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• Communication channel
between sender and receiver
can be unreliable.

• Aim: To transfer the message
successfully from sender to
receiver, without any error.

Retransmission Protocols
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• They are used to ensure that a
sequence of frames is delivered
in order and without errors
despite of transmission errors.

• Reliable delivery is achieved
using acknowledgements with
re-transmission paradigm.

Cyclic Redundancy Check

• The cyclic redundancy check (CRC) is a common
technique for detecting errors in data transmission.

• Given a fixed generator polynomial, we build an
SST to encode a message string into a cyclic
redundancy check (CRC) codeword.

Streaming String Transducer

• An SST reads an input string in a single
left-to-right pass and produces the output string
using a finite set of states.

• It also uses a finite set of string variables to store
strings over the output alphabet.

• On each input symbol, it may transition to another
state and update string variables.

p0start p1

b →
[x = x.b, y = b.y]

a →
[x = x.a, y = a.y]

b →
[x = x.b, y = b.y]

a →
[x = x.a, y = a.y]

• A string variable can be
used at most once
across the right-hand
side of the parallel
assignment.

Protocol Models

Sender SST for SWP

• The sender receives a message and encodes it into a frame with
sequence number, message content and checksum.

• The sender outputs a correct frame upon receiving a positive
ACK and a corrupt frame upon receiving a negative ACK.

• String variable x plays the role of the sender’s buffer.

q0start q1 q2

q3

q4 q5
Sender for
seq. no. 1

+ →
[x = 0]

0 →
[x = x.0]

1 →
[x = x.1]

$ →
[x = x.#.0.$]

0 →
[x = x.0]

1 →
[x = x.1]

$ →
[x = x.#.1.$]

01

0, 1 →
[w = w.0.#.1.$]

0 →
[w = w.0.#.1.$]

1 →
[
w = w.x,
x = ε

]

ack0 →[
w = w.x,
x = ε

]

Receiver SST for SWP

• It distinguishes between the correct and corrupt frames.
• For the correctly received frame, it removes sequence number
and checksum and passes the message to its client.

r0start

r1 r2

r3 r4

0 →
[y = y]

1 →
[y = y]

0 →
[y = y.0]

1 →
[y = y.1]

# →
[y = y]

0 →
[y = y.0]

1 → [y = y.1]

# →
[y = y]

0 →
[y = y]

1 →
[y = y]

$ →
[
y = ε,

z = z.y.$

]

0 →
[y = y]

1 → [y = y]

$ →[
y = ε,
z = z

]

Verification Approach

Specification SST for SWP

• Key Property: Messages acknowledged by the receiver are
delivered to the receiver’s client correctly and in the same order
in which the client of the sender handed them to the sender.

• The specification SST does not encode checksum computation,
noisy outputs and repeated retransmissions.

• The input to the specification transducer is a sequence of
messages and acknowledgements (similar to the sender) and the
output is a sequence of correctly delivered messages (similar to
the receiver).

s0start s1

s2

s3s4
Spec. for
seq. no. 1

+ →
[x = ε]

0 →
[x = x.0]

1 →
[x = x.1]

$ →
[x = x.$]

0

1

0, 1 →
[w = w]

0 →
[w = w]

1 →
[
w = w.x,
x = ε

]

ack0 →[
w = w.x,
x = ε

]

The Verification Layout
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• Verification Problem: To check
functional equivalence between
the specification and the protocol
model.

• The output of the sender is the
input of the receiver.

• The model for the entire protocol
is obtained by sequentially
composing the two.

Wrapping Up. . .

Case studies

1 TinyOS : The SerialP [1] software module of
TinyOS computes the checksum and uses the
stop-and-wait protocol in the host-to-mote
direction.

2 HDLC : HDLC [2] is a bit-oriented protocol, that
operates at data link layer. Its software
implementations compute checksum and use
go-back-n protocol.

Conclusions and Future Work

• Our work allows explicit modeling of message
contents yet enables algorithmic verification of the
resulting protocol models.

• In the future, we will try to permit arbitrary bit
corruption using non-deterministic version of SSTs.

• Bounding the number of retransmission rounds can
also be useful to extend the protocol models.

Related Work

• Several automated techniques abstract messages
to model and verify these protocols [3], whereas
we model a message as a bit stream. Hence, we
use SSTs to model these protocols.

• SSTs are closed under sequential composition [4]
and the equivalence problem for SSTs is
decidable [5].
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