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Partial AUC Optimization

* Many existing approaches are either heuristic or
solve special cases of the problem.

e Our contribution: A new support vector method for
optimizing the general partial AUC measure.

e Based on Joachims’ Structural SVM approach for
optimizing full AUC, but leads to a trickier inner
combinatorial optimization problem.

* Improvements over baselines on several real-world
applications

Partial Area Under the ROC Curve is critical
to many applications
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Structural SVM

* Extends Joachims’ approach for full AUC optimization,
but leads to a trickier combinatorial optimization step.

* Efficient solver with the same time complexity as that
for full AUC.

T. Joachims, “A Support Vector Method for Multivariate Performance Measures”, ICML 2005.
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Conclusions

A new support vector algorithm for optimizing
partial AUC

Efficient algorithm for solving the inner
combinatorial optimization step

Experimental results confirm the efficacy of the
algorithm

Future work:

— Characterize upper bound on partial AUC?
— Tighter upper bound on partial AUC?
— Statistical consistency?



