
Transducer Models of Retransmission Protocols for Noisy
Channels

Jay Thakkar and Aditya Kanade
Indian Institute of Science, Bangalore

Work submitted to Tools and Algorithms for the Construction and Analysis of Systems (TACAS)

Introduction

Communication System

Sender Receiver

Unreliable
Channel

M

M _
M ′

Corrupt
Channel

M

M M ′

• Communication channel
between sender and receiver
can be unreliable.

• Aim: To transfer the message
successfully from sender to
receiver, without any error.

Retransmission Protocols

CRC
Generator

CRC
Checker

CRC
Checker

CRC
Generator

0
1

2
34

5

6
7 0

1

2
34

5

6
7

• They are used to ensure that a
sequence of frames is delivered
in order and without errors
despite of transmission errors.

• Reliable delivery is achieved
using acknowledgements with
re-transmission paradigm.

Cyclic Redundancy Check

• The cyclic redundancy check (CRC) is a common
technique for detecting errors in data transmission.

• Given a fixed generator polynomial, we build an
SST to encode a message string into a cyclic
redundancy check (CRC) codeword.

Streaming String Transducer

• An SST reads an input string in a single
left-to-right pass and produces the output string
using a finite set of states.

• It also uses a finite set of string variables to store
strings over the output alphabet.

• On each input symbol, it may transition to another
state and update string variables.

p0start p1

b →
[x = x.b, y = b.y]

a →
[x = x.a, y = a.y]

b →
[x = x.b, y = b.y]

a →
[x = x.a, y = a.y]

• A string variable can be
used at most once
across the right-hand
side of the parallel
assignment.

Protocol Models

Sender SST for SWP

• The sender receives a message and encodes it into a frame with
sequence number, message content and checksum.

• The sender outputs a correct frame upon receiving a positive
ACK and a corrupt frame upon receiving a negative ACK.

• String variable x plays the role of the sender’s buffer.

q0start q1 q2

q3

q4 q5
Sender for
seq. no. 1

+ →
[x = 0]

0 →
[x = x.0]

1 →
[x = x.1]

$ →
[x = x.#.0.$]

0 →
[x = x.0]

1 →
[x = x.1]

$ →
[x = x.#.1.$]

01

0, 1 →
[w = w.0.#.1.$]

0 →
[w = w.0.#.1.$]

1 →
[
w = w.x,
x = ε

]

ack0 →[
w = w.x,
x = ε

]

Receiver SST for SWP

• It distinguishes between the correct and corrupt frames.
• For the correctly received frame, it removes sequence number
and checksum and passes the message to its client.

r0start

r1 r2

r3 r4

0 →
[y = y]

1 →
[y = y]

0 →
[y = y.0]

1 →
[y = y.1]

→
[y = y]

0 →
[y = y.0]

1 → [y = y.1]

→
[y = y]

0 →
[y = y]

1 →
[y = y]

$ →
[
y = ε,

z = z.y.$

]

0 →
[y = y]

1 → [y = y]

$ →[
y = ε,
z = z

]

Verification Approach

Specification SST for SWP

• Key Property: Messages acknowledged by the receiver are
delivered to the receiver’s client correctly and in the same order
in which the client of the sender handed them to the sender.

• The specification SST does not encode checksum computation,
noisy outputs and repeated retransmissions.

• The input to the specification transducer is a sequence of
messages and acknowledgements (similar to the sender) and the
output is a sequence of correctly delivered messages (similar to
the receiver).

s0start s1

s2

s3s4
Spec. for
seq. no. 1

+ →
[x = ε]

0 →
[x = x.0]

1 →
[x = x.1]

$ →
[x = x.$]

0

1

0, 1 →
[w = w]

0 →
[w = w]

1 →
[
w = w.x,
x = ε

]

ack0 →[
w = w.x,
x = ε

]

The Verification Layout

 Equivalence Checking

Yes No

Protocol
SST

Specification
SST

 Sequential Composition

SST SST
Sender Receiver

• Verification Problem: To check
functional equivalence between
the specification and the protocol
model.

• The output of the sender is the
input of the receiver.

• The model for the entire protocol
is obtained by sequentially
composing the two.

Wrapping Up. . .

Case studies

1 TinyOS : The SerialP [1] software module of
TinyOS computes the checksum and uses the
stop-and-wait protocol in the host-to-mote
direction.

2 HDLC : HDLC [2] is a bit-oriented protocol, that
operates at data link layer. Its software
implementations compute checksum and use
go-back-n protocol.

Conclusions and Future Work

• Our work allows explicit modeling of message
contents yet enables algorithmic verification of the
resulting protocol models.

• In the future, we will try to permit arbitrary bit
corruption using non-deterministic version of SSTs.

• Bounding the number of retransmission rounds can
also be useful to extend the protocol models.

Related Work

• Several automated techniques abstract messages
to model and verify these protocols [3], whereas
we model a message as a bit stream. Hence, we
use SSTs to model these protocols.

• SSTs are closed under sequential composition [4]
and the equivalence problem for SSTs is
decidable [5].

References

[1] http://www.tinyos.net/tinyos-2.x/doc/html/tep113.html.

[2] ISO, “Data Communication - HDLC Procedures - Elements of Procedure,” Tech.
Rep. ISO 4335, International Organization for Standardization, 1979.

[3] F. Babich and L. Deotto, “Formal Methods for Specification and Analysis of
Communication Protocols,” IEEE Comm. Surveys and Tutorials, vol. 4, no. 1,
pp. 2–20, 2002.

[4] R. Alur and P. Cerný, “Expressiveness of streaming string transducers,” in FSTTCS,
pp. 1–12, 2010.

[5] R. Alur and P. Cerný, “Streaming Transducers for Algorithmic Verification of
Single-pass List-processing Programs,” in POPL, pp. 599–610, 2011.

