h(i) > εsmall}

We call the items in SS as small items as they are small in both the dimensions. Similarly,

we call the items in SB, SW , ST , Smed as big, wide, tall, medium respectively.

By standard arguments, it is possible to choose the constants εsmall and εbig such that the

total profit of all the medium items is at most ε · p(S). Hence, we can neglect the items in Smed

from S while losing a very small profit (at most ε fraction). This is formalized in the following

lemma.

Lemma 5.6. Let ε ∈ (0, 1) and let f : (0, 1) 7→ (0, 1) be a strictly increasing function such that

f(x) > x for all x ∈ (0, 1) and let S be a given set of items. Let f (k) be the function f composed

k times. For any given integer k > 0, define

Sk =
{
i ∈ S

∣∣∣w(i) ∈
(
f (k)(0), f (k+1)(0)

]∨
h(i) ∈

(
f (k)(0), f (k+1)(0)

]}
Then for some k′ ∈ [2 d1/εe],

p(Sk′) ≤ εp(S)

89

Page 106 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

Proof. Consider any item i. There exists at most one kw such that w(i) ∈
(
f (kw)(0), f (kw+1)(0)

]
.

Similarly there exists at most one kh such that h(i) ∈
(
f (kh)(0), f (kh+1)(0)

]
. So, an item i ∈ S

can belong to at most two sets in the family of sets {Sk}k>0. Therefore, for some k′ ∈ [2 d1/εe],
p(Sk′) ≤ εp(S).

Hence, we can choose εsmall as f (k′)(0) and εbig as f (k′+1)(0) where k′ is as guaranteed by the

above lemma. This ensures that the profit of the medium items Smed is at most εp(S).

Remark 5.7. Since εbig = f(εsmall) and f can be any arbitrary increasing function, we can

choose f such that the ratio εbig/εsmall is arbitrarily large. Hence, we can assume that εbig, εsmall

are independently chosen. Also, since εsmall = f(0), we can make εsmall an arbitrarily small

constant.

The above remark will be extremely crucial for our structural result.

5.3.2.1 Corridors

First, let us define what a subcorridor is. A subcorridor is just a rectangle in the 2D coordinate

system with one side longer than εbig and the other side having a length of at most εbig. A

subcorridor is called wide (resp. tall) if the longer side is parallel to the x-axis (resp. y-axis).

A corridor is just a subcorridor or a union of at most 1/ε subcorridors such that each wide

(resp. tall) subcorridor overlaps with exactly two tall (resp. wide) subcorridors, except for at

most two subcorridors which are called the ends of the corridors and can overlap with exactly

one subcorridor. The overlap between any two subcorridors should be in such a way that one

of their corners coincide. See Fig. 5.1 for an illustration.

Figure 5.1: A corridor which is just a union of 9 subcorridors.

90

Page 107 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

5.3.2.2 Corridor Decomposition

For now, let’s consider a generic packing of a set of items S that can contain big, small, wide,

tall items.

Since the number of big items packed can be at most a constant, and since we assumed that

we can remove a constant number of items at no profit loss, let us remove all the big items from

the packing. Let’s also get rid of the small items for now (we will pack the small items later).

Hence, we are left with wide and tall items packed in the knapsack. Let’s name these items as

skewed items and denote the set of these items by Sskew.

Now we will discuss the corridor packing lemma used to partition to the knapsack into

corridors.

Lemma 5.8 (Corridor Packing lemma [AW15]). Let ε > 0 be some accuracy parameter. Con-

sider a set of items S such that each item has one of the sides at least δ. Then, there exist

non-overlapping corridor regions in the knapsack such that we can partition S into sets Scorr,

Snice
cross, S

bad
cross, Sfree such that

•
∣∣Snice

cross ∪ Sfree

∣∣ = Oε(1)

• p(Sbad
cross) ≤ O(1)ε · p(Sskew)

• Every item in Scorr is fully contained in one of the corridors. The number of corridors is

Oε,δ(1) and in each corridor, the number of subcorridors is at most 1/ε.

• Each subcorridor has length at least δ and breadth less than δ (assuming length to denote

the longest side and breadth to denote the smallest side).

Remark 5.9. In the above lemma, the set S can contain items which are not skewed as long

as at least one of their sides is ≥ δ.

The above remark will be useful in Section 5.3.2.5.

We apply the corridor decomposition lemma to items in Sskew with δ = εbig. We remove

items in Snice
cross ∪Sfree since they are at most a constant in number and items in Sbad

cross since their

total profit is very less. See Fig. 5.2 for an illustration of the lemma.

The last point of the lemma ensures that any item in Scorr is completely contained in

exactly one subcorridor. Hence for every skewed item contained in a corridor, we can tell which

subcorridor it belongs to. The last point also ensures that, there can not be a subcorridor which

completely contains both wide and tall items. This fact allows us to label each subcorridor as

91

Page 108 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

Figure 5.2: Skewed items in corridors. Dark items indicate the set Scorr. Red items indicate
the set Snice

cross. They are constant in number. Blue items indicate the set Sbad
cross. They carry very

marginal profit. Orange items which indicate Sfree are not contained in any corridor. They are
constant in number.

wide or tall: If a subcorridor contains only wide (resp. tall) items, we say that it is a wide

(resp. tall) subcorridor.

Removing either wide or tall items: Now, we will simplify the above structure of skewed

items while losing at most half of the original profit.

Assume without loss of generality that the total profit of wide items is at least as much as

the total profit of the tall items. Hence, if we get rid of the tall items, we lose at most half of

the original profit. With this step, we can also remove all the tall subcorridors since they are

all empty. We are left with wide items packed in wide subcorridors. Since the subcorridors are

just rectangles and they no longer overlap, we just call these subcorridors as boxes.

Next, we will describe how to reorganize the items in these boxes into containers at a very

marginal profit loss.

5.3.2.3 Reorganizing Boxes into Containers

Note that the boxes contain only wide items. And since the width of the wide items is lower

bounded by εbig, we can create an empty wide strip in each box at the loss of very small profit

and at most a constant number of items. This is described in the following lemma.

92

Page 109 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

Lemma 5.10. Let B be a box of dimensions a × b such that each item contained in it has a

width of at least µ, where µ is a constant. Let the total profit packed inside the item be P and let

εbox be small constant. Then, it is possible to pack all the items barring a set of items of profit

at most εbox · P and a set of Oµ(1) number of items into a box of dimensions a× (1− εbox)b.

Proof. Assume the height of the box is along the y-axis and width of the box is along the x-axis

and say, the bottom left corner of the box is situated at the origin. Draw lines at y = yi for

i ∈ {1, . . . , b1/εboxc} such that yi = i · εboxb. These lines will partition the box into d1/εboxe
regions. For all i ∈ {1, . . . , d1/εboxe}, let si be the set of items completely contained in the

ith region. Then, there must exist some region j such that p(sj) ≤ (1/ d1/εboxe) · P . We will

remove all the items in sj. Also, the number of items partially overlapping with the region j

can be at most 2/µ, which is Oµ(1). By removing these items, we create an empty strip of size

a× εboxb and hence the remaining items can be packed in a box of size a× (1− εbox)b.

We apply the above lemma to each and every box with small enough εbox and µ = εbig.

Consider a box B and let Sbox be the items packed inside B. Also, let a×b be the dimensions of

the box. Let S ′box be the set of items in the knapsack after performing the steps in Lemma 5.10.

S ′box can be packed within the box a× (1− εbox)b and we are left with some empty space in the

vertical direction. Hence, we can apply the resource augmentation lemma, which is taken from

[GGH+17].

Lemma 5.11 (Resource Augmentation Lemma). Let I be a set of items packed inside a box of

dimensions a× b and let εra be a given constant. Then there exists a container packing of a set

I ′ ⊆ I inside a box of size a× (1 + εra)b such that

• p(I ′) ≥ (1−O(1)εra) · p(I)

• The number of containers is Oεra(1) and the dimensions of the containers belong to a set

of cardinality O
(
|I|Oεra (1)

)
.

• The total area of the containers is at most a(I) + εra · ab

Applying the above lemma to the box B, we obtain a packing where S ′box is packed into

box of size a× (1− εbox)(1 + εra)b. This process of obtaining boxes from containers is shown in

Fig. 5.3.

We will choose εbox, εra such that the product (1− εbox)(1 + εra) < (1− 2ε).

Lemma 5.12. The total area of containers obtained is at most

min {(1− 2ε), a(Scorr) + εra}

93

Page 110 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only
Figure 5.3: Obtaining containers from a box in two steps. First, we remove the strip (shaded
in light grey) with least profit of items completely contained in it (shown in red). We also
remove the items partially intersecting that strip (shown in blue. These will be constant in
number). Then in the second step, we apply resource augmentation lemma to obtain constant
number of containers.

Proof. The second upper bound directly follows from the last point of Lemma 5.11: Area of

the containers in a box B of dimensions a × b is at most a(Sbox) + εra · ab. Summing over all

boxes we get the bound a(Scorr) + εra.

For the first upper bound, observe that every box of dimensions a× b is shrunk into a box

of dimensions a × (1 − 2ε)b. Since all the original boxes were packable into the knapsack, the

total area of the boxes (and hence the containers) after shrinking is at most (1− 2ε) times the

area of the knapsack itself, which is 1.

5.3.2.4 Packing Small Items

In this subsection, we show how to pack small items that have been removed from the packing

temporarily. Let the set of small items be denoted by Ssmall. Let εgrid = εsmall/ε. We will make

use of the crucial fact that the number of containers created does not depend on εsmall and εgrid

does not depend on εra.

Let us define a uniform grid G in the knapsack where grid lines are equally spaced at a

distance of εgrid. It is easy to see that the number of grid cells formed is at most d1/εgride2

which is at most a constant. We mark a grid cell as free if it has no overlapping with any

container and non-free otherwise. We delete all the non-free cells and the free cells will serve

as the area containers that we use to pack the small items.

Lemma 5.13. For some choice of εsmall and εra, the total area of non-free cells is at most

min
{

(1− ε), a(Scorr) + 3ε2
}

Proof. Let A be the total area of containers and k be the number of containers. The total area

of cells completely covered by containers is at most A. The partially overlapped cells are the

94

Page 111 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

cells that intersect the edges of the containers. Since, the number of containers is k and each

container has 4 edges and each edge can overlap with at most d1/εgride number of cells, the

area of completely and partially overlapped cells is at most

A+ 4k · d1/εgride · ε2grid

As we noted before, εgrid depends on εsmall but does not depend on εra. On the other hand,

k, the number of containers depends on εra but does not depend on εsmall. Hence, for some

carefully chosen εgrid and εra, we can ensure that the above quantity is at most A+ 2ε2.

By Lemma 5.12, the value of A is bounded by

min {(1− 2ε), a(Scorr) + εra} .

Hence, the total area of deleted cells is at most

min
{

(1− 2ε+ 2ε2), a(Scorr) + εra + 2ε2
}

For ε < 1/2 and by choosing εra < ε2, we get the desired result.

We now show that there is a significant area of free cells left to pack the small items

profitably.

Lemma 5.14. The area of free cells is at least (1− 3ε) · a(Ssmall)

Proof. Since Ssmall and Scorr were packable in the knapsack, a(Ssmall ∪ Scorr) ≤ 1.

Now if a(Ssmall) ≥ ε, then the area of free cells is at least 1−a(Scorr)−3ε2 ≥ a(Ssmall)−3ε2 ≥
(1− 3ε) · a(Ssmall)

On the other hand, if a(Ssmall) < ε, then the area of free cells is at least ε which in turn is

at least a(Ssmall).

Each free cell has dimensions εgrid × εgrid and a small item has each side at most εsmall.

Hence, all small items are ε-small for the created free cells and these can be used to pack the

small items. Using NFDH, we can pack a very high profit in the area containers as described

in the following lemma.

Lemma 5.15. Let I be a set of items and let there be k identical area containers such that each

item i ∈ I is ε-small for every container and the whole set I can be packed in these containers.

Then there exists an algorithm which packs a subset I ′ ⊆ I in these area containers such that

p(I ′) ≥ (1− 2ε) · p(I).

95

Page 112 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

Proof. Without loss of generality, assume that each container has dimensions 1 × 1. So, we

can assume that every item i ∈ I has a width of at most ε and a height of at most ε. Order

the items in I in non-increasing ratio of profit/area (we call this profit density) breaking ties

arbitrarily and also order the containers arbitrarily.

Start packing items into the containers using NFDH. If we are able to pack all the items in

I, we are done. Otherwise, consider an arbitrary container C. Let IC be the items we packed

in C and let iC be the item we could not pack in C. Then by Lemma 5.1, a(IC ∪ {iC}) >
(1− ε)2 · a(C) = (1− ε)2. But since a(iC) ≤ ε2, a(IC) > 1− 2ε. Hence, we have packed at least

(1− 2ε) fraction of the total area of the containers with the densest items and thus the claim

follows.

To this end, we have packed at least (1/2−O(1)ε) fraction of the total profit in the original

packing assuming that we can leave out a constant number of items at no cost.

5.3.2.5 Shifting Argumentation

We assumed that we can drop Oε(1) number of items from S at no profit loss. But this may not

be true because they can carry significant amount of profit in the original packing. The left out

constant number of items are precisely the big items and items in Snice
cross ∪ Sfree and the items

partially overlapping with the removed strip in Lemma 5.10. Also, recall that we neglected

small items from the packing and added them right at the end. Here, we will not neglect small

items all together. Rather, we will neglect only a tiny volume of them as we go. We will add

back this tiny volume at the end.

The main idea is to fix some items in the knapsack and then carry out our algorithm

discussed in the previous sections with some modifications. Again, we may leave out some

items with high profit. We fix these items too and repeat this process. We can argue that at

some point, the left out items have a very less profit and hence this process will end.

Let us define the set K(0) as the set of items that were removed in the above process. If

the total profit of K(0) is at most ε · p(S), then we are done. If this is not the case, then we

use shifting argumentation.

Assume that we completed the tth round for some t > 0 and say p(K(r)) > ε · p(S) for all

0 ≤ r ≤ t. Let K(t) =
⋃t
r=0K(t). We will argue that for every r ≤ t, |K(r)| is at most a

constant. Then |K(t)| is also at most a constant if t < d1/εe (in fact, we will argue that t will

not go beyond b1/εc).
Let us define a non-uniform grid G(t) induced by the set K(t) as follows: The x and y

coordinates of the grid are given by all the corners of the items in K(t). Note that the number

of horizontal (resp. vertical) grid lines is bounded by 2·|K(t)|. This grid partitions the knapsack

96

Page 113 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

into a set of cells C(t). Since |K(t)| is at most a constant, the number of grid cells created is

also at most a constant. Let the collection of these grid cells be denoted by C(t).

Let us denote an arbitrary grid cell by C and the items in S which intersect C and which

are not in K(t) by S(C). For an item i in S(C), let h(i ∩ C) and w(i ∩ C) denote the width

and height of the overlap of an item i with C. We categorize the items in S(C) relative to C

as follows.

• Ssmall(C) = {i ∈ S(C) : h(i ∩ C) ≤ εsmallh(C) and w(i ∩ C) ≤ εsmallw(C)}

• Sbig(C) = {i ∈ S(C) : h(i ∩ C) > εbigh(C) and w(i ∩ C) > εbigw(C)}

• Swide(C) = {i ∈ S(C) : h(i ∩ C) ≤ εsmallh(C) and w(i ∩ C) > εbigw(C)}

• Stall(C) = {i ∈ S(C) : h(i ∩ C) > εbigh(C) and w(i ∩ C) ≤ εsmallw(C)}

We call an item i small if it is not in Sbig(C) ∪ Swide(C) ∪ Stall(C) for some cell C. We call

an item i big if it is in Sbig(C) for some cell C. We call an item i wide (resp. tall) if it is in

Swide(C) (resp. Stall(C)) for some cell C.

We call an item i medium if there is a cell C such that h(i ∩ C) ∈ (εsmallh(C), εbigh(C)] or

w(i ∩ C) ∈ (εsmallw(C), εbigw(C)].

It is easy to observe that an item must belong to exactly one of small, big, wide, tall,

medium categories. Note that the width and height of a small item are at most εsmall. We call

an item i skewed if it is either wide or tall.

Also, observe that an item i is medium if and only if this condition is satisfied for at least

one of the four possible cells that contain the four corners of i. This observation gives us the

following lemma:

Lemma 5.16. Let ε > 0 be a constant and f : (0, 1) 7→ (0, 1) be a positive increasing function

such that f(x) > x for all x ∈ (0, 1). There exist values εsmall, εbig satisfying ε ≥ εbig ≥
f(εsmall) ≥ Ωε(1) and εsmall ∈ Ωε(1) such that the total profit of medium items is at most

ε · p(S).

Remark 5.17. The values of εsmall, εbig may depend on the current round t we are in.

Remark 5.18. Similar to Remark 5.7, we can choose εsmall, εbig independently, and we can

make εsmall arbitrarily small.

We add all the big items to K(t + 1). We can do this because the big items are at most

constant in number: Consider any cell C. The number of big items associated with it is at

most a constant and the number of cells themselves is at most a constant.

97

Page 114 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

We create a corridor decomposition in the knapsack w.r.t. the skewed items as follows:

First we transform this non-uniform grid into a uniform grid by moving the grid lines and

simultaneously stretching or compressing the items. Let’s make a few useful observations about

this transformation of non-uniform grid to uniform grid.

Observation 5.19. Each cell of the thus obtained uniform grid has each of its side lengths at

least

1

2 |K(t)|+ 1

Observation 5.20. Since each item is simultaneously stretched or compressed along with the

grid lines, the fraction of its width (resp. height) lying inside a cell doesn’t change with the

transformation. This, in particular, implies that every wide (resp. tall) item has width (resp.

height) at least

ε′big :=
εbig

2 |K(t)|+ 1

Since we have ensured that each skewed item has one of its lengths at least ε′big, we apply

Lemma 5.8 on the set of skewed items with δ := ε′big and create a set of Oε,ε′big
(1) corridors in

the knapsack.

Remark 5.21. We do the corridor decomposition only with respect to the skewed items, i.e., as

if only skewed items are present in the knapsack. This can lead to some corridors intersecting

some small items or some items from K(t).

Let Scorr, S
nice
cross, S

bad
cross, Sfree be the partition of the skewed items obtained as defined in

Lemma 5.8. The set Scorr is the set of items that are packed in the corridors completely.

We add the set Snice
cross∪Sfree to K(t+ 1) since they are constant in number. As the set Sbad

cross has

a very small profit, we discard them. We also remove all the skewed items in tall subcorridors

assuming, without loss of generality, that their profit is at most that of the skewed items in

wide subcorridors.

Now, we have the items in K(t) fixed inside the knapsack and the wide items in boxes

(which are just wide subcorridors obtained after deleting the tall items and hence deleting the

tall subcorridors). But, there can be small items intersecting the edges of a box. We initialize an

empty set TempSmall and move all these small items to it temporarily. The set TempSmall

will be packed at the end.

Remark 5.22. The volume of all these small items temporarily moved to TempSmall is at

most εsmall multiplied by ‘four times the number of boxes’. The number of boxes can be a large

constant, but it only depends on ε, ε′big.

98

Page 115 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

We would like to split the boxes into containers as in Section 5.3.2.3 but there is an issue:

There can be items in K(t) which overlap with the boxes. But these are at most a constant in

number and hence we can resolve this issue in the following way.

Consider an item i in K(t) partially overlapping with a box. Without loss of generality,

assume that it intersects the upper edge. We extend each of its horizontal edge that is inside the

box in both the directions till the ends of the box. This extended edge and i divide the items in

the box into at most five categories: The wide items intersecting the extended edge, the small

items intersecting the extended edge, the items to the left of i, the items to the right of i, the

items below i. We note that the items in the first category are at most a constant in number

and hence add them to K(t+ 1). The items in the second category are added to TempSmall.

Thus i splits the box into at most three smaller boxes. We repeat this process for all the items

in K(t) overlapping with the box. We obtain smaller boxes but with the required property that

there are no overlapping items in K(t) with the boxes. This is depicted in Figure 5.4.

Figure 5.4: Division of box into smaller boxes: The dark item is the item in K(t) that overlaps
with the box. The dashed lines are the extended edges and the red items are those that will
be included in K(t+ 1). The blue items are the small items that intersect the extended edges.
They will be added to TempSmall. This leads to three smaller boxes.

Remark 5.23. For a box, the volume of small items added to TempSmall in the above step is

εsmall multiplied by ‘the total length of the extended edges’. But the total length of the extended

edges is at most |K(t)|.

For each box, we perform the above process of getting rid of overlaps with items in K(t).

Remark 5.24. The total number of boxes finally obtained only depends on |K(t)| , ε, ε′big.

We apply Lemma 5.10 to these smaller boxes with a small change. As usual, we remove a

least profitable strip, but while doing this, we add all the wide items partially overlapping with

the removed strip to K(t + 1). We also add all the small items partially overlapping with the

removed strip to TempSmall.

99

Page 116 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

Remark 5.25. The volume of small items added to TempSmall in the above step is at most

εsmall multiplied by ‘twice the number of boxes’.

Then, we apply Lemma 5.11 to these new boxes to split them into containers as in Sec-

tion 5.3.2.3. Recall that a box of dimensions a × b is first converted to a box of dimen-

sions a × (1 − εbox)b by removing a strip. Then it is converted to a box of dimensions

a× (1− εbox)(1 + εra)b due to resource augmentation. We chose εbox, εra such that

(1− εbox)(1 + εra) ≤ (1− 2ε)

At this point, the (t+1)th round ends. The items added to K(t+1) are the big items whose

number only depends on εbig, some wide items whose number only depends on εbig, |K(t)|.
Hence we can inductively argue that the number of items in K(t) only depends on εbig and not

εsmall.

Now, we look at the set K(t+ 1). If p(K(t+ 1)) ≤ ε · p(S), we end; otherwise we continue

to round t+ 2. We can argue that the number of rounds are at most 1/ε: K(r) and K(r + 1)

are disjoint for all r ≥ 0. Hence, for some r < d1/εe, we can guarantee that p(K(r)) is at most

ε · p(S).

Therefore, after the rth round, we end the process. We are left with the task of adding back

the items in TempSmall.

Packing the Small Items. Note that the items in Ssmall −TempSmall are already packed

into area containers obtained from the boxes. To pack TempSmall, we use the empty space

that was created when we transformed a box into multiple containers. Recall that a box of

dimensions a × b was transformed into a box of dimensions a × (1 − 2ε)b leaving an empty

space of 2εab. We are going to use this empty space to pack TempSmall. Recall from our

classification of items that for a cell C,

Ssmall(C) = {i ∈ S(C) : h(i ∩ C) ≤ εsmallh(C) and w(i ∩ C) ≤ εsmallw(C)}

and an item is called small if it not big or wide or tall with respect to any cell.

Observation 5.26. A small item can intersect at most four cells.

Proof. Note that an edge of a small item can intersect at most two cells. If an edge intersects

three cells, then it means that at least one of these cells is completely cut by the edge. But

this would imply that the item is wide or tall or big with respect to that cell, which is a

contradiction. Since each edge can intersect at most two cells, the item can intersect at most

four cells.

100

Page 117 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

We assign each item in i ∈ TempSmall to the cell C with the highest area it intersects.

This cell must have the largest width as well as the largest height among all the four cells that

the item may intersect. This can be seen to be true in Fig. 5.5. Hence it must be the case that

w(i) ≤ 2εsmallw(C) and h(i) ≤ 2εsmallh(C)

Figure 5.5: The item (red) will be assigned to the cell that is shaded darker.

In this manner, we assign each small item in TempSmall to exactly one of the cells. Let

TempSmall(C) denote the set of small items from TempSmall assigned to C. To pack

TempSmall(C) in C, we would like to use the empty space created in C when transforming

boxes into multiple containers.

Lemma 5.27. The free space in a cell C is at least εa(C).

Proof. Recall from Observation 5.19, the side length of each grid cell is at least 1/(2 |K(t)|+1).

We applied corridor decomposition with δ as εbig/(2 |K(t)| + 1). Hence, the height of each

subcorridor, and hence each box, must be at most εbig/(2 |K(t)| + 1). This implies that the

height of a box is at most εbig fraction of the height of a cell.

Let boxes(C) denote the set of boxes that partially or fully intersect C. As shown in Fig. 5.6,

some of these boxes contribute to empty space in C, while some don’t. To be precise, the boxes

that intersect the top edge and the bottom edge of the cell may not contribute to free space.

Let’s call these boxes as bad boxes and the remaining boxes in boxes(C) as good boxes. The

total area of intersection of bad boxes with the cell C is only at most 2εbiga(C) since each has

height is at most εbigh(C). Hence, there is at least (1− 2εbig)a(C) area in C that is intersected

by good boxes or which is just empty space. Each good box provides an empty area of at least

101

Page 118 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only
Figure 5.6: Green boxes contribute to a free area of at least 2ε fraction of their intersection
with the cell. Red boxes on the other hand may not contribute any empty space.

2ε fraction of its intersection with the cell. Overall, we obtain an empty space of at least

2ε(1− 2εbig)a(C) ≥ εa(C)

area, if we ensure that εbig < 1/4.

Now, let us look at the total area of TempSmall(C). Remarks 5.22, 5.23 and 5.25 imply

that this area is at most εsmallNa(C) where N is a function of ε, εbig, ε
′
big, |K(t)|. But ε′big in turn

is a function of εbig, |K(t)|, and |K(t)| is again a function of εbig. Hence, N is just a constant

that depends on εbig. Thus, by choosing a small enough εsmall, we can ensure that the total

area of the items in TempSmall(C) is at most ε3a(C). Thus, we ensure that the total area to

be packed is at most ε2 fraction of the free space. So, just like in Section 5.3.2.4, we can pack

a profit of at least (1− ε)p(TempSmall(C)) in the cell C into area containers.

In this manner, considering each cell at a time, we pack an almost optimal subset of

TempSmall into area containers in the knapsack.

In [GGH+17], it is also shown how to modify the formed containers so that their widths and

heights come from a set of cardinality poly(|S|). This proves Theorem 5.5.

5.3.3 Container Packing Problem and Vector-Max-GAP

From now on, our main goal would be to derive an algorithm to construct the nice structure as

in Theorem 5.5. We first formally define the problem of packing items into containers. We then

define an extension of the Generalized Assignment Problem, which we call the Vector-Max-

GAP problem, for which we obtain a PTAS which in turn can be used to solve the container

packing problem.

Let I be a set of items and let −→w ,
−→
h ,−→p ,−→v denote the associated widths, heights, profits

and weights respectively.

Let C be a given set of containers such that the number of containers is constant. Out of

C, let CA, CH , CV , CL denote area, wide, tall and large containers respectively.

102

Page 119 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

In the Container Packing Problem, we would like to pack a subset of I into these containers

such that

• A large container can either be empty or can contain exactly one item.

• In a wide (resp. tall) container, all the items must be stacked up one on top of another

(resp. arranged side by side).

• The total area of items packed in an area container must not exceed (1 − ε′)2 times the

area of the container itself (assume that ε′ is a constant given as a part of the input).

• The total weight of items packed in all the containers in any dimension j ∈ {1, . . . , d}
should not exceed one.

We denote an instance of the container packing problem by the tuple (I,−→w ,
−→
h ,−→p ,−→v , C, ε′).

Now, let us define the Vector-Max-GAP problem. Let I be a set of n items and let us say,

we have k machines such that the jth machine has a capacity Mj. An item i has a size of sj(i),

value of valj(i) in the jth machine and weight wq(i) in the qth dimension. The objective is to

assign a maximum value subset of items I ′ ⊆ I, each item to a machine, such that the total

size of items in a machine does not exceed the capacity of that machine. We also require that

the total weight of I ′ does not exceed Wq (a non-negative real) in any dimension q ∈ [d].

Let
−→
M = [M1,M2, . . . ,Mk],

−→
W = [W1,W2, . . . ,Wd],

−→w (i) = [w1(i), w2(i), . . . , wd(i)],
−→s (i) =

[s1(i), s2(i), . . . , sk(i)],
−→
val(i) = [val1(i), val2(i), . . . , valk(i)].

Also, let −→s = [−→s (1),−→s (2), . . . ,−→s (n)], −→w = [−→w (1),−→w (2), . . . ,−→w (n)],
−→
val =

[
−→
val(1),

−→
val(2), . . . ,

−→
val(n)]. We denote an instance of Vector-Max-GAP by (I,

−→
val,−→s ,−→w ,

−→
M,
−→
W).

5.3.4 Reduction of Container Packing Problem to Vector-Max-GAP

Let C = (I,−→w ,
−→
h ,−→p ,−→v , C, ε′) denote an instance of the container packing problem. In this

subsection, we show how to reduce C to an instance G = (I,
−→
val,−→s ,−→w ,

−→
M,
−→
W) of the Vector-

Max-GAP problem.

We retain I from C. Since we have unit vector constraints over all the containers combined

in the container packing problem, we initialize
−→
W to be the vector of all ones. We choose the

number of machines in G to be same as the number of containers in C. Let |C| = k and |I| = n.

103

Page 120 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

The vectors
−→
val,−→s ,

−→
M are defined as follows in case of rotations being forbidden:

sj(i) =

1 if Cj is a large container and i can fit in inside Cj

∞ if i can not fit in inside Cj

h(i) if Cj is a wide container and i fits in inside Cj

w(i) if Cj is a tall container and i fits in inside Cj

w(i)h(i) if Cj is an area container and i is ε′-small for Cj

∞ if Cj is an area container but i is not ε′-small for Cj

Mj =

1 if Cj is a large container

h(Cj) if Cj is a wide container

w(Cj) if Cj is a tall container

(1− ε′)2h(Cj)w(Cj) if Cj is an area container

valj(i) = p(i)

wq(i) = vq(i)

In the above definitions of sj(i),Mj, valj(i) and wq(i), i varies from 1 to n, j varies from 1 to k

and q varies from 1 to d.

If rotations are allowed, the reduction is exactly the same except for the values of sj(i): If

Cj is a tall (resp. wide) container,

sj(i) =

∞, if i can fit neither with rotation nor without rotation

w(i)(resp. h(i)), if i fits without rotation but not with rotation

h(i)(resp. w(i)), if i fits with rotation but not without rotation

min{w(i), h(i)}, if i fits both with and without rotation

If Cj is a large container, we set sj(i) = ∞ if i does not fit in Cj with or without rotations.

Otherwise we set sj(i) to 1. In case of Cj being an area container, sj(i) is same as the case

without rotations.

Let I ′ denote a subset of I packed in a feasible solution to C. Then I ′ can also be feasibly

assigned to the machines of our Vector-Max-GAP problem: Just assign all the items in a

container Cj to the jth machine.

• If Cj is a large container, then the only item packed into it has size 1 in machine Mj and

104

Page 121 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

capacity of Mj is also 1 and hence assigning this item to the jth machine is feasible.

• If Cj is a wide (resp. tall) container, the items packed in Cj are wide and stacked up

(resp. tall and arranged side by side). Hence their total height (resp. width), which is

the total size of items assigned to the jth machine, does not exceed the total height (resp.

width) of the container, which is the capacity of the jth machine.

• If Cj is an area container, the total area of items packed in Bj does not exceed (1− ε′)2 ·
a(Cj) which yields that the total size of items assigned to the jth machine does not exceed

the capacity of the jth machine.

The total weight of all the items assigned to machines does not exceed
−→
W (which is equal

to the all ones vector) as we did not change −→v while reducing C to G. This proves that the

optimal value obtainable for G is at least as much as that of the container packing problem C.

On the other hand, consider any feasible assignment of a subset of items J ⊆ I to the

machines in our instance G. Let Jj be the subset of items assigned to the jth machine. We can

pack Jj into container Cj in the following way: Since the assignment is feasible, the size of all

items in Jj does not exceed the capacity of Mj. If Cj is wide (resp. tall),
∑

i∈Jj h(i) ≤ h(Cj)

(resp.
∑

i∈Jj w(i) ≤ w(Cj)). Hence, all the items in Jj can be stacked up (resp. arranged side

by side) inside the container Cj. If Cj is an area container, then Jj consists of only small items

which are ε′-small for Cj and a(Jj) ≤ (1− ε′)2 · a(Cj). Hence, by Lemma 5.1, we can pack the

set Jj into Cj using NFDH. If an item is assigned to a large container, then it occupies the

whole capacity (since item size and machine capacity are both equal to 1) and hence, only a

single item can be packed in a large container.

The above arguments prove that the container packing problem is a special instance of

the Vector-Max-GAP problem. In Section 5.2, we presented a PTAS for the Vector-Max-GAP

problem and hence we also have a PTAS for the container packing problem.

Theorem 5.28. There exists a PTAS for the container packing problem.

5.3.5 Algorithm

Our main goal is to search for the container packing structure in Theorem 5.5.

For this we need to guess the set of containers used to pack the items in I ′Opt of (5.1). As

mentioned in Section 5.3.2, the number of containers used is at most a constant (let this number

be denoted by c) and they have to be picked from a set whose cardinality is in poly(|I|) (let

this cardinality be denoted by q(|I|)). Therefore, the number of guesses required is
(
q(|I|)+c

c

)
which is in turn in poly(|I|).

105

Page 122 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

Once we have the containers, we need to guess which of them are large containers, wide

containers, tall containers and area containers. The number of guesses required is at most
(
c+4
c

)
which is a constant.

Then we use the PTAS of the container packing problem with approximation factor (1 −
εcont), and since the optimal profit of the container packing problem is at least (1/2− εstruct) ·
OPTGVKS(I), by choosing εcont := ε and εstruct := ε/2, we get the desired approximation factor

of (1/2− ε) for the (2, d) knapsack problem.

106

Page 123 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only
Chapter 6

The d-D Hypercube Knapsack Problem

In the d-D Hypercube Knapsack problem, we are given a set of hypercubes, each carrying a

profit. The objective is to find a maximum profitable packing into a knapsack which is just a

unit hypercube.

We will discuss near-optimal algorithms for two special cases of the d-D Hypercube Knapsack

problem in this chapter. More specifically, we devise PTASes for the cardinality case as well as

the bounded-density case.

Using more sophisticated techniques, we can design a PTAS for the general d-D Hypercube

Knapsack problem where each item can have an arbitrary profit. We will not discuss this

general result in this thesis. Please see [JKLS22] for this result.

Let I denote the set of input items. Let ε be the accuracy parameter. For an item (which

is a d-D hypercube) i, let p(i) denote its profit and let vol(i) denote its d-dimensional volume.

We can extend this notation of p, vol to a set of items S: p(S) denotes the total profit of all

the items in S and vol(S) denotes the total volume of all the items in S.

6.1 Prior Work

As discussed in Section 1.3.4, for a fixed d, the d-D Hypercube Knapsack is not a generalization

of the classical knapsack problem. The (strong) NP-Hardness of this problem for d = 2 has

been proved by [LTW+90] in 1990. Only recently, in 2015, [LCC15] proved that this problem

is strongly NP-Hard for d ≥ 3. Hence, we can’t expect the problem to have an FPTAS for

d ≥ 2 unless P = NP. These hardness results extend to the special cases that we will consider

(cardinality case, and bounded-density case).

The first non-trivial approximation algorithm for the problem was given by [Har06], who

showed a
(

2d+1
2d

+ ε
)

approximation algorithm for any d ≥ 2. Notice how the approximation

107

Page 124 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

ratio inches closer to 1 as the dimension increases. Hence, it is natural to expect that there

likely exists a PTAS for this problem for any d ≥ 2. Jansen and Solis-Oba [JS12] showed a PTAS

for the special case when d = 2 (in this case, the problem is also called the Square Knapsack

problem). Then, only recently in 2017, [HW17] gave an EPTAS for the square knapsack problem,

and this is essentially the best possible algorithm as there can’t exist an FPTAS unless P = NP.

For d ≥ 3 though, there hasn’t been any improvement since [Har06]’s result until recently, when

[JKLS22] devised a PTAS.

6.2 PTAS for the Bounded-density Case

We consider the bounded-density case, where each item i in the input satisfies the condition

that

p(i)

vol(i)
∈ [1, r]

where r is an arbitrary but fixed constant.

For a given set of items S, and a positive real v, let KS(v, S) denote an instance of the

classical knapsack problem where each item in i ∈ S is replaced by a one-dimensional item

with size vol(i) and profit p(i) and the capacity of the knapsack is given by v. Further let

OptKS(v, S) denote the optimum value of the instance KS(v, S).

Observation 6.1. Let S be a given input set of items and B be a knapsack with volume v.

Then OptKS(v, S) ≥ Opt(S) (here Opt(S) denotes the optimal profit obtainable by packing a

subset of S into B).

Proof. This is because the solution to a geometric knapsack instance must satisfy the condition

that the total volume of the items packed is at most v.

Observation 6.2. For any set of items S, vol(S) ≤ p(S) ≤ r vol(S)

We also state the following lemma proved in [BCKS06] which will be used later. For the

sake of completeness, we give a proof sketch here.

Lemma 6.3. Consider a packing of m items into a d-D bin. The remaining unfilled region can

be divided into at most (2m)d hypercuboidal regions.

Proof. We can assume, without loss of generality, that the corner of one of the items is placed

exactly at one of the bin corners. Let’s iterate over each dimension k ∈ [d]. Each item has two

faces perpendicular to the kth axis. We extend these two faces till they meet the ends of the

108

Page 125 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

bin. Thus, we extend at most 2m faces for each k. Overall, we finally obtain a grid containing

at most (2m)d cells where the already present items are completely contained in some of these

cells.

6.2.1 NFDH for Small Items

Recall the higher dimensional version of NFDH discussed in Section 2.4.2. Also, recall

Lemma 2.6 which can be used to pack small items compactly. We restate the lemma here.

Lemma 6.4. Let S be a set of d-D hypercubes each with side length at most δ. Consider a d-D

hypercuboidal region R with side lengths r1, r2, . . . , rd (with each ri at most 1). Suppose we try

to pack S into R using NFDH. Then we either pack all the items, or the wasted space in R is

at most δ(r1 + r2 + · · ·+ rd).

We can extend the above lemma to pack small items in multiple hypercuboidal regions.

Lemma 6.5. Let R1,R2, · · · ,R` be a set of hypercuboidal regions and let v1, v2, · · · , v` denote

their respective volumes. Assume that all these hypercuboidal regions have all of their dimen-

sions at most 1. Let S be a set of cubes whose lengths are at most δ and consider packing all

these items into these hypercuboidal regions. If

vol(S) ≤
∑̀
i=1

vi − `δd

then using NFDH, we can pack the entire set S into these hypercuboidal regions.

Proof. First try to pack S using NFDH into R1. If some items are still left, pack them in R2

and so on. We will prove that all the items will be packed in this manner. For the sake of

contradiction, assume that some items are unpacked. By Lemma 6.4, at least vi − δd volume

must be packed into every region Ri. Therefore, the volume of all the packed items is at least∑`
i=1 vi − `δd which proves that there can not be any unpacked items.

6.2.2 Algorithm

We will now proceed to devise a PTAS for the bounded-density case. Let Opt denote an optimal

packing. For every item i ∈ I, let si denote the length of i. For now assume a small constant

ε1 < ε: it will be defined during the analysis part. For k ∈ {1, 2, · · · , d1/ε1e} define the set

Mk =
[
ε
(2d2)k

1 , ε
(2d2)k−1

1

)
109

Page 126 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

and the set Nk = {i ∈ I|si ∈Mk}. Clearly, for some k′ ∈ [d1/ε1e],

p(Nk′ ∩Opt) ≤ ε1 ·Opt(I)

Define the quantities

εsmall = ε
(2d2)k

′

1 and εbig = ε
(2d2)k

′−1

1

Remark 6.6. εbig ≤ ε1 and εsmall = (εbig)
2d2.

Define the set J := I\Nk′ and partition the set J into two classes small and large: S :=

{j ∈ J |sj < εsmall} and L := {j ∈ J |sj ≥ εbig}. Although we do not know apriori the set Nk′ ,

we can “guess” this set since there are only constant number of possibilities for k′. From the

above discussion, it is easy to see that Opt(J) ≥ (1 − ε1)Opt(I). Hence, from now on, we

concentrate on constructing an almost optimal packing w.r.t. J .

Note that the number of items from L that can fit in the knapsack B is bounded by
⌊
1/εdbig

⌋
.

Let LOpt denote items from L that are packed in B in the optimal packing and let m := |LOpt|.
Again, we do not know apriori the value of m or the set LOpt, but since m is bounded by⌊
1/εdbig

⌋
which is a constant, we can “guess” the set LOpt through brute force in polynomial

time. We can also find a packing of LOpt into B in constant time since the number of items we

need to pack is no more than a constant.

Now, we have a packing with the large items (these large items are exactly those that are in

the optimal packing). Without loss of generality, we can assume that there are gaps left in the

bin (if not, we already found the optimal packing). Our next goal is to pack the small items

efficiently into these gaps. We divide these gaps into at most (2m)d hypercuboidal regions using

Lemma 6.3. Let us weaken this bound and say that there are at most

λ :=
(
2
⌊
1/εdbig

⌋)d ≤ 2d

εd
2

big

(6.1)

empty hypercuboidal regions.

Let V be the total volume of these gaps. First, using an FPTAS for classical knapsack (e.g.,

[Law77]), select S ′ ⊆ S such that

vol(S ′) ≤ V − λεsmalld and p(S ′) ≥ (1− µ)OptKS(V − λεsmalld, S)

where µ is a very small constant that will be defined later. Lemma 6.5 states that, using NFDH,

we can pack all the items in S ′ in these gaps.

110

Page 127 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

The packing is complete now and the remaining work is to fix the value of µ, ε1 and argue

that this packing is an almost optimal packing. To summarize, the algorithm is as follows :

1. First, remove a subset of items Nk′ from I which carries a very small profit compared to

Opt(I). Let us call this new set of items J .

2. Divide J into two sets: S, consisting of items whose side length is< εsmall and L, consisting

of items whose side length is ≥ εbig.

3. First guess the large items that are packed in Opt and pack them into the bin.

4. Gaps are created in the bin. Let V denote the total volume of these gaps. Divide these

gaps into at most λ hypercuboidal regions.

5. Select a subset S ′ ⊆ S such that p(S ′) ≥ (1 − µ)OptKS(V − λεsmalld, S) and vol(S ′) ≤
V − λεsmalld.

6. Pack S ′ into these hypercuboidal regions using NFDH.

Remark 6.7. In step 5, we can safely assume that vol(S ′) ≥ V −λεsmalld−εdsmall, otherwise we

can add small items to S ′ until this condition is met without violating the condition vol(S ′) ≤
V − λεsmalld. If there are not enough small items to add to S ′, it would mean that we already

have the exact optimal solution.

6.2.3 Analysis

Let LOpt, SOpt respectively denote the set of large and small items that are packed in Opt. Let

LAlg, SAlg respectively denote the large and small items that are packed by our algorithm. By

the construction of our algorithm, LAlg = LOpt. Let Alg(J) = p(LAlg) + p(SAlg) denote the

profit packed by our algorithm. Also, note that Opt(J) = p(LOpt) + p(SOpt).

First we observe that

p(SOpt) ≤ OptKS(V, S) ≤ OptKS(V − λεsmalld, S) + (λεsmalld+ εdsmall)r

The first inequality follows from Observation 6.1 and the second inequality is because, starting

from an optimal solution to KS(V, S) we can remove a few items of volume at most λεsmalld+

εdsmall to get a feasible solution to KS(V − λεsmalld, S). These removed items will have profit at

most (λεsmalld+ εdsmall)r.

111

Page 128 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only
Alg(J) = p(LAlg) + p(SAlg)

≥ p(LAlg) + (1− µ)OptKS(V − λεsmalld, S)

≥ p(LAlg) + (1− µ)

(
p(SOpt)− (λεsmalld+ εdsmall)r

)
Now, to show that Alg(J) is very close to Opt(J),

Alg(J)

Opt(J)
≥

p(LAlg) + (1− µ)

(
p(SOpt)− (λεsmalld+ εdsmall)r

)
Opt(J)

=
p(LOpt) + p(SOpt)− µ · p(SOpt)− (1− µ)(λεsmalld+ εdsmall)r

Opt(J)

= 1− µ · p(SOpt) + (1− µ)(λεsmalld+ εdsmall)r

Opt(J)

≥ 1− µ− (1− µ)(λεsmalld+ εdsmall)r

Opt(J)

≥ 1− µ− (1− µ)(λεsmalld+ εdsmall)r

1− (λεsmalld+ εdsmall)

(since vol(J) > 1− (λεsmalld+ εdsmall) (Remark 6.7) and p(J) ≥ vol(J))

≥ (1− µ)
(

1− (1 + r)(λεsmalld+ εdsmall)
)

Therefore,

Alg(J) ≥ (1− µ)
(

1− (1 + r)(λεsmalld+ εdsmall)
)

Opt(J)

≥ (1− ε1)(1− µ)
(

1− (1 + r)(λεsmalld+ εdsmall)
)

Opt(I)

If we can make sure that each of ε1, µ, (1 + r)(λεsmalld+ εdsmall) is less than ε/3 then we will get

the desired result. First let’s choose

ε1 =
ε

6(1 + r)
and µ =

ε

3

112

Page 129 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

From Eq. (6.1) and from Remark 6.6,

λεsmalld ≤
2d

εd
2

big

(εbig)
2d2d = 2dεd

2

bigd ≤ 2dεd
2

1 d ≤ ε1 =
ε

6(1 + r)

Similarly, we can prove that εdsmall ≤ ε
6(1+r)

. Overall, we obtain that

(1 + r)(λεsmalld+ εdsmall) ≤
ε

3

This completes the PTAS for the bounded-density case.

6.3 PTAS for the Cardinality Case

In this section, we will present a PTAS for the d-D Hypercube Knapsack problem in the special

case when each item has unit profit.

We will again use NFDH to pack small items. Hence, we will restate the lemma.

Lemma 6.8. Let S be a set of d-D hypercubes each with side length at most δ. Consider a d-D

hypercuboidal region R with side lengths r1, r2, . . . , rd (with each ri at most 1). Suppose we try

to pack S into R using NFDH. Then we either pack all the items, or the wasted space in R is

at most δ(r1 + r2 + · · ·+ rd).

Let I denote the set of input items and let n := |I|. Define ε1 := ε/(3d). Consider any

optimal packing Opt. Note that since we are in the cardinality case, for any set of items S,

p(S) = |S|. If |Opt| ≤ (1/ε1)
d+1, then we can guess |Opt| in constant time. Once we know

|Opt|, in time (
n

d(1/ε1)d+1e

)
= Oε

(
n(1/ε1)d+2

)
we can guess the items in Opt. Since |Opt| is bounded by a constant, we can find an exact

packing of Opt in polynomial time.

So, from now on, assume that

|Opt| >
(

1

ε1

)d+1

If an item has side length at least ε1, we call it a large item; otherwise it is small.

Let LOpt denote the set of large items in Opt and let SOpt denote the set of small items in

113

Page 130 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

Opt. Since a large item has volume at least εd1, we have that

p(LOpt) ≤
1

εd1
≤ ε1p(Opt)

This in turn implies that

p(SOpt) = p(Opt)− p(LOpt) ≥ (1− ε1)p(Opt) (6.2)

Order the small items in non-increasing order of profit density (or non-decreasing order of

side lengths). Select the largest prefix S ′ such that

vol(S ′) ≤ 1− ε1d

By Lemma 6.8, using NFDH, we can pack the entire set S ′ in the knapsack.

If S ′ = S, then from Eq. (6.2), we directly we have that the profit packed is at least

p(S) ≥ (1− ε1)p(Opt) ≥ (1− ε)p(Opt)

On the other hand, if S ′ 6= S, since any small item has volume at most εd1, we have that

vol(S ′) ≥ (1− ε1d− εd1)

by the maximality of S ′. Moreover, since S ′ contains the items with the highest profit density

whose volume equals vol(S ′), we have that

p(S ′) ≥ (1− ε1d− εd1)
p(SOpt)

vol(SOpt)

≥ (1− ε1d− εd1)(1− ε1)p(Opt)

≥
(

1− ε

3
− εd1

)(
1− ε

3

)
p(Opt) (since ε1 = ε/(3d))

≥
(

1− 2ε

3

)(
1− ε

3

)
p(Opt)

≥ (1− ε)p(Opt)

This completes the PTAS for the cardinality case.

114

Page 131 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only
Chapter 7

Conclusion

In this thesis, we studied several variants of the classical bin packing and knapsack problems.

First we studied online bin packing under two stochastic models: (i) the i.i.d. model, (ii)

the random-order model. For the first setting, we devised a meta-algorithm which takes any

offline algorithm Aα with an AAR of α, and produces an online algorithm with an ECR of

(α + ε). This shows that online bin packing under the i.i.d. model and offline bin packing are

almost equivalent. Using any AFPTAS as Aα results in an online algorithm with an ECR of

(1 + ε) for any constant ε > 0.

Then, we analyzed the well-known Best-Fit algorithm under the random-order model. First,

we proved that the ECR of Best-Fit is equal to one if all the item sizes are greater than 1/3.

Then, we improved the analysis of the Best-Fit from 1.5 to ≈ 1.4941, for a very hard special

case where the item sizes lie in the range (1/4, 1/2].

Then we moved to the knapsack regime. For the 3-D Knapsack problem, if rotations are

allowed, we designed a (31/7 + ε) approximation algorithm, thus beating the current best ratio

of (5 + ε). If rotations are not allowed, we gave a simpler (7 + ε)-approximate algorithm which

matches the current best approximation ratio. For the problem of maximizing the volume

packed, when rotations are allowed, we devised a (3 + ε)-approximate algorithm. We gave

improved approximation algorithms for the cardinality case as well.

Then, we studied the rectangle knapsack problem with vector constraints, also denoted

as (2, d) Knapsack. For this problem, we devised a (2 + ε)-approximate algorithm using the

corridor decomposition technique.

Finally, we devised PTASes for the d-D Hypercube Knapsack problem in the special cases

of cardinality and bounded-density.

115

Page 132 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

7.1 Open Problems

Classical Bin Packing. Despite being very well-studied over the past four decades, there exist

several interesting open questions on bin packing. [HR17b] gave an algorithm which packs in

Opt +O(log Opt) number of bins, but an interesting open question is whether it is possible to

pack in Opt +O(1) number of bins. The famous textbook by Shmoys and Williamson [WS11]

mentions this problem as one of the most important open problems in the field of approximation

algorithms.

Online Bin Packing. The current best lower bound on the competitive ratio (CR) of any

online algorithm is ≈ 1.54278 by [BBD+19]. On the other hand, the current best algorithm by

[BBD+18] has an approximation ratio of ≤ 1.57829. Closing the gap between these upper and

lower bounds is an interesting open question.

Online Bin Packing under the i.i.d. Model. In Chapter 3, we gave an algorithm with an

ECR of (1 + ε). Whether an algorithm with ECR exactly equal to one is possible or not is an

interesting open question.

Online Bin Packing under the Random-order Model. Fischer in his thesis [Car19] gave

an exponential time, randomized algorithm which achieves a random-order ratio of (1 + ε). It

is interesting to see if we can reduce the runtime to polynomial time, while maintaining near-

optimality. Another important problem is to deduce the exact ECR of Best-Fit in this model,

which is conjectured to be ≈ 1.15 at present. The current best lower bound and upper bound

are 1.1 and 1.5, respectively. Hence, a good direction would be to tighten this gap.

Geometric Bin Packing. Another important and well-studied variant of bin packing is the

d-D geometric bin packing where items are d-D hypercuboids. For d ≥ 3, the current best

approximation algorithm, given by Caprara [Cap08], has an AAR of 1.69d−1. For the three-

dimensional case, this ratio turns out to be ≈ 2.86. Since three-dimensional packing is very

relevant in practice, it would be an interesting task to improve this ratio. For general d, it

would be interesting to see if an approximation factor of O(poly(d)) is possible or not.

Rectangle Knapsack. For the rectangle knapsack problem, where each item is just a rectan-

gle, existence of a PTAS is conjectured. In fact, a recent QPTAS for this problem by [AW15]

strengthens the belief. However, the current best approximation ratio is 1.89 [GGH+17], which

is far from a PTAS.

3-D Knapsack. In Chapter 4, we improved the current best approximation ratio from (5 + ε)

to (31/7+ε) when rotations are allowed, and gave a simpler (7+ε)-approximate algorithm when

rotations are not allowed, matching the current best factor. Both algorithms are constructive

in nature. However, most state-of-the-art results on packing are non-constructive, which first

116

Page 133 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

modify an optimal packing into a polynomial-time searchable structure. Hence, one promising

approach to improve our ratios would be to derive good structural results about an optimal

packing. The special case of bounded profit density has links with 3-D geometric bin packing:

We can show that any algorithm for the case of bounded profit density with a AR better than

2.86 will lead to an algorithm for 3-D geometric bin packing with an AAR better than 2.86,

thus beating Caprara’s current best factor.

Geometric Knapsack. For the d-D geometric knapsack problem, [Sha21] gave a (3d + ε)-

approximate algorithm. Improving this ratio would be an interesting task. The special case

of bounded-density is also important since any approximation ratio better than 1.69d−1 would

yield a better approximation ratio for the d-D geometric bin packing problem discussed above.

117

Page 134 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only
Bibliography

[AKL21a] Susanne Albers, Arindam Khan, and Leon Ladewig. Best fit bin packing with

random order revisited. Algorithmica, 83(9):2833–2858, 2021. 4, 11, 25, 28, 51

[AKL21b] Susanne Albers, Arindam Khan, and Leon Ladewig. Improved online algorithms

for knapsack and GAP in the random order model. Algorithmica, 83(6):1750–1785,

2021. 25

[AW15] Anna Adamaszek and Andreas Wiese. A quasi-PTAS for the two-dimensional

geometric knapsack problem. In SODA, pages 1491–1505, 2015. 89, 91, 116

[BBD+18] János Balogh, József Békési, György Dósa, Leah Epstein, and Asaf Levin. A

new and improved algorithm for online bin packing. In ESA, volume 112, pages

5:1–5:14, 2018. 24, 116

[BBD+19] János Balogh, József Békési, György Dósa, Leah Epstein, and Asaf Levin. A new

lower bound for classic online bin packing. In WAOA, volume 11926, pages 18–28.

Springer, 2019. 24, 116

[BBG10] János Balogh, József Békési, and Gábor Galambos. New lower bounds for certain

classes of bin packing algorithms. In WAOA, 2010. 3

[BC81] Brenda S Baker and Edward G Coffman, Jr. A tight asymptotic bound for next-fit-

decreasing bin-packing. SIAM Journal on Algebraic Discrete Methods, 2(2):147–

152, 1981. 28

[BCJ+09] Nikhil Bansal, Alberto Caprara, Klaus Jansen, Lars Prädel, and Maxim Sviridenko.

A structural lemma in 2-dimensional packing, and its implications on approxima-

bility. In ISAAC, pages 77–86, 2009. 22

118

Page 135 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

BIBLIOGRAPHY

[BCKS06] Nikhil Bansal, José R Correa, Claire Kenyon, and Maxim Sviridenko. Bin pack-

ing in multiple dimensions: inapproximability results and approximation schemes.

Mathematics of operations research, 31(1):31–49, 2006. 22, 108

[BEK16] Nikhil Bansal, Marek Eliás, and Arindam Khan. Improved approximation for

vector bin packing. In SODA, pages 1561–1579, 2016. 28

[BGK00] Jozsef Bekesi, Gabor Galambos, and Hans Kellerer. A 5/4 linear time bin packing

algorithm. Journal of Computer and System Sciences, 60(1):145–160, 2000. 23

[BGK11] Anand Bhalgat, Ashish Goel, and Sanjeev Khanna. Improved Approximation Re-

sults for Stochastic Knapsack Problems, pages 1647–1665. 2011. 4

[BJL+84] Jon Louis Bentley, David S Johnson, Frank Thomson Leighton, Catherine C Mc-

Geoch, and Lyle A McGeoch. Some unexpected expected behavior results for bin

packing. In STOC, pages 279–288, 1984. 24

[Cap08] Alberto Caprara. Packing d-dimensional bins in d stages. Mathematics of Opera-

tions Research, 33:203–215, 2008. 116

[Car19] Carsten Oliver Fischer. New Results on the Probabilistic Analysis of Online Bin

Packing and its Variants. PhD thesis, Rheinische Friedrich-Wilhelms-Universität

Bonn, December 2019. 25, 27, 50, 116

[CGJT80] Edward G. Coffman, Jr, Michael R. Garey, David S. Johnson, and Robert E.

Tarjan. Performance bounds for level-oriented two-dimensional packing algorithms.

SIAM Journal on Computing, 9:808–826, 1980. 21

[CJJLS93] Edward G Coffman Jr, David S Johnson, George S Lueker, and Peter W Shor.

Probabilistic analysis of packing and related partitioning problems. Statistical

Science, 8(1):40–47, 1993. 51

[CJJSW97] Edward G Coffman Jr, David S Johnson, Peter W Shor, and Richard R Weber.

Bin packing with discrete item sizes, part ii: Tight bounds on first fit. Random

Structures & Algorithms, 10(1-2):69–101, 1997. 24

[CJK+06] Janos Csirik, David S Johnson, Claire Kenyon, James B Orlin, Peter W Shor, and

Richard R Weber. On the sum-of-squares algorithm for bin packing. Journal of

the ACM (JACM), 53(1):1–65, 2006. 24, 25

119

Page 136 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

BIBLIOGRAPHY

[CJSHY80] Edward G Coffman Jr, Kimming So, Micha Hofri, and AC Yao. A stochastic model

of bin-packing. Information and Control, 44(2):105–115, 1980. 24

[CS88] K. L. Clarkson and P. W. Shor. Algorithms for diametral pairs and convex hulls

that are optimal, randomized, and incremental. In Proceedings of the Fourth An-

nual Symposium on Computational Geometry, SCG ’88, page 12–17. Association

for Computing Machinery, 1988. 4

[DEH+17] Sina Dehghani, Soheil Ehsani, MohammadTaghi Hajiaghayi, Vahid Liaghat, and

Saeed Seddighin. Stochastic k-server: How should uber work? In 44th International

Colloquium on Automata, Languages, and Programming (ICALP 2017). Schloss

Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017. 4

[DGV08] Brian C Dean, Michel X Goemans, and Jan Vondrák. Approximating the stochastic

knapsack problem: The benefit of adaptivity. Mathematics of Operations Research,

33(4):945–964, 2008. 25

[DH76] W. Diffie and M. Hellman. New directions in cryptography. IEEE Transactions

on Information Theory, 22(6):644–654, 1976. 1

[DH09] Nikhil R. Devanur and Thomas P. Hayes. The adwords problem: Online keyword

matching with budgeted bidders under random permutations. In Proceedings of the

10th ACM Conference on Electronic Commerce, EC ’09, page 71–78, New York,

NY, USA, 2009. Association for Computing Machinery. 4

[DHJ+07] Florian Diedrich, Rolf Harren, Klaus Jansen, Ralf Thöle, and Henning Thomas.

Approximation algorithms for 3d orthogonal knapsack. In Jin-Yi Cai, S. Barry

Cooper, and Hong Zhu, editors, Theory and Applications of Models of Computa-

tion, pages 34–45, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg. iii, 11, 60,

62, 68, 71, 77

[dlVL81] W Fernandez de la Vega and George S Lueker. Bin packing can be solved within

1+epsilon in linear time. Combinatorica, 1(4):349–355, 1981. 11, 24, 26, 28

[EPR11] Friedrich Eisenbrand, Dömötör Pálvölgyi, and Thomas Rothvoß. Bin packing via

discrepancy of permutations. In SODA, pages 476–481, 2011. 24

[FC84] A. M. Frieze and M. R. B. Clarke. Approximation algorithms for the m-dimensional

0−1 knapsack problem: worst-case and probabilistic analyses. EJOR, 15:100–109,

1984. 81

120

Page 137 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

BIBLIOGRAPHY

[Fer89] Thomas S Ferguson. Who solved the secretary problem? Statistical science,

4(3):282–289, 1989. 25

[FMMM09] Jon Feldman, Aranyak Mehta, Vahab Mirrokni, and Shan Muthukrishnan. Online

stochastic matching: Beating 1-1/e. In FOCS, pages 117–126, 2009. 25

[FR16] Carsten Fischer and Heiko Röglin. Probabilistic analysis of the dual next-fit algo-

rithm for bin covering. In LATIN, pages 469–482, 2016. 25

[FR18] Carsten Fischer and Heiko Röglin. Probabilistic analysis of online (class-

constrained) bin packing and bin covering. In LATIN, volume 10807, pages 461–

474. Springer, 2018. 25

[GG63] P. C. Gilmore and R. E. Gomory. A linear programming approach to the cutting

stock problem-part ii. Operations Research, 11(6):863–888, 1963. 1

[GGH+17] Waldo Gálvez, Fabrizio Grandoni, Sandy Heydrich, Salvatore Ingala, Arindam

Khan, and Andreas Wiese. Approximating geometric knapsack via l-packings. In

FOCS, pages 260–271, 2017. 80, 88, 93, 102, 116

[GJ79] M. Garey and D. Johnson. Computers and Intractability: A Guide to the theory

of NP-completeness. Freeman NY, 1979. 2

[GKL22] Anupam Gupta, Gregory Kehne, and Roie Levin. Random order online set cover

is as easy as offline. In 2021 IEEE 62nd Annual Symposium on Foundations of

Computer Science (FOCS), pages 1253–1264, 2022. 4

[GKNS21] Anupam Gupta, Amit Kumar, Viswanath Nagarajan, and Xiangkun Shen.

Stochastic load balancing on unrelated machines. Mathematics of Operations Re-

search, 46(1):115–133, 2021. 25

[GKR12] Anupam Gupta, Ravishankar Krishnaswamy, and R Ravi. Online and stochastic

survivable network design. SIAM Journal on Computing, 41(6):1649–1672, 2012.

25

[GS20] Anupam Gupta and Sahil Singla. Random-order models. In Beyond the Worst-

Case Analysis of Algorithms, pages 234–258. Cambridge University Press, 2020.

25

121

Page 138 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

BIBLIOGRAPHY

[GS21] Anupam Gupta and Sahil Singla. Random-Order Models, page 234–258. Cambridge

University Press, 2021. 4

[Har06] Rolf Harren. Approximating the orthogonal knapsack problem for hypercubes. In

ICALP, pages 238–249, 2006. 107, 108

[HJPvS14] Rolf Harren, Klaus Jansen, Lars Prädel, and Rob van Stee. A (5/3 + ε)-

approximation for strip packing. Comput. Geom., 47(2):248–267, 2014. 61

[HR17a] Rebecca Hoberg and Thomas Rothvoss. A logarithmic additive integrality gap for

bin packing. In SODA, pages 2616–2625, 2017. 11, 24, 28

[HR17b] Rebecca Hoberg and Thomas Rothvoss. A logarithmic additive integrality gap for

bin packing. In SODA, pages 2616–2625, 2017. 116

[HW17] Sandy Heydrich and Andreas Wiese. Faster approximation schemes for the two-

dimensional knapsack problem. In SODA, pages 79–98, 2017. 108

[IK75] Oscar H. Ibarra and Chul E. Kim. Fast approximation algorithms for the knapsack

and sum of subset problems. J. ACM, 22(4):463–468, October 1975. 80

[JCRZ08] Edward G Coffman Jr, János Csirik, Lajos Rónyai, and Ambrus Zsbán. Random-

order bin packing. Discret. Appl. Math., 156(14):2810–2816, 2008. 25

[JDU+74] David S Johnson, Alan Demers, Jeffrey D Ullman, Michael R Garey, and Ronald L.

Graham. Worst-case performance bounds for simple one-dimensional packing al-

gorithms. SIAM Journal on computing, 3(4):299–325, 1974. 23, 55

[JG85] David S Johnson and Michael R Garey. A 71/60 theorem for bin packing. J.

Complex., 1(1):65–106, 1985. 23, 28

[JKLS22] Klaus Jansen, Arindam Khan, Marvin Lira, and K. V. N. Sreenivas. A PTAS

for packing hypercubes into a knapsack. In 49th International Colloquium on

Automata, Languages, and Programming, ICALP 2022, July 4-8, 2022, Paris,

France, volume 229, pages 78:1–78:20, 2022. 107, 108

[Joh73] David S Johnson. Near-optimal bin packing algorithms. PhD thesis, Massachusetts

Institute of Technology, 1973. 28

[Joh74] David S Johnson. Fast algorithms for bin packing. J. Comput. Syst. Sci., 8(3):272–

314, 1974. 25

122

Page 139 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

BIBLIOGRAPHY

[JS12] Klaus Jansen and Roberto Solis-Oba. Packing squares with profits. SIAM J.

Discrete Math., 26(1):263–279, 2012. 108

[JZ04] Klaus Jansen and Guochuan Zhang. On rectangle packing: maximizing benefits.

In SODA, pages 204–213, 2004. 61

[Kar72] R. M. Karp. Reducibility Among Combinatorial Problems. In R. E. Miller and

J. W. Thatcher, editors, Complexity of Computer Computations, pages 85–103.

Plenum Press, 1972. 1

[Ken96] Claire Kenyon. Best-fit bin-packing with random order. In SODA, pages 359–364,

1996. 25

[KK82] Narendra Karmarkar and Richard M Karp. An efficient approximation scheme for

the one-dimensional bin-packing problem. In FOCS, pages 312–320, 1982. 24

[KTRV14] Thomas Kesselheim, Andreas Tönnis, Klaus Radke, and Berthold Vöcking. Primal

beats dual on online packing lps in the random-order model. In Proceedings of the

Forty-Sixth Annual ACM Symposium on Theory of Computing, STOC ’14, page

303–312, New York, NY, USA, 2014. Association for Computing Machinery. 4

[Law77] Eugene L. Lawler. Fast approximation algorithms for knapsack problems. In FOCS,

pages 206–213, 1977. 80, 110

[LCC15] Yiping Lu, Danny Z Chen, and Jianzhong Cha. Packing cubes into a cube in

(d > 3)-dimensions. In COCOON, pages 264–276. Springer, 2015. 13, 107

[LL85a] Chan C Lee and Der-Tsai Lee. A simple on-line bin-packing algorithm. J. ACM,

32(3):562–572, 1985. 6

[LL85b] Chan C Lee and Der-Tsai Lee. A simple on-line bin-packing algorithm. J. ACM,

32(3):562–572, July 1985. 24, 28

[LL87] Chan C Lee and Der-Tsai Lee. Robust on-line bin packing algorithms. Technical

Report, Northwestern University, 1987. 24

[LS89] Tom Leighton and Peter Shor. Tight bounds for minimax grid matching with

applications to the average case analysis of algorithms. Combinatorica, 9(2):161–

187, 1989. 24

123

Page 140 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

BIBLIOGRAPHY

[LTW+90] Joseph Y. T. Leung, Tommy W. Tam, C. S. Wong, Gilbert H. Young, and Francis

Y. L. Chin. Packing squares into a square. Journal of Parallel and Distributed

Computing, 10(3):271–275, 1990. 13, 107

[MLG04] Omid Madani, Daniel J. Lizotte, and Russell Greiner. The budgeted multi-armed

bandit problem. In John Shawe-Taylor and Yoram Singer, editors, Learning The-

ory, pages 643–645, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg. 4

[Mur88] Frank D Murgolo. Anomalous behavior in bin packing algorithms. Discret. Appl.

Math., 21(3):229–243, 1988. 25, 47

[MY11] Mohammad Mahdian and Qiqi Yan. Online bipartite matching with random ar-

rivals: an approach based on strongly factor-revealing lps. In STOC, pages 597–606,

2011. 25

[NNN12] Alantha Newman, Ofer Neiman, and Aleksandar Nikolov. Beck’s three permu-

tations conjecture: A counterexample and some consequences. In FOCS, pages

253–262, 2012. 24

[Ram89] Prakash V Ramanan. Average-case analysis of the smart next fit algorithm. Inf.

Process. Lett., 31(5):221–225, 1989. 25

[Rhe94] W. T. Rhee. Inequalities for bin packing-iii. Optimization, 29(4):381–385, 1994.

32

[RT88] Wansoo T Rhee and Michel Talagrand. Exact bounds for the stochastic up-

ward matching problem. Transactions of the American Mathematical Society,

307(1):109–125, 1988. 26

[RT93a] WanSoo T. Rhee and Michel Talagrand. On-line bin packing of items of random

sizes, ii. SIAM Journal on Computing, 22(6):1251–1256, 1993. 4

[RT93b] Wansoo T Rhee and Michel Talagrand. On-line bin packing of items of random

sizes, ii. SIAM Journal on Computing, 22(6):1251–1256, 1993. 24, 26, 27, 32

[RT93c] Wansoo T Rhee and Michel Talagrand. On line bin packing with items of random

size. Mathematics of Operations Research, 18(2):438–445, 1993. 30, 32, 39

[Sha21] Eklavya Sharma. Harmonic algorithms for packing d-dimensional cuboids into

bins. In 41st IARCS Annual Conference on Foundations of Software Technology

124

Page 141 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

BIBLIOGRAPHY

and Theoretical Computer Science, FSTTCS 2021, December 15-17, 2021, Virtual

Conference, volume 213, pages 32:1–32:22, 2021. 117

[Sho86] Peter W Shor. The average-case analysis of some on-line algorithms for bin packing.

Combinatorica, 6(2):179–200, 1986. 24, 39, 51

[Ski99] Steven S. Skiena. Who is interested in algorithms and why? lessons from the stony

brook algorithms repository. SIGACT News, 30(3):65–74, sep 1999. 1

[Spe94] Joel Spencer. Ten lectures on the probabilistic method. SIAM, 1994. 24

[Ste97] A. Steinberg. A strip-packing algorithm with absolute performance bound 2. SIAM

Journal on Computing, 26(2):401–409, 1997. 61

[WS11] David P Williamson and David B Shmoys. The design of approximation algorithms.

Cambridge university press, 2011. 116

125

Page 142 of 142

https://mc04.manuscriptcentral.com/iisc_mtech

IISc - Masters Thesis Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

