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Partial AUC Optimization

• Many existing approaches are either heuristic or
solve special cases of the problem.

• Our contribution: A new support vector method for
optimizing the general partial AUC measure.

• Based on Joachims’ Structural SVM approach for
optimizing full AUC, but leads to a trickier inner
combinatorial optimization problem.

• Improvements over baselines on several real-world
applications

Partial Area Under the ROC Curve is critical 
to many applications
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Partial AUC Optimization

Minimize:

• Extends Joachims’ approach for full AUC optimization, 
but leads to a trickier combinatorial optimization step.

• Efficient solver with the same time complexity as that 
for full AUC.

Discrete and 
Non-differentiable

Convex Upper Bound on “                               ” +   Regularizer

Structural SVM

T. Joachims, “A Support Vector Method for Multivariate Performance Measures”, ICML 2005.
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Break down!

Optimization Solver
Repeat:

1. Solve OP for a subset of 
constraints.

2. Add the most violated
constraint.

Converges in 
constant number 

of iterations

+1 +1 +1 +1 +1

-1 -1 +1 +1 +1

-1 -1 +1 +1 -1

-1 -1 +1 +1 -1

+1 +1 +1 +1 +1

-1 -1 +1 +1 +1

-1 -1 +1 +1 -1

-1 -1 +1 +1 -1

Full AUC Partial AUCCan be implemented in 

O((m+n) log (m+n)) time 
complexity



Experimental Results



Experimental Results

Interval [0, β]

Drug Discovery



Experimental Results

Interval [0, β]

Drug Discovery

Protein Interaction Prediction



Experimental Results

Interval [0, β]

Drug Discovery

Protein Interaction Prediction

Interval [α, β]

KDD Cup 2008 Breast Cancer 

Detection



Conclusions

• A new support vector algorithm for optimizing 
partial AUC

• Efficient algorithm for solving the inner 
combinatorial optimization step 

• Experimental results confirm the efficacy of the 
algorithm

 

 

 

 



Conclusions

• A new support vector algorithm for optimizing 
partial AUC

• Efficient algorithm for solving the inner 
combinatorial optimization step 

• Experimental results confirm the efficacy of the 
algorithm

• Future work:

– Characterize upper bound on partial AUC?

– Tighter upper bound on partial AUC?

– Statistical consistency?


