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Ranking
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Bioinformatics

— Drug Discovery
— Gene Prioritization 1
— Protein Interaction Prediction
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Partial Area Under the ROC Curve is critical
to many applications



Partial AUC Optimization

* Asymmetric SVM:

— Wu, S.-H,, Lin, K.-P.,, Chen, C.-M., and Chen, M.-S. Asymmetric support
vector machines: low false-positive learning under the user tolerance.
In KDD, 2008.

* Boosting style algorithm:

— Komori, O. and Eguchi, S. A boosting method for maximizing the partial
area under the ROC curve. BMC Bioinformatics, 11:314, 2010.

— Takenouchi, T., Komori, O., and Eguchi, S. An extension of the receiver
operating characteristic curve and AUC-optimal classification. Neural
Computation, 24, (10):2789-2824, 2012.

* Several heuristic approaches:

— Pepe, M. S. and Thompson, M. L. Combining diagnostic test results to
increase accuracy. Biostatistics, 1(2):123-140, 2000.

— Ricamato, M. T. and Tortorella, F. Partial AUC maximization in a linear
combination of dichotomizers. Pattern Recognition, 44(10-11):2669—
2677, 2011.



Partial AUC Optimization

Many of the existing approaches are either heuristic or
solve special cases of the problem.

Our contribution: New support vector methods for
optimizing the general partial AUC measure.

Based on Joachims’ Structural SVM approach for
optimizing full AUC, but leads to a trickier inner
combinatorial optimization problem.

— Joachims, T. A Support Vector Method for Multivariate
Performance Measures. ICML, 2005.

— Joachims, T. Training linear SVMs in linear time. KDD, 2006.

Improvements over baselines on several real-world
applications
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Partial AUC Optimization

Discrete and
Minimize: 1 — mf(ﬁnﬁ) Non-differentiable
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Structural SVM Based Approach

e Extends Joachims” approach for full AUC optimization,
but leads to a trickier combinatorial optimization step.

 Efficient solver with the same/lesser time complexity
compared to that for full AUC.
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Structural SVM Based Approach
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Converges in

CUtting—plane Solver constant number

of iterations

Repeat:

min ~|lw|? + C¢ 1. Solve OP for a subset of
£>0 211 | _
| constraints.
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st. VmeC:
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Trickier Optimization Problem
Full AUC
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Trickier Optimization Problem

Partial AUC
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Can be implemented in
O((m+n) log (m+n)) time
complexity

e e
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H. Narasimhan and S. Agarwal. A Structural SVM Based Approach for Optimizing Partial AUC.
ICML, 2013.
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* Tighter upper bound on partial AUC

e Lesser time for finding most-violatec

OSS

constraint!

e Better guarantee on number of cutting-plane

iterations!

H. Narasimhan and S. Agarwal. SVM_pAUCAtight: A New Support Vector Method for
Optimizing Partial AUC Based on a Tight Convex Upper Bound. KDD, 2013. To appear.
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SVMpAUCstuct ys, Baseline Methods

Drug Discovery
50 active compounds / 2092 inactive compounds

pAUC(0,0.1)
SV Mavuc b2.b4 *
1 ASVM[0,0.1 63.580
pAUCBoost[0,0.1] 43.89 * X
g Greedy-Heuristic[0,0.1] 8.33 * -
g
g Interval [0, B] . . . L.
= | L Protein-Protein Interaction Prediction
0 /[13 ) ~3x103 interacting pairs / ~2x10° non-interacting pairs
False Positive Rate P AUC{U. 0. 1)
AV Mpavc 0.,0.1 51.79
SVMave 39.72 F
ASVMI0,0.1] 44.51 *
pAUCBoost|0,0.1 48.65 *
Greedy-Heuristic[0,0.1 47.33 *




True Positive Rate

SVMPpAUCstuct ys, Baseline Methods
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Breast Cancer Detection
~600 malignant ROIs / ~10° benign ROIs

pAUC(0.25,0.3s)

SVMoauc0.25, 0.35 51.44
oV Maveo 5000
pAUCBoost[0.2s, 0.3s] 48.06 *
Greedy-Heuristic|0.2s, 0.3s] 46.99 *




SVMpAU Ctight y¢ QYM pAUCstruct

Partial AUC in [0, B]

SVMUS[0,0.1] | SVM3RWE[0,0.1] || SVMauc
PPI 52.95 51.96 * 39.72 *
Cheminformatics 65.30 65.28 62.78
KDD Cup 2001 69.91 70.12 62.23 *
Leukemia 30.44 24.64 ¥ 28.83
Ovarian Cancer 91.84 91.84 92.17
Partial AUCin [a, B]
SVM %7 [0.25,0.3s] | SVMSAYE[0.25,0.3s] [ SVMauc
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Run-time Analysis
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Conclusions

A new structural SVM based approach for
optimizing partial AUC

Efficient algorithm for solving the inner
combinatorial optimization step

Improved algorithm that optimizes a tighter
upper bound on the partial AUC loss

Experimental results confirm the effectiveness
of our methods
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