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Bioinformatics
― Drug Discovery
― Gene Prioritization
― Protein Interaction Prediction
― ……
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Partial Area Under the ROC Curve is critical 
to many applications



Partial AUC Optimization
• Asymmetric SVM:

– Wu, S.-H., Lin, K.-P., Chen, C.-M., and Chen, M.-S. Asymmetric support 
vector machines: low false-positive learning under the user tolerance. 
In KDD, 2008.

• Boosting style algorithm:
– Komori, O. and Eguchi, S. A boosting method for maximizing the partial 

area under the ROC curve. BMC Bioinformatics, 11:314, 2010.

– Takenouchi, T., Komori, O., and Eguchi, S. An extension of the receiver 
operating characteristic curve and AUC-optimal classification. Neural 
Computation, 24, (10):2789–2824, 2012.

• Several heuristic approaches:
– Pepe, M. S. and Thompson, M. L. Combining diagnostic test results to 

increase accuracy. Biostatistics, 1(2):123–140, 2000.

– Ricamato, M. T. and Tortorella, F. Partial AUC maximization in a linear 
combination of dichotomizers. Pattern Recognition, 44(10-11):2669–
2677, 2011.



Partial AUC Optimization

• Many of the existing approaches are either heuristic or
solve special cases of the problem.

• Our contribution: New support vector methods for
optimizing the general partial AUC measure.

• Based on Joachims’ Structural SVM approach for
optimizing full AUC, but leads to a trickier inner
combinatorial optimization problem.
– Joachims, T. A Support Vector Method for Multivariate

Performance Measures. ICML, 2005.

– Joachims, T. Training linear SVMs in linear time. KDD, 2006.

• Improvements over baselines on several real-world
applications



Outline

• Problem Setup

• First cut: Structural SVM Approach for 
Optimizing Partial AUC

• Better Formulation: Tighter Upper Bound on 
the Partial AUC Loss

• Experiments



Receiver Operating Characteristic Curve
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Partial AUC Optimization

Minimize:

• Extends Joachims’ approach for full AUC optimization, 
but leads to a trickier combinatorial optimization step.

• Efficient solver with the same/lesser time complexity
compared to that for full AUC.

Discrete and 
Non-differentiable

Convex Upper Bound on “                               ” +   Regularizer

Structural SVM Based Approach
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Structural SVM Based Approach
Ordering of {x1, x2, …, xs}
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Break down!

Cutting-plane Solver
Repeat:

1. Solve OP for a subset of 
constraints.

2. Add the most violated
constraint.

Converges in 
constant number 

of iterations
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Trickier Optimization Problem

All Pairs

Subset of negative instances in the 
FPR range [α, β] – changes with 

ordering
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Trickier Optimization Problem

Full AUC
All Pairs

Subset of negative instances in the 
FPR range [α, β] – changes with 

ordering

Partial AUC

Partial AUC



Trickier Optimization Problem

Full AUC
All Pairs

Subset of negative instances in the 
FPR range [α, β] – changes with 

ordering

Partial AUC
0 1 0 1 0

1 1 0 0 0

1 1 0 0 1

1 1 0 0 1

Partial AUC

Optimize rows 
independently

H. Narasimhan and S. Agarwal. A Structural SVM Based Approach for Optimizing Partial AUC. 

ICML, 2013.
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Can be implemented in 

O((m+n) log (m+n)) time 
complexity
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Better Formulation

• Characterize the upper bound on the pAUC loss:

• Rewrite pAUC loss:

?

Max over subsets of negative 
instances

Truncated form of earlier 
objective

• Tighter upper bound on partial AUC loss

• Lesser time for finding most-violated constraint!

• Better guarantee on number of cutting-plane 
iterations!

H. Narasimhan and S. Agarwal. SVM_pAUC^tight: A New Support Vector Method for 

Optimizing Partial AUC Based on a Tight Convex Upper Bound. KDD, 2013. To appear.
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SVMpAUCstruct vs. Baseline Methods

Interval [0, β]

Drug Discovery
50 active compounds / 2092 inactive compounds

Protein-Protein Interaction Prediction
~3x103 interacting pairs / ~2x105 non-interacting pairs



Interval [α, β]

KDD Cup 2008 
Breast Cancer Detection

~600 malignant ROIs / ~105 benign ROIs

SVMpAUCstruct vs. Baseline Methods



Partial AUC in [0, β]

Partial AUC in [α, β]

SVMpAUCtight vs. SVMpAUCstruct



Run-time Analysis

Interval [0, β]

Repeat:

1. Solve OP for a subset of 
constraints.

2. Add the most violated 
constraint.



Conclusions

• A new structural SVM based approach for 
optimizing partial AUC

• Efficient algorithm for solving the inner 
combinatorial optimization step 

• Improved algorithm that optimizes a tighter 
upper bound on the partial AUC loss

• Experimental results confirm the effectiveness 
of our methods



Questions?


