A Structural SVM Based Approach for Optimizing the Partial AUC

Harikrishna Narasimhan

(Joint work with Shivani Agarwal)

A paper on this work has been accepted in ICML 2013

YAHOO!	learning to rank		
	WEB	IMAGES	VIDEC
Search: 🖲 the Web 🔘			
FILTER BY TIME			
Anytime	Applications Feature vec		
Past day	Learning to rank or mach semi-supervised machine lo construct en.wikipedia.org/wiki/Lea More results from en.wikipe		or mach
Past week			achine le
Past month			wiki/Lea n.wikipa
	[PDF] L	earning to PDF	Rank

YAHO		learn	ing to rank	(
		WEB	IMAGES	
		Searcl	h: 🖲 the We	b 🔘 I
FILTER BY TIME Anytime Past day Past week Past month		Learn Applica Learnin semi-su constru en.wiki More re	ing to ran tions Feat ng to rank or pervised mac ct ipedia.org/w sults from en	<mark>k - Wi</mark> ure vec r mach chine le viki/Lea n.wikipe
		(PDF) Le Adobe I	earning to PDF	Rank
	5			
		N.N.		ANA

YAHOO!	learn	ing to ran	k
	WEB	IMAGES	VIDE
	Searc	h: 🖲 the W	eb 🔘 ı
ER BY TIME			
ytime	Applica	tions Fea	1K - Wi ture vec
st day	Learni	ng to rank o	or mach
ast week	semi-su	upervised ma	achine le
Past month	en.wik	ipedia.org/ sults from e	wiki/Lea n.wikipe
		earning to	Rank

Adobe PDF

Good evaluation metric?

Positive Instances

Negative Instances

Positive Instances

Negative Instances

GOAL? Learn a scoring function $f : X \to \mathbb{R}$

Positive Instances

Negative Instances

GOAL? Learn a scoring function $f : X \rightarrow \mathbb{R}$

Rank objects

Positive Instances

Negative Instances

GOAL? Learn a scoring function $f : X \to \mathbb{R}$

Learning with Binary Supervision X_{2}^{+} X_{3}^{+} **Positive Instances** X_m X_{1}^{+} Training Set **Negative Instances X**₃⁻ *x*_{*n*}⁻ X_1 X_2^{-} **GOAL?** Learn a scoring function $f : X \to \mathbb{R}$ **Build a classifier** Quality of score function? **Rank objects** X_5^{\dagger} X_5 1 X_3^{\dagger} X_3^{-1} Threshold **True Positive Rate** or *x*₁⁻ X_1^{-} x_{6}^{+} x_{6}^{+} 0 X_n Х_п⁻ **False Positive Rate**

Learning with Binary Supervision X_{2}^{+} X_{3}^{+} **Positive Instances** X_m X_{1}^{+} Training Set **Negative Instances X**₃⁻ *x*_{*n*}⁻ X_1 X_2^{-} **GOAL?** Learn a scoring function $f : X \to \mathbb{R}$ **Build a classifier** Quality of score function? **Rank objects** X_5^{\dagger} X_5^{T} 1 X_3^{\dagger} X_3^{-1} Threshold **True Positive Rate** or *x*₁⁻ X_1^{-} Threshold Assignment x_{6}^{+} x_{6}^{+} 0 X_n Х_п⁻ **False Positive Rate**

Receiver Operating Characteristic Curve

Captures how well a prediction model discriminates between positive and negative examples

Receiver Operating Characteristic Curve

Captures how well a prediction model discriminates between positive and negative examples

False Positive Rate

Full AUC

Receiver Operating Characteristic Curve

Captures how well a prediction model discriminates between positive and negative examples

Ranking

Google	learning to rank	Q	
Search	About 216,000,000 results (0.23 seconds)		
Web	Learning to rank - Wikipedia, the free encyclopedia		
Images	en.wikipedia.org/wiki/Learning_to_rank		
Mages	supervised machine learning problem in which the goal is to automatically		
Maps	Applications - Feature vectors - Evaluation measures - Approaches		
Videos	Yahool Learning to Rank Challenge		
News	learningtorankchallenge.yahoo.com/ - United States		
More	Learning to Rank Challenge is closed! Close competition, innovative ideas, and fierce determination were some of the highlights of the first ever Yahoo!		
Bangalore, Karnataka	[PDF] Learning to Rank for Information Retrieval This Tutorial		
Change location	File Format: PDF/Adobe Acrobat - Quick View		
	12 Apr 2009 – Learning to Rank for Information Retrieval. Tie-Yan Liu. Microsoft Research Asia. A tutorial at WWW 2009. This Tutorial. • Learning to rank for		
Pages from India			
More search tools	LETOR: A Benchmark Collection for Research on Learning to Rank research microsoft com/~letor/		
	This website is designed to facilitate research in LEarning TO Rank (LETOR). Much		
	information about learning to rank can be found in the website, including		
	[PDF] Large Scale Learning to Rank		
	www.eecs.tufts.edu/~dsculley/papers/large-scale-rank.pdf File Format: PDF/Adobe Acrobat - Quick View		
	by D Sculley - Cited by 19 - Related articles		
	paper, we are concerned with learning to rank methods such as RankSVM give good performance, In this		
	man Metric Learning to Dank		
	www.icml2010.org/papers/504.pdf		
	File Format: PDF/Adobe Acrobat - Quick View		
	Metric Learning to Rank. Brian McFee bmcfee@cs.ucsd.edu. Department of Computer		
	Science and Engineering, University of California, San Diego, CA 92093		
	[PDF] Yahoo! Learning to Rank Challenge Overview		
	jmlr.csail.mit.edu/proceedings/papers/v14//chapelle11a.pdf File Format: PDF/Adobe Acrobat - Quick View		
	by O Chapelle - Cited by 23 - Related articles		
	which machine learning algorithms are used to learn this ranking function.		
	RDEL Euture directions in loarning to rank	1.44	

jmlr.csail.mit.edu/proceedings/papers/v14/.../chapelle11b.pdf

Ranking

Google	learning to rank		
Search	About 216,000,000 results (0.23 seconds)	1	
Web Images Maps Videos News More Bangalore, Karnataka Change location The web Pages from India More search tools	Learning to rank - Wikipedia, the free encyclopedia en.wikipedia.org/wiki/Learning_to_rank Learning to rank or machine-learned ranking (MLR) is a type of supervised or semi- supervised machine learning problem in which the goal is to automatically Applications - Feature vectors - Evaluation measures - Approaches Yahool Learning to Rank Challenge learningtorank.challenge, yahoo.com/ - United States Learning to Rank Challenge is closed Close competition, innovative ideas, and fierce determination were some of the highlights of the first ever Yahoo! Porf Learning to Rank for Information Retrieval This Tutorial www2009.org/T/7A-LEARNING%20T0%20RANK%20TUTORIA File Format: PDF/Adobe Acrobat - Quick View 12 Apr 2009 - Learning to Rank for Information Retrieval. Tie-Yan Liu. Microsoft Research Asia. A tutorial at WWW 2009. This Tutorial. • Learning to Rank research microsoft.com/-letor/ This website is designed to facilitate research on Learning to Rank research microsoft.com/-letor/ This website is designed to facilitate research in LEarning TO Rank (LETOR). Much information about learning to rank can be found in the website, including Porf Large Scale Learning to Rank Www.ieecs.tufts.edu/-dsculley/papers/large-scale-rank.pdf File Format: PDF/Adobe Acrobat - Quick View by D Sculley - Cited by 19 - Related articles Pairwise learning to rank methods such as RankSVM give good performance,, In this paper, we are concerned with learning to rank methods that can learn on Porf Metric Learning to Rank Challenge Overview by D McFee - Cited by 21 - Related articles Metric Learning to Rank. Challenge Overview inf.csail.mit.edu/proceedings/papers/14/chapelle11a.pdf File Format: PDF/Adobe Acrobat - Quick View by O McFee - Cited by 21 - Related articles Metric Learning to Rank. Challenge Overview inf.csail.mit.edu/proceedings/papers/14/chapelle11a.pdf File Format: PDF/Adobe Acrobat - Quick View by O Chapelle - Cited by 23 - Related articles Metric Learning to Rank. Brian McFee bmcFee@cs.u	The Positive Rate False Positive Rate	

[PDF] <u>Future directions in learning to rank</u> jmlr.csail.mit.edu/proceedings/papers/v14/.../chapelle11b.pdf

http://www.google.com/

Medical Diagnosis

http://www.google.com/imghp

Medical Diagnosis

Bioinformatics

Bioinformatics

• Many existing approaches are either heuristic or solve special cases of the problem.

- Many existing approaches are either heuristic or solve special cases of the problem.
- Our contribution: A new support vector method for optimizing the general partial AUC measure.

- Many existing approaches are either heuristic or solve special cases of the problem.
- Our contribution: A new support vector method for optimizing the general partial AUC measure.
- Based on Joachims' Structural SVM approach for optimizing full AUC, but leads to a trickier inner combinatorial optimization problem.

- Many existing approaches are either heuristic or solve special cases of the problem.
- Our contribution: A new support vector method for optimizing the general partial AUC measure.
- Based on Joachims' Structural SVM approach for optimizing full AUC, but leads to a trickier inner combinatorial optimization problem.
- Improvements over baselines on several real-world applications

Minimize: $1 - \widehat{pAUC}_f(\alpha, \beta)$

Discrete and

Minimize: $1 - \widehat{pAUC}_f(\alpha, \beta)$ Non-differentiable

• Extends Joachims' approach for full AUC optimization, but leads to a trickier combinatorial optimization step.

T. Joachims, "A Support Vector Method for Multivariate Performance Measures", ICML 2005.

- Extends Joachims' approach for full AUC optimization, but leads to a trickier combinatorial optimization step.
- Efficient solver with the same time complexity as that for full AUC.

T. Joachims, "A Support Vector Method for Multivariate Performance Measures", ICML 2005.

$$\min_{\substack{w,\xi \ge 0}} \frac{1}{2} ||w||^2 + C\xi$$

s.t. $\forall \pi \in \mathcal{C}$:
 $w^{\top} \left(\phi(S, \pi^*) - \phi(S, \pi) \right) \ge \Delta_{\text{pAUC}(\alpha, \beta)}(\pi^*, \pi) - \xi$

Repeat:

$$\min_{w,\xi \ge 0} \frac{1}{2} ||w||^2 + C\xi$$

1. Solve OP for a subset of constraints.

s.t. $\forall \pi \in \mathcal{C}$:

 $w^{\top} (\phi(S, \pi^*) - \phi(S, \pi)) \geq \Delta_{\text{pAUC}(\alpha, \beta)}(\pi^*, \pi) - \xi$

Repeat:

$$\min_{w,\xi \ge 0} \frac{1}{2} ||w||^2 + C\xi$$

s.t. $\forall \pi \in \mathcal{C}$:

- $w^{\top} \left(\phi(S, \pi^*) \phi(S, \pi) \right) \geq \Delta_{\text{pAUC}(\alpha, \beta)}(\pi^*, \pi) \xi$
- 1. Solve OP for a subset of constraints.
- 2. Add the most violated constraint.

Converges in constant number of iterations

Repeat:

$$\min_{w,\xi \ge 0} \frac{1}{2} ||w||^2 + C\xi$$

s.t. $\forall \pi \in \mathcal{C}$:

- $w^{\top} \left(\phi(S, \pi^*) \phi(S, \pi) \right) \geq \Delta_{\text{pAUC}(\alpha, \beta)}(\pi^*, \pi) \xi$
- 1. Solve OP for a subset of constraints.
- 2. Add the most violated constraint.

Repeat:

Converges in constant number of iterations

 $\min_{w,\xi\geq 0}\,\frac{1}{2}||w||^2+C\xi$

s.t. $\forall \pi \in \mathcal{C}$:

 $w^{\top} \left(\phi(S, \pi^*) - \phi(S, \pi) \right) \ge \Delta_{\text{pAUC}(\alpha, \beta)}(\pi^*, \pi) - \xi$

- 1. Solve OP for a subset of constraints.
- 2. Add the most violated constraint.

Repeat:

Converges in constant number of iterations

 $\min_{w,\xi \ge 0} \frac{1}{2} ||w||^2 + C\xi$ s.t. $\forall \pi \in C$: $w^{\top}(\phi(S, \pi^*) - \phi(S, \pi)) \ge \Delta_{\text{pAUC}(\alpha,\beta)}(\pi^*, \pi) - \xi$ argmax $\Delta_{\text{pAUC}(\alpha,\beta)}(\pi^*, \pi) + w^{\top}(\phi(S, \pi^*) - \phi(S, \pi))$ 1. Solve OP for a subset of constraints.
2. Add the most violated constraint.
Break down! $\max_{\pi} \Delta_{\text{pAUC}(\alpha,\beta)}(\pi^*, \pi) + w^{\top}(\phi(S, \pi^*) - \phi(S, \pi))$

Repeat:

Converges in constant number of iterations

 $\min_{w,\xi\geq 0} \frac{1}{2}||w||^2 + C\xi$ Solve OP for a subset of 1 constraints. s.t. $\forall \pi \in \mathcal{C}$: $(\phi(S,\pi^*) - \phi(S,\pi)) \ge \Delta_{\text{pAUC}(\alpha,\beta)}(\pi^*,\pi) - \xi$ Add the most violated 2. constraint. **Break down!** argmax $\Delta_{\text{pAUC}(\alpha,\beta)}(\pi^*,\pi) + w^{\top}(\phi(S,\pi^*) - \phi(S,\pi))$ **Full AUC** +1 +1 +1 +1 +1 -1 -1 +1 +1 +1 -1 -1 +1 +1 -1 -1 -1 -1 +1 +1

Repeat:

Converges in constant number of iterations

Solve OP for a subset of $\min_{w,\xi\geq 0} \frac{1}{2} ||w||^2 + C\xi$ 1 constraints. s.t. $\forall \pi \in \mathcal{C}$: $(\phi(S,\pi^*) - \phi(S,\pi)) \ge \Delta_{\text{pAUC}(\alpha,\beta)}(\pi^*,\pi) - \xi$ Add the most violated 2. constraint. **Break down!** argmax $\Delta_{\text{pAUC}(\alpha,\beta)}(\pi^*,\pi) + w^{\top}(\phi(S,\pi^*) - \phi(S,\pi))$ **Full AUC** Partial AUC +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 -1 -1 +1 +1 +1 -1 +1 +1 -1 +1 -1 -1 +1 +1 -1 -1 -1 +1 +1 -1 -1 -1 -1 -1 +1 +1 -1 +1 +1 -1

Converges in constant number of iterations

Repeat: 。 •

J	<u> </u>
	pAUC(0, 0.1)
$SVM_{pAUC}[0,0.1]$	65.25
SVM_{AUC}	62.64 *
ASVM[0,0.1]	63.80
pAUCBoost[0,0.1]	43.89 *
Greedy-Heuristic[0,0.1]	8.33 *

Drug Discovery

	pAUC(0, 0.1)
$SVM_{pAUC}[0,0.1]$	65.25
SVM_{AUC}	62.64 *
ASVM[0,0.1]	63.80
pAUCBoost[0,0.1]	43.89 *
Greedy-Heuristic[0,0.1]	8.33 *

Protein Interaction Prediction

	pAUC(0, 0.1)
$SVM_{pAUC}[0,0.1]$	51.79
SVM_{AUC}	39.72 *
ASVM[0,0.1]	44.51 *
pAUCBoost[0,0.1]	48.65 *
Greedy-Heuristic[0,0.1]	47.33 *

Drug Discovery

	pAUC(0, 0.1)
$SVM_{pAUC}[0,0.1]$	65.25
SVM_{AUC}	62.64 *
ASVM[0,0.1]	63.80
pAUCBoost[0,0.1]	43.89 *
Greedy-Heuristic[0,0.1]	8.33 *

Protein Interaction Prediction

	pAUC(0, 0.1)
$SVM_{pAUC}[0,0.1]$	51.79
SVM_{AUC}	39.72 *
ASVM[0,0.1]	44.51 *
pAUCBoost[0,0.1]	48.65 *
Greedy-Heuristic[0,0.1]	47.33 *

KDD Cup 2008 Breast Cancer Detection

	pAUC(0.2s, 0.3s)	
$SVM_{pAUC}[0.2s, 0.3s]$	51.44	
SVM_{AUC}	50.50	
pAUCBoost[0.2s, 0.3s]	48.06 *	
Greedy-Heuristic $[0.2s, 0.3s]$	46.99 *	

Conclusions

- A new support vector algorithm for optimizing partial AUC
- Efficient algorithm for solving the inner combinatorial optimization step
- Experimental results confirm the efficacy of the algorithm

Conclusions

- A new support vector algorithm for optimizing partial AUC
- Efficient algorithm for solving the inner combinatorial optimization step
- Experimental results confirm the efficacy of the algorithm
- Future work:
 - Characterize upper bound on partial AUC?
 - Tighter upper bound on partial AUC?
 - Statistical consistency?