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Abstract—One of the challenges for accurately estimating
Worst Case Execution Time(WCET) of executables is to accu-
rately predict their cache behaviour. Various techniques have
been developed to predict the cache contents at different pro-
gram points to estimate the execution time of memory-accessing
instructions. One of the most widely used techniques is Abstract
Interpretation based Must Analysis, which determines the cache
blocks guaranteed to be present in the cache, and hence provides
safe estimation of cache hits and misses. However, Must Analysis
is highly imprecise, and platforms using Must Analysis have been
known to produce blown-up WCET estimates. In our work,
we propose to use May Analysis to assist the Must Analysis
cache update and make it more precise. We prove the safety of
our approach as well as provide examples where our Improved
Must Analysis provides better precision. Further, we also detect
a serious flaw in the original Persistence Analysis, and use Must
and May Analysis to assist the Persistence Analysis cache update,
to make it safe and more precise than the known solutions to
the problem. Finally, we propose an improvement in the original
May Analysis, to make it more precise, especially for Data Cache
Analysis.

I. INTRODUCTION

Task Scheduling on hard and soft real systems generally
requires an estimate of the WCET of the programs to be
scheduled. The estimate must be safe, i.e. no run of the
program should go beyond the WCET time, and as precise as
possible, to optimize the scheduling and minimize the wastage
of resources. For better precision of the WCET estimate, just
a high-level analysis at the code level is not sufficient. Low-
level analysis using the details of the system on which the
program is to be run is equally important. Cache memories
are one of the most important components in a system at
the hardware level. As the processors used in modern real-
time systems become faster and faster, the gap between the
processor speed and memory speed continues to widen. As a
result, almost all real time systems today use cache memories,
which provide good access rates, although only for a limited
subset of the main memory.

For the purpose of estimation, keeping track of this dynam-
ically changing subset of memory in the cache is crucial, as
the difference between access time for memory blocks in the
cache to those not in the cache is generally of the order of
tens of processor cycles. Moreover, most real-world programs
generally spend a significant portion of their execution time in
fetching data to/from memory. Hence, taking the pessimistic
option of classifying every memory access as a cache miss
will significantly blow the estimate. On the other hand, most
of the cache replacement algorithms that control the contents

of the cache are deterministic, and hence it is possible to safely
estimate the cache contents.

The Abstract Interpretation based approach for WCET esti-
mation combines analysis at code level and processor level by
abstracting important details of both the code to be analyzed
as well as the system on which the program is to run. The
approach goes as follows: The first phase is Address Analysis,
where we obtain a safe estimate of the set of memory blocks
which will be accessed by each instruction in the program.
The next step is abstract interpretation based cache analysis,
which uses the accessed memory blocks computed by address
analysis to determine the worst case execution time of each
instruction in the program. In this step, details of the system
architecture such as cache capacity, associativity, block size,
instruction latencies, etc. can be modelled. Using this, we
calculate the worst case execution time of each basic block in
the program. Then we build an Integer Linear Program(ILP),
using the worst case execution times of basic blocks, subject
to structural constraints and loop bounds(thus incorporating
the program structure), to determine the worst case exection
path in the program.

The primary focus of our work is in the Cache Analysis
phase. We use the previous work of Rathijit Sen for Address
Analysis and ILP formulation[1] and do not make any changes
to it. Safety is of paramount importance while estimating
WCET of programs for hard(or even soft) real time systems,
and Abstract Interpretation based Must Analysis is one of
the few techniques for cache analysis which has been proven
safe theoretically. Since Must Analysis provides guarantees
for cache blocks present in the cache across all executions,
precision is severely compromised. The issue of precision is
more severe in Data cache Must Analysis, because Address
Analysis for Data caches is imprecise and frequently gives a
non-singleton set of memory blocks accessed by an instruc-
tion(especially for instructions inside loops). For such multi-
reference accesses, the original Must Analysis does not bring
any of the accessed memory blocks to the Must cache, but
simply makes the existing cache blocks older. This will result
in the Must cache becoming empty even for simple programs
with accesses inside loops, where even a quick manual analysis
can reveal that the Must cache should not be empty.

We use the following approach to tackle this issue : May
Analysis determines all memory blocks that may enter the
cache under all executions, and this information can be used
by the Must Analysis to deduce that some cache blocks must
remain in the cache, as there are just not enough younger



cache blocks which may force eviction. For a cache block in
the Must cache, using May analysis, we count the maximum
number of memory blocks that can be younger and then
determine whether this cache block should be evicted from the
Must cache. Another cache analysis which has been widely
used instead of Must Analysis for WCET estimation and
which does not suffer from the precision issue is Persistence
Analysis. Persistence Analysis cannot classify cache accesses
as always hit or always miss, and hence is not perfect for
WCET estimation for hard real time systems. However, it can
classify accesses inside loops as first miss, which means that
the first access to a memory block may or may not find it in
the cache, but all the other accesses to it will definitely be
satisfied by the cache. There is a safety issue with the original
Persistence Analysis given by Ferdinand and Wilhelm[2], and
in our work, we pinpoint the reason behind the lack of safety
in the Persistence Cache update. We propose to use both Must
and May Analysis to rectify the safety issue. Others have
identified similar issues with Persistence Analysis, in [3] and
[4]. Our solution is more precise than the solutions proposed
in both the papers, and we give examples where our approach
is able to detect more persistent blocks.

Finally, just as imprecise address analysis results in loss
of precision for Must Analysis, it also effects the precision
of May Analysis. We propose a simple but safe change in
the May Analysis cache update, which will provide better
precision in certain special cases, while being as precise as
the original May analysis for all programs.

II. RELATED WORK

Abstract Interpretation is one of the more successful tech-
niques employed for Cache Analysis. The pioneering work
was done by Ferdinand et al.[2], who proposed the abstract
lattice for the cache analysis, as well as the transfer functions
for Must Analysis, May analysis and Persistence Analysis[5].
Much of the earlier work in this area was limited to Instruction
Caches, as address analysis for intruction caches yields precise
results[6]. Earlier work on Cache Analysis for data caches
concentrated more on finding techniques to make the address
Analysis more precise[7].

Much of the recent research activity in the area of cache
analysis has been concentrated in extending it to multi-level
caches and multicores. [8] proposed a natural extension of
the single-level cache analysis of Ferdinand and Wilhelm to
multi-level caches. They use the original Must Analysis at
all cache levels, and use May and Persistence Analysis to
determine which accesses will reach a particular cache level
and which cache blocks may get evicted, respectively. Since
they use the original Must analysis, their approach suffers
from its imprecision, and its effect will be particularly felt at
higher cache levels, which generally have high associativities.
[9] proposes a radically different approach to Multi-level Data
cache Analysis, where they form pairs of cache levels and
track the contents of these pairs which they call ‘live caches’.
However the updates of these live caches is similar to the Must

analysis update, and their main concern is to safely estimate
the writeback effect for evicted dirty cache blocks.

[3] points out the error in the original Persistence Analysis,
and they argue that it arises because of mismatched cache
update and join function. The original Persistence Analysis
uses the cache update of Must Analysis with the join of May
Analysis, which results in overapproximation of the cache
contents and unsafe cache update. They propose to use May
Analysis to count the total number of cache blocks that may
be present in the cache, and deny any evictions from the
Persistence cache if this count is less than the associativity. [4]
augment the persistence analysis by keeping track of younger
sets of all cache blocks that may enter the cache, and use its
cardinality to perform safe cache update.

III. CACHE ANALYSIS TERMINOLOGY

Caches store fixed size chunks of memory in cache
blocks(also called memory blocks or cache lines). All the
data transfer to/from the cache takes place in the units of
linesize(i.e. size of cache block). Given a memory reference
x, x/linesize gives the address of the cache block containing
x. Given a cache block address, deciding where in the cache
the block will be stored depends upon the cache associativity.
In a fully-associative cache, a cache block can be placed
anywhere, while in a direct-mapped cache, there is a fixed
location for every cache block. In the middle lie the Set-
associative caches, where the cache is partitioned into cache
sets, which are collections of cache blocks. In set-associative
caches, given a memory reference, the cache set containing
the reference is unique, but within the set the cache block
satisfying the reference can be placed at any location. A cache
F with total size capacity, cache block size linesize and
associativity A has blocks = capacity/linesize cache blocks
which are distributed in sets = blocks/A sets. A cache block
with address addr will be present in the set addr%sets.

In an A-way set associative cache, if a set is full and another
cache block needs to be brought into this set, then the cache
replacement policy decides which of the A cache blocks needs
to be evicted. LRU(Least Recently Used) is one such policy,
which selects the cache block that has stayed the longest in
the set without any references to it, to be evicted. Temporal
locality dictates that such cache blocks have less chances of
being referenced, and hence are more optimal for replacement.
We will assume that the cache replacement policy is LRU. In
each set, we will order the cache blocks by the time of their
last accesses, and the position at which the cache block resides
will be its age. The most recently accessed cache block will
have an age of 1, while the least recently accessed block will
reside at position A. This has no relation, whatsoever, with
the actual physical arrangement in the cache set.

Abstract interpretation[10] is a static program analysis
technique which formalizes the data flow analyses used in
Compilers. For WCET analysis, safety is one of the paramount
requirements, and abstract interpretation provides a method for
formally proving the safety of the analysis. For using abstract
interpretation, one needs to specify the concrete lattice, which



is generally the power set lattice of program property of
interest. In our case, we are interested in the the state of the
cache-i.e. the cache blocks present in the cache and their ages.
The concrete lattice specified below is similar to the one used
in [2]:

The cache F is modelled as the set F = {f1, f2 . . . , fsets},
where fi denotes the ith cache set. Each cache set fi is
modelled as the set fi = {l1i , l2i , . . . , lAi }. Note that the
line number also signifies the age of the memory block
present in that line. Hence, l1i contains the most recently
used cache block in the ith set. Let memsize be the size
of the main memory(in bytes), then the main memory M
is modelled as the set M = {m1, . . . , mmemsize/linesize},
where m1, . . . , mmemsize/linesize are memory blocks of size
linesize.
Concrete Set State is a function si : fi → M ∪ {⊥}, where
⊥ signifies the empty memory block. Let Si be the set of all
such functions.
Concrete Cache State is a function c : F →⋃sets

i=1 Si, such that c(fi) ∈ Si, ∀1 ≤ i ≤ sets. Let C be
the set of all such functions.

Each concrete cache state basically gives the contents of
the cache and also specifies an LRU order in each cache set.
Each element of the concrete lattice is a subset of C, and
hence is a set of concrete cache states. The concrete transfer
function for this lattice takes a concrete cache state and a
memory reference, and outputs another concrete cache state.
This transfer function just mimics the actual LRU update in
a real cache, by making the accessed memory block the most
recently accessed in its cache set, and suitably updating the
ages of other cache blocks. Note that the concrete transfer
function only takes single-reference accesses for concrete
cache update. For the abstract lattice, we have the following
definitions:
Abstract Set State is a function ŝi : fi → 2M∪{⊥}. In an
abstract set state, we allow a cache line to contain multiple
cache blocks. Again, let Ŝi be the set of all such functions.
Abstract Cache State is a function ĉ : F →⋃sets

i=1 Ŝi, such that ĉ(fi) ∈ Ŝi, ∀1 ≤ i ≤ sets. Let Ĉ be
the set of all such functions.

Using the above definitions, Must, May and Persistence
Analysis can now be formally defined as follows: Must
Analysis produces an abstract cache state at each program
point such that every possible concrete cache state at that
program point contains all the cache blocks present in the
abstract state, and the age of a cache block in the abstract
state is an upper bound on the age of the block in all concrete
states. Intuitively, the Must analysis determines those cache
blocks that are guaranteed to be present in the cache, and thus
accesses to such blocks can be classified as always hit.
May Analysis produces an abstract cache state at each program
point such that no possible concrete cache state at that program
point can contain a cache block not present in the abstract
state. Hence, the abstract state is in some sense a superset of
all concrete states possible under all executions. Also, the age
of a cache block in the abstract state is a lower bound on the

age of the cache block in all concrete states. Intuitively, the
May analysis provides those cache blocks that may enter the
cache along some execution path. Hence, if a cache block is
not present in the abstract state produced by May analysis,
access to such a block can be safely classified as always miss.
Persistence Analysis produces an abstract state similar to the
May analysis, but with the property that the age of a cache
block in the abstract state is an upper bound on the age of
the cache block in all concrete states. To indicate that a cache
block can be evicted, in which case its age would be A + 1,
a special eviction line is added to the abstract set state, which
contains those cache blocks which may have been evicted.
Persistence Analysis is used to identify those cache blocks
that are persistent. A cache block is persistent, if once it is
brought into the cache, it is not evicted. Cache blocks in
the persistence cache which are not in the eviction line are
persistent. Persistence Analysis is used to classify references
in loops as first miss(i.e. miss on first iteration, hits on all
other iterations).

IV. IMPROVED MUST ANALYSIS

Must analysis is the most important of the three analyses
from the perspective of obtaining safe estimates, because an
access classified as hit from the Must cache is guaranteed to
be hit in the actaul cache for all executions. This imposes a
stringent safety requirement on the analysis itself. To satisfy
this safety requirement, the precision of the analysis is severely
compromised. This precision issue is further exacerbated in
Data cache Must Analysis, because of the imprecise results of
Address Analysis.

If the cache block accessed by an instruction is precisely
known(i.e single-reference access), then the transfer function
of Must Analysis is similar to the actual LRU update of a
normal cache. Given a memory reference, the set fi containing
the cache block satisfying the reference can be determined.
The abstract set state ŝi(fi) of the Must cache is modified by
bringing the accessed cache block to the first position(i.e. at
l1i ). If the accessed block was already present in the set state
at position h, then the younger cache blocks are shifted by
one position. If the accessed block was not present, then all
the cache blocks in the set state are shifted, evicting the oldest
referenced cache blocks(i.e. those in lAi ).

On the other hand, for multi-reference accesses, the transfer
function is not as precise as the actual LRU update. For such
an access, the address analysis gives a set of cache blocks
X = {m1, . . . , ml}, which can be accessed by the instruction.
Since the exact cache block which is accessed is not known,
the transfer function does not bring any of the accessed cache
blocks to the must cache. At the same time, any of the cache
blocks in X can be accessed, and hence they are all younger
than the cache blocks already present in the Must cache. To
simulate this aging effect, for cache blocks in the Must cache
at position h, we count the number of accessed cache blocks
which have an age greater than h, or are not present at all
in the must cache. Let Xi = {m1, . . . , mli} be the cache
blocks in X which map to the set fi. We define the function



shiftctr(Xi, h) = |{m ∈ Xi|(∃a, h < a ≤ A, m ∈ ŝi(lai )) ∨
(∀a, 1 ≤ a ≤ A, m 6∈ ŝi(lai ))}|. Intuitively, the above function
gives the number of accessed cache blocks who will now be
younger than the cache blocks present at position h in the Must
cache. Hence, shiftctr(Xi, h) gives the worst case increase
in the age of cache blocks at position h. So the cache blocks at
position h are now shifted to position h+ shiftctr(Xi, h), or
evicted if this number is greater than the cache associativity.

Fig. 1. CFG for Example Program

While the above transfer function is safe, it suffers from
lack of precision. Consider the loop represented by the CFG
in the Figure 1. a, b, c are cache blocks which map to the same
set, and the cache has an associativity of 4. Before entering
the loop for the first time, the cache block c is already present
in the Must cache with age 1 at program point A. Since the
access inside the loop is multi-reference, cache blocks a and b
will not be brought into the must cache after the access. Also,
at program point B, shiftctr({a, b}, 1) = 2, since both a and
b are not present in the cache. Hence the cache block c will
be shifted to position 3 in the must cache at program point C.
Join in the Must Analysis is Intersection of the corresponding
set states, while taking the maximum age. Hence, in the next
fixed point iteration of Must Analysis, the join of the must
caches at program points A and C will result in in the must
cache with the cache block c in position 3 at program point B.
Again shiftctr({a, b}, 3) = 2, hence the cache block c will
now be evicted from the Must cache, resulting in an empty set
state in the Must cache at program point C, and subsequently
at program points B and D.

Since there are only three cache blocks involved in the loop,
the cache block c will never be evicted during any actual
execution. Hence, while Must Analysis give a safe estimate,
it can be made more precise by including the cache block c
in the Must cache at program point D. The key observation
here is that at C, there can be maximum of two cache blocks
which are younger than cache block c. This information can
be captured using May Analysis.

Consider a cache block m at position h in the Must cache
at some program point P . Now, consider the May cache at
program point P . The May cache will also contain the cache
block m, and it will be present with an age less than or equal

Fig. 2. Must Cache update

to h. Now, consider all the cache blocks at positions less than
or equal to h in the May cache at P . It can be argued that these
cache blocks comprise the entire set of cache blocks which can
be younger than the cache block m under any actual execution.
No cache block that may be present in the cache at P will
be missed by the May Analysis, and cache blocks with age
greater than h in the May cache will never have an age less
than h at program point P , since May cache also maintains
the lower bound on ages. Hence, if a cache block was younger
than m at P along some execution path, it will be captured by
the May Analysis. Now if the instruction following program
point P accesses a set of memory blocks X , then the memory
blocks in X along with all the memory blocks at positions
less than or equal to h in the May cache at P will be the
maximum number of cache blocks that can be younger than
m at the program point Q

Let MaxY oung(Xi, h) = |Xi ∪
⊔h

a=1(ŝ
May
i (lai ) − Xi)|.

Note that ŝMay
i indicates the ith cache set of the May

cache. MaxY oung(Xi, h) gives the maximum number of
memory blocks which will be younger than a memory block
present at position h in the Must cache, after the access
Xi. We now take the minimum of h + shiftctr(Xi, h) and
MaxY oung(Xi, h), and this will be the new position of
cache blocks who were previously at position h in the Must
cache before the access. In the example, at program point
C, Min(3 + shiftctr({a, b}, 3),MaxY oung({a, b}, 3)) =
Min(5, 3) = 3, hence the cache block c will remain at position
3 in the Must cache after the access.

Define NewPos(Xi, h) as Min(h +
shiftctr(Xi, h),MaxY oung(Xi, h)). Formally, the transfer
function of the improved Must Analysis can be given as
follows:

Û Ĉ
Must(ĉ, X) = ĉ′

where ∀i, 1 ≤ i ≤ sets, ĉ′(fi) = Û Ŝi

Must(ĉ(fi), Xi)

If X = {m} is singleton, then

ÛSi

Must(ŝi, Xi) =





ŝi,
if Xi is empty

l1i 7→ {m}
lai 7→ ŝi(la−1

i ), 2 ≤ a ≤ h− 1
lhi 7→ (ŝi(lhi )−m) ∪ ˆsi(lh−1

i )
lbi 7→ ŝi(lbi ), h + 1 ≤ b ≤ A

if∃h, 1 ≤ h ≤ A, such that m ∈ ŝi(lhi )
l1i 7→ {m}
lai 7→ ŝi(la−1

i ), 2 ≤ a ≤ A
otherwise



If X is non-singleton, then

ÛSi

Must(ŝi, Xi) =





ŝi,
if Xi is empty

lai 7→
⊔

b
b+NewP os(Xi,b)=a

ŝi(lbi ), 1 ≤ a ≤ A

otherwise

Note that the notation l 7→ A indicates that the cache line l
will now be mapped to set A in the new abstract set state. The
important difference between the original Must analysis and
the Improved Must analysis is that the original analysis uses
only the shiftctr function, while we also use the MaxYoung
function. However, note that the NewPos function will always
be less than or equal to the shiftctr function. This means that
if a cache block is not evicted from the Must cache by the
original Must analysis(which would happen if shiftctr < A),
it will not be evicted by the improved Must analysis as well.
Hence, the improved must analysis is at least as precise as the
original Must analysis. The upper bound on ages computed by
the improved Must analysis will always be less than or equal
to those computed by the original Must Analysis.

V. IMPROVED MAY ANALYSIS

The Abstract lattice for May analysis is simply the set
of all abstract cache states, i.e. Ĉ. The join of two abstract
cache states is the abstract cache state obtained by the union
of all the corresponding abstract set states, while taking the
minimum age. The transfer function Û Ĉ

May for the abstract
cache in the May analysis takes the cache state and the access
and returns a new cache state. It simply applies the transfer
function for abstract sets, Û Ŝi

May to each set along with the
accessed memory blocks mapping to the set. Below is the
transfer function for single-reference accesses[2]:

Û Ŝi

May(ŝi, {m}) =





l1i 7→ {m},
lai 7→ ŝi(la−1

i ), 2 ≤ a ≤ h
lh+1
i 7→ ŝi(lh+1

i ) ∪ (ŝi(lhi )−m),
lbi 7→ ŝi(lbi ), h + 2 ≤ b ≤ A;

if∃h, 1 ≤ h ≤ A,m ∈ ŝi(lhi ),
l1i 7→ {m},
lai 7→ ŝi(la−1

i ), 2 ≤ a ≤ A;
otherwise

The transfer function for the abstract set brings the cache block
containing the memory reference to the first position in set.
If the memory block m was already present in the set, then
the ages of all memory blocks who were accessed recently
relative to m would be increased by 1. This also includes
those memory blocks who may have an age same as that of
m.

This transfer function takes as input only one memory
reference, but as stated earlier, address analysis for data caches
is imprecise, and hence we may have to update the abstract
cache with a set of accessed cache blocks, with the property
that the actual access will be to any cache block of this set. All
the accessed cache blocks may not map to the same cache set.
In such a scenario, since we do not know which cache set will
actually be accessed, we cannot increase the age of any cache
block already present in any of the cache sets, as May analysis

needs to maintain the lower bound on ages. As a result, the
transfer function for multi-reference access proposed in [2]
simply brings all the cache blocks containing the references
to the first position in their respective sets, without increasing
the ages of any of the cache blocks already present in the May
cache.

Consider the case where all the accessed cache blocks map
to the same cache set. Now, consider the accessed cache block
which is already present in the May cache and which has the
minimum age amongst all the accessed blocks. We can safely
increase the ages of all the cache blocks in the cache set having
age less than this minimum age accessed cache block. This is
safe because it is guaranteed that one of the cache blocks in
the cache set will actually be accessed, and hence those cache
blocks which are younger than the youngest accessed block
will definitely see an increase in their ages. If all the accessed
cache blocks are not present in the May cache, we can safely
increase the age of all cache blocks in the cache set by 1.
Formally the transfer function is:

Û Ŝi

May(ŝi, {m1, . . . , mp})

=





l1i 7→ {m1, . . . , mp},
lai 7→ ŝi(la−1

i ), 2 ≤ a ≤ h
lh+1
i 7→ (ŝi(lh+1

i ) ∪ ŝi(lhi ))− {m1, . . . ,mp},
lbi 7→ ŝi(lbi )− {m1, . . . ,mp}, h + 2 ≤ b ≤ A;

if∃g, 1 ≤ g ≤ A, ∃j, 1 ≤ j ≤ p,
mj ∈ ŝi(l

g
i ) and h is the minimum of all such g

l1i 7→ {m1, . . . , mp},
lai 7→ ŝi(la−1

i )− {m1, . . . ,mp}, 2 ≤ a ≤ Ax;
otherwise

Note that the above transfer function can be used only in the
case when all the accessed cache blocks map to the same
cache set. Otherwise, we use the normal transfer function. By
recognizing the special case where we can safely increase the
ages of cache blocks, our improved transfer function maintains
a tighter lower bound on the ages.

VI. IMPROVED PERSISTENCE ANALYSIS

Persistence Analysis is used to determine the upper bound
on the ages of all cache blocks that may enter the cache.
Similar to May analysis, if there is any execution path along
which a particular cache block enters the actual cache, then the
abstract cache state determined by Persistence Analysis must
include this cache block. If the cache block has different ages
along different paths, then Persistence analysis must determine
the maximum age. To indicate that the cache block may also
have been evicted, a special eviction line l>i is added to each
set state.

Apart from this special eviction line, the abstract lattice
for the original Persistence analysis is same as that of May
analysis. The join in this lattice also does a cache set by cache
set union, except that it takes the maximum age of a cache
block, if it is present in both cache sets.

The transfer function for persistence analysis, as given in
[2] is similar to that of Must analysis. For single-reference
accesses, it brings the accessed cache block to the first position



in the set state. If the cache block was already present in
the cache, then the ages of all cache blocks younger than the
accessed cache block will be increased. The rest of the cache
blocks retain the same age, including the cache blocks in the
special eviction line. Finally, if the cache block was not present
in the cache, the age of all cache blocks(except those in the
eviction line) are increased. The newly evicted cache blocks
are simply added to the eviction line, which retains the cache
blocks present in it before the update.

Since the join used in Persistence Analysis is cache set
union, but the transfer function is similar to Must Analysis, the
objective of Persistence Analysis–to maintain an upper bound
on ages of all cache blocks–is not achieved. Consider a cache
block m present in the persistence cache at a Program point P ,
with age h ≤ A. Since the join used by Persistence Analysis
is set union, m may not be present at program point P in
the actual cache along some execution path. Then along such
a path, an access to m at P will contribute to an increase
in the age of all cache blocks present in the actual cache.
However, since the persistence cache contains m, an access
will only increase the age of those cache blocks which are
younger than m. Hence the upper bound on ages computed
by the Persistence Analysis for those cache blocks which have
higher ages than m will not be correct.

This suggests that while doing cache update, we must only
consider those cache blocks which are guaranteed to be present
in the cache, and use these cache blocks to decide the new ages
of cache blocks in the persistence cache. The Must analysis
precisely computes the set of cache blocks that must be in
the cache at a program point, and it runs independent of the
persistence analysis. However, Must Analysis suffers from lack
of precision since the join used is set intersection. Hence, just
relying on Must Analysis will give safe but imprecise results.
The upper bound on the age of cache block m at a program
point must itself be upper bounded by the maximum number
of younger cache blocks than m that enter the cachhe along
all execution paths. May Analysis can be used to determine
this number just as it was used for Must Analysis.

Using the contents of the abstract cache maintained by the
Must analysis and the May analysis, we propose the following
transfer function for Persistence Analysis, for a general multi-
reference access: The transfer function for the abstract cache
state, U Ĉ

Per, applies the transfer function for abstract set state,
U Ŝi

Per to all sets, which takes as input the abstract set state
and the cache blocks in the access mapping to the set. Let
ĉMust and ĉMay be Must and May caches respectively at the
program point(before their own updates). Let Xi be set of the
accessed cache blocks mapped to set i.

We use the function shiftctr(Xi, h) = |{m ∈ Xi|(∃a, h <
a ≤ A, m ∈ ŝMust

i (lai ))∨(∀a, 1 ≤ a ≤ A, m 6∈ ŝMust
i (lai ))}|.

Note that shiftctr function uses the contents of the Must
cache to determine the increase in age of cache blocks in
the Persistence cache. For a cache block with age h in the
Persistence cache, all the accessed cache blocks which are
either not present in the Must cache, or which are older(i.e

have age greater than h) will now become younger. The shiftctr
function exactly counts such cache blocks, and thus gives the
worst case increase in the ages of blocks in position h due to
the access Xi.

MaxY oung(Xi, h) = |Xi ∪
⊔h

a=1(ŝ
May
i (lai ) −Xi)| gives

the maximum number of memory blocks which will be
younger than a memory block present at position h in the
Persistence cache, after the access Xi.

The transfer function must now shift the cache
blocks in position h to NewPos(Xi, h) = Min(h +
shiftctr(Xi, h),MaxY oung(Xi, h)). If Xi is singleton,
then the accessed cache block will be brought in the first
position while the rest of cache blocks in ŝi will follow the
above rule. If Xi is non-singleton, all the accessed blocks
cannot be brought into the first position. Let X ′

i be the set
of cache blocks in Xi which are not present in ŝi in the
Persistence cache and let z = |X ′

i|. Then, the cache blocks in
X ′

i will be brought into position z in the persistence cache.
For the cache blocks that are present in Xi and also present
in the persistence cache, we cannot decrease their relative
ages and their new ages will be determined using the NewPos
rule, along with the ages of all un-accessed cache blocks in
ŝi.

U Ŝi
Per(ŝi, Xi)

=









lai 7→ ⊥, 1 ≤ a < z,
lzi 7→ X ′

i,
lci 7→

⊔
b,

NewP os(Xi,b)=c
ŝi(lbi ), z < c ≤ A

if z ≤ A{
lai 7→ ⊥, 1 ≤ a ≤ A
l>i 7→ X ′

i ∪
⊔A

a=1 ŝi(lai )
otherwise

The problem with the original Persistence Analysis as well as
approaches to overcome it have been proposed in [3] and [4].
Cullmann’s approach[3] uses May analysis to count the total
number of cache blocks that can be present in the cache at a
program point, and then depending upon whether this number
is greater than the cache associativity, it evicts the oldest cache
blocks in the Persistence cache. This approach is imprecise
because it always increases the age of all cache blocks in the
Persistence cache irrespective of whether the accessed blocks
are already present or not.

For the program represented by the CFG shown in Figure
3, assume that cache blocks a, b, c, d, e all map to the same
cache set, and the cache associativity is 4. At the program
point B, the block a is present in the persistence cache, and
is also the youngest. Hence, the next access to the same block
should not age any other cache blocks in the Persistence cache.
However, Cullmann’s analysis continues to increase the age of
all cache blocks in the Persistence cache at any access. Hence,
at program point B, block b will have an age of 2, at C, it
will have an age of 3, and finally at point D, block b will
have an age of 4. After the accesses to c, d and e, the total
number of cache blocks in the May cache would become 5,
resulting in eviction of the cache block b at the next access



Fig. 3. CFG for Example Program

to block c by Cullmann’s analysis. Hence, cache block b is
classifed as non-persistent by Cullmann’s Analysis. However,
in the actual cache, the cache block b will never be evicted
during any execution. This is because at the program point
D, block b will have a maximum age of 2, and the next two
accesses(the first access being either c, d, or e and the second
access c) will at most increase its age by 2, leaving b with a
maximum age of 4 at program point H . Since the Must caches
at program points B, C and D will contain the cache block
a at the first position, our analysis will not increase the age
of any cache blocks in the persistence cache at those points.
Hence, our analysis will be able to capture the correct upper
bound on the cache block b at all program points, and declare b
as persistent. Along with its imprecision, Cullmann’s Analysis
also seems incapable of handling multi-reference accesses.

The approach proposed in [4] augments the original per-
sistence analysis by also calculating the younger set(i.e. the
set of younger cache blocks) for every cache block present
in the Persistence cache. While similar to our approach in
spirit, there are two important advantages of our approach.
First, we use the May Analysis to calculate the younger set of
each cache block. This is an elegant and much more efficient
way of calculating the younger set. Their approach separately
maintains a younger set of each cache block that may enter the
cache, along with the persistence cache, which results in a lot
of duplication. As an example, when a cache block is accessed,
it is added to the younger set of every cache block that is
present in the Persistence cache, whereas in our approach, it
would simple appear once in the May cache.

More importantly, their approach only considers the car-
dinality of the younger set while updating the age of cache
blocks, while ignoring the contents of the Must cache. This
affects the precision of Persistence Analysis, and cache blocks
that are actually persistent can be missed by their analysis.

Consider Figure 4, depicting part of the CFG of a program.
Let the associativity of the cache be 2, and assume that cache
blocks a, b, c map to the same cache set. After the join, at
program point F , the younger set of cache block b would
contain both a and c, and hence an age update solely based
on younger set would conclude that b could have been evicted,
when program point F is reached(The age of a cache block

Fig. 4. CFG for Example Program

is the cardinality of the younger set + 1). However, in our
analysis, at program points D and E, the cache block b would
be at position 2. This is because at points B and C, cache
block b would be at position 1 in the persistence cache and
the Must cache(as it has just been accessed), while the cache
blocks a and c would not be present in the Must cache. Hence
shiftctr({a}, 1) = shiftctr({c}, 1) = 1, which would
mean that the cache block at position 1 in the Persistence
cache (which would be the block b), would be moved to
1 + shiftctr = 1 + 1 = 2. Join in our Persistence Analysis is
just set union, while taking the maximum of ages. Since block
b is at age 2 in both the persistence caches at D and E, it would
remain at position 2 in the persistence cache at F . This analy-
sis is more precise, because the cache block b would never be
evicted during any actual execution, and hence is persistent.
Note that MaxY oung({a}, 1) = MaxY oung({c}, 1) = 2 as
well, since only the cache block b will be at position 1 in the
May cache at program points B and C.

VII. EXPERIMENTAL EVALUATION

We have implemented our improved Must Analysis on
top of the prototype for WCET estimation used by [1].
This prototype is built for estimating WCET of programs
for the ARM7TDMI processor, which is a 32-bit RISC
processor used in a number of real-time devices such as audio
equipments, printers, etc. We have not made any changes in
the Address Analysis and the ILP parts of the prototype. The
prototype uses the original Must Analysis to estimate the
cache contents and classify each memory access as hit/miss.
We have replaced this part with our improved Must analysis.
The configuration of the cache memory used is : Associativity
= 4, Cache Block Size = 32 bytes, Cache sets = 128. We also
assume the following latencies : Read/Write hit latency = 1
cycle, Read/Write Miss latency = 6 cycles. Apart from the
memory accessing instructions, every other instruction has a
latency of 1 cycle.

1 sum = 0;
2 for (i = 0; i < 40; i++)
3 {



4 rowsum = 0;
5 for (j = 0; j < 40; j++)
6 rowsum = rowsum + array[i][j];
7 sum = sum + rowsum;
8 }

Consider the above program used for summing all the
elements of a matrix. The access to array on line 6 is a multi-
reference access, and hence, the original Must analysis will
empty the Must cache, removing the cache block containing
the variable sum. However, because arrays are sequentially
stored in the memory, they would actually span multiple
consecutive cache blocks. Hence, a maximum of 1 or 2
cache blocks are actually accessed per cache set by the array
access on line 6. Since the cache associativity is 4, there are
not enough younger cache blocks mapping to the cache set
containing the variable sum for it to be evicted. This will be
captured by the improved Must analysis, and all the accesses
to sum on line 7 will be classified as hit. The WCET estimated
using the original Must analysis for the above program is
26360 cycles, while the WCET estimated using improved
Must analysis is 26164 cycles. The difference corresponds to
the multiple accesses of variable sum on line 7, across loop
iterations.

The above program could be used in the scenario where the
individual sum of each row of the matrix is also important.
In general, programs with nested loops where the inner loops
access either arrays or pointers, and the outer loops access
variables which are not accessed by the inner loops will
greatly benefit from improved Must analysis. Generally array
sizes in real world programs will be large enough to span
all the cache sets, but not so large so as to fill the entire
cache. Caches with high associativity and high block sizes
will further ensure that the above conditions are met. We
also estimated WCET for programs in the WCET benchmarks
used in [1]. However, these benchmarks programs either have
only single loops, or nested loops where all variables are
accessed in the inner loops. Hence, the WCET estimates
obtained using improved Must analysis were exactly the same
as those obtained using the original Must analysis. Programs
which analyze a collection of data structures such as lists,
arrays, etc. and aggregrate information from all the members
of the collections will have nested loops. The inner loops
would analyze individual members, while the outer loop would
aggregrate information. For such programs, our analysis would
be able to provide better estimates.

As stated earlier, our approach would be highly beneficial
for caches with high associativity and high block size. The
high block size may result in lesser number of cache blocks
accessed per cache set in a multi-reference access(especially
for array accesses). Higher level caches in a multi-level cache
hierarchy generally have both high associativity and large
block size. While doing Multi-level cache analysis, due to
the filtering effect of lower level caches, accesses satisfied by

the lower levels do not reach higher level caches. Hence, the
number of accessed cache blocks in a multi-reference access
which reach the higher levels would be low, further decreased
by the higher block sizes. All these circumstances along with
the high associativity would highly favour our analysis. In fact,
we intend to use the Improved Must, May and Persistence
Analysis in our Multi-level Cache Analysis model, which is
in the implementation and testing phase. Our approach does
have higher space and time complexity for single level caches,
as it requires all the both Must and May analyses to run
simultaneously. However, for multi-level caches, to account
for the filtering effect of the cache hierarchy and the writeback
effect, the original Must, May and Persistence analysis would
be required at all cache levels[8]. Thus, our approach does not
add to the space and time complexity for multi-level cache
analysis.

VIII. PROOF OF SAFETY FOR IMPROVED MUST ANALYSIS

The improved Must Analysis differs from the original Must
analysis in two places : the abstract lattice and the transfer
function. While the abstract lattice used by the original Must
analysis was the set of all abstract cache states(represented
by Ĉ), the lattice for the improved must analysis is the cross
product lattice Ĉ × Ĉ. The improved Must Analysis produces
a pair of abstract cache states at each program point, one
corresponding to the Must cache and other corresponding to
the May cache. The May cache will be used in the transfer
function for the Must Analysis as shown in Section 4. We
assume the original May analysis transfer function.

The standard method of proving safety of an abstract
interpretation based analysis is the following : First specify the
concretization function(γ) which converts an element of the
abstract lattice to an element of the concrete lattice, specify
the abstraction function (α), which does the opposite thing,
and then show that a Galois Connection exists between the
two functions. The second step is to show the correctness of
the abstract transfer function by proving it as an abstraction of
the concrete transfer function. Proving the first part in our case
is straightforward, as both the concretization and abstraction
functions are simple extensions of the corresponding functions
for the original Must analysis. Given a Must cache and a
May cache, the concretization function converts it to a set
of concrete cache states(which is an element of the concrete
lattice 2C). All the cache blocks in the Must cache must be
present in all the concrete cache states given by γ, while any
cache block in the concrete cache state must be present in
the May cache. The age of a cache block in the concrete
cache will be upper bounded by its age in the Must cache
and lower bounded by its age in the May cache. Formally, the
concretization function can be written as:

γĈ(ĉMust, ĉMay) = {c ∈ C|∀i, 1 ≤ i ≤ sets,

c(fi) ∈ γŜi(ĉMust(fi), ĉMay(fi))}



γŜi(ŝMust
i , ŝMay

i ) = {s ∈ Si|(∀a, 1 ≤ a ≤ A,

∀m ∈ ŝMust
i (lai ),∃b, 1 ≤ b ≤ a, s(lbi ) = m)

∧ (∀d, 1 ≤ d ≤ A, s(ldi ) = m,m ∈ M ∪ {⊥} ∧
∃e, 1 ≤ e ≤ d,m ∈ ŝMay

i (lei ))}

The abstraction function takes as input a set of concrete
cache states and outputs the corresponding Must and May
cache. Briefly, the Galois connection property can be expressed
as follows : Given a set of concrete cache states(S), first apply
the abstraction function to obtain the Must and May cache,
and then apply the concretization function to get another set
of concrete cache states(S′). Then S must be a subset of S′,
which ensures that none of the concrete cache states in S are
lost during the abstraction process. Similarly, given a Must and
May cache, on applying the concretization function to get a
set of concrete cache states, and then applying the abstraction
function on this set gives the same Must and May cache. To
ensure the Galois connection, the following natural definition
of the abstraction function suffices : An abstract set state in
Must cache will be just the intersection of the corresponding
concrete set states in the concrete caches, with the age in the
abstract set being the maximum of the ages in the concrete
set. Similarly, an abstract set state in the May cache will
be union of the corresponding concrete set states, with the
age in the abstract set being the minimum of the ages in the
concrete set. Now, with these definitions of the abstraction and
concretization function, it is clear that the Galois connection
properties will be satisfied.

Before proving the correctness of the transfer function, we
will prove the following Lemma : For a cache block with
age h in the Must Cache, Number of cache blocks with age
less than or equal to h in the May cache ≥ h. This means that
there are atleast h number of younger cache blocks in the May
cache, which in turn implies that MaxY oung(X, h) ≥ h, for
any access X .

Proof : Consider the cache block m at position h in the
Must cache at some program point P . Now, consider the last
program point Q where the cache block m was the youngest
in the Must cache(i.e. was at position 1). New cache blocks
are brought(or ages are decreased) in the must cache only for
single-reference accesses. Hence, the instruction just before
the program point Q must have accessed the cache block
m, and this access must have been single-reference. Single-
reference accesses to the May cache also bring in the accessed
block to position 1, and increase the age of all the cache blocks
already present in the May cache by 1. Hence, at Q, cache
block m will be the only cache block at position 1 in the
May cache. Hence, the statement of the lemma is true at this
point. Between program points Q and P , the cache block m
ended up in position h in the Must cache, and there are no
single-reference accesses to the block m between Q and P .
Now, when the transfer function for Must Analysis increases
the age of m by a, at least a cache blocks will be added by
the transfer function of May analysis to position 1 in the May
cache. Hence cache updates by the transfer function preserve

the statement of the lemma. The join for May analysis is cache
set union while taking the minimum of the ages, while the join
for Must analysis is cache set intersection, while taking the
maximum of the ages. Hence, if cache block m is in position
h1 in Must cache ĉMust

1 and position h2 in Must cache ĉMust
2 ,

then there are atleast h1 younger cache blocks in the May
cache ĉMay

1 and at least h2 younger cache blocks in the May
cache ĉMay

2 . After the join in the May cache all these h1 +h2

will be in positions less than Max(h1, h2), which is the new
position of cache block m in the Must cache after the join.
Since h1 + h2 ≥ Max(h1, h2), the validity of the lemma is
preserved.

To prove the correctness of the abstract transfer function,
we need to prove the following :

γ(Û((ĉMust, ĉMay), X)) ⊇ U(γ(ĉMust, ĉMay), X)

The set of concrete cache states, produced by applying the
concretization function on the updated abstract cache state
obtained by applying the abstract transfer function(Û ) due
to an access X , is the L.H.S of the above equation. In
words, the equation means the following : if we instead
apply the concretization function on the un-updated abstract
cache state, and then apply the concrete transfer function(U )
individually on each of the concrete cache states, then the
set of updated concrete cache states so produced must be a
subset of the L.H.S. We have already stated that the concrete
transfer function is nothing but a simple LRU update. Since
γ(ĉMust, ĉMay) and X are both sets,

U(γ(ĉMust, ĉMay), X) =
⊔

c∈γ(ĉMust,ĉMay)

⊔

m∈X

U(c, m)

where U(c,m) updates the concrete cache state c due to
the access to the block m. If X is singleton, then the abstract
transfer function for Improved Must Analysis is the same as
the original Must analysis, for which the abstraction proof is
already known. Hence, we only deal with multi-reference ac-
cesses. Consider a concrete cache state c, c ∈ γ(ĉMust, ĉMay),
and an access m, m ∈ X . We will show that the updated c
after the access will be in the concretization set of the updated
Must and May cache. To show this, we have to prove that all
cache blocks in the updated Must cache will be present in the
updated c, and all cache blocks in the updated c will be present
in the updated May cache. Also, cache blocks in the updated
c should respect the upper bounds and lower bounds set by
the updated Must and May cache, respectively. Since we use
the original May analysis, we know that the abstract transfer
function for May analysis is an abstraction of the concrete
transfer function. Hence, there is no need to prove the results
involving the May cache update.

Now, for a multi-reference access X , the Must analysis
transfer function does not bring any new cache blocks into
the must cache. All the cache blocks in the must cache before
the update are already present in c, hence, we have to show
that if such a cache block gets evicted from c by the concrete
transfer function, then it will also be evicted from the must



cache by the abstract transfer function. This proves that all the
cache blocks in the updated Must cache will also be present
in the updated c. If a cache block me gets evicted from c
by the concrete transfer function, it must have the maximum
age, i.e. it must be in lAi . If this cache block is also present
in the Must cache, then it must also have the maximum age
in the Must cache, since age in the concrete cache is upper
bounded by age in Must cache. Also, eviction of me from c
implies that the accessed block m is not present in c, which
would mean that m is not be present in the must cache as
well. Since m ∈ X , by definition, shiftctr(X,A) ≥ 1, hence
A + shiftctr(X,A) > A.

Now, by the lemma proved earlier, we know that there are
at least A cache blocks in the May cache. If the accessed
block m is not in May cache, then MaxY oung(X, A) > A,
counting the accessed cache block m along with the min-
imum A number cache blocks in the May cache. Hence
NewPos(X, h) > A and so me will be evicted from the
Must cache as well. In fact, if any of the accessed blocks
in X , and not necessarily m are not in the May cache,
even then MaxY oung(X, A) > A. Let us consider the case
where all the accessed blocks in X are in the May cache.
Now the cache block me is in position A in the concrete
cache c before the update. The A − 1 cache blocks younger
than me in c must come from the May cache. Hence, these
A cache blocks(including me) are all present in the May
cache. Also, the accessed cache block m is in the May cache,
but it is not present in the concrete cache c. Hence, there
are atleast A + 1 cache blocks in the May cache. Thus,
MaxY oung(X, A) > A, and hence, in all cases me will
be evicted from the Must cache as well by our new transfer
function.

The last thing to prove is that the cache blocks in the
updated concrete cache c respect the upper bounds set by the
updated Must cache after the access. We know that before the
update, the cache blocks in c do satisfy the upper bounds set
by the Must cache. After the update by the concrete transfer
function, the ages of all or some cache blocks in exactly one
cache set of c will be increased by 1. This cache set will be
the set to which the access m is mapped.

First let us take the case where the accessed cache block
m is not present in c. Then the ages of all cache blocks will
be increased by 1. In this case, the accessed block m will
not be present in the Must cache as well, hence the shiftctr
function for all positions h, 1 ≤ h ≤ A will be atleast 1.
Now, for position h, we know that MaxY oung(X, h) ≥ h.
Let mh be the cache block in position h in the concrete cache
c. If the accessed cache block m is not present in the May
cache as well, then adding the accessed block to the younger
set would mean that MaxY oung(X, h) > h. Even If the
accessed cache block m is present in the May cache, consider
the cache blocks from position 1 to h in the concrete cache
c. These h cache blocks must be in positions less than or
equal to h in the May cache and hence will conctribute to
the count of MaxY oung(X, h). And the accessed block m
is not any of these h cache blocks, so it will also contribute

to MaxYoung. Hence MaxY oung(X,h) ≥ h + 1. Hence,
NewPos(X, h) ≥ h + 1. Hence the upper bounds set by the
Must cache are still maintained after the update.

Now, let us take the case where the accessed cache block
m is present in c at position h. In this case, the cache blocks
at positions less than h will see an increase of age by 1 due
to the concrete transfer function. Now, the accessed block m
will either not be present in the Must cache at all, or if present
it will be present at positions greater than or equal to h. In
either case, shiftctr(X, a) ≥ 1,∀a, 1 ≤ a ≤ h − 1. Also,
by a similar argument as used earlier, MaxY oung(X, a) ≥
a + 1 ∀a, 1 ≤ a ≤ h− 1. Hence, the transfer function for the
improved must analysis will also increase the ages of cache
blocks at positions less than h by atleast 1, thus maintaining
the upper bounds.

IX. CONCLUSION

In our work, we have shown that there is scope for improve-
ment in the precision of the original Must Analysis which is
the cornerstone of most of the theories for WCET estimation.
The impact of the imprecise Address Analysis for Data caches
on the precision of Must analysis can be lessened by our
improved Must Analysis for a well-used class of programs.
For cache levels with high associativity and high block size,
our approach for Must Analysis fares even better, and hence
is most suited for Multi-level cache analysis. Moreover, for
multi-level caches, even the original Must analysis requires
May and Persistence analyses at all levels. Hence, using the
Improved Must analysis for multi-level caches will have the
same time and space complexity as the original Must analysis.

We have also detected and rectified a flaw in the original
Persistence Analysis. While the flaw has been detected by
others as well, our approach is more precise than other
approaches, and is able to detect more persistent blocks
while still ensuring safety. Finally, we have also proposed a
slight adjustment to the original May analysis to improve its
precision for Data caches.
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